Brain Network Modularity and Resilience Signaled by Betweenness Centrality Percolation Spiking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice Neuroimaging Methodology
2.2. Human Neuroimaging Methodology
2.2.1. Human Model Database and Image Acquisition
2.2.2. Human Model Image Preprocessing and Network Generation
2.3. Connectivity Matrix Analysis and Graph Theory Methodology
2.3.1. Group-Average and Null Matrix Generation
2.3.2. Graph Theory Measures
2.3.3. Percolation Theory Framework
2.3.4. Module Identification Using Percolation Theory
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milano, M.; Guzzi, P.H.; Cannataro, M. Network building and analysis in connectomics studies: A review of algorithms, databases and technologies. Netw. Model. Anal. Health Inform. Bioinform. 2019, 8, 13. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef]
- Sporns, O.; Betzel, R.F. Modular Brain Networks. Annu. Rev. Psychol. 2016, 67, 613–640. [Google Scholar] [CrossRef]
- Warsi, N.M.; Wong, S.M.; Germann, J.; Boutet, A.; Arski, O.N.; Anderson, R.; Erdman, L.; Yan, H.; Suresh, H.; Gouveia, F.V.; et al. Dissociable default-mode subnetworks subserve childhood attention and cognitive flexibility: Evidence from deep learning and stereotactic electroencephalography. Neural Netw. 2023, 167, 827–837. [Google Scholar] [CrossRef]
- Kotlarz, P.; Nino, J.C.; Febo, M. Connectomic analysis of Alzheimer’s disease using percolation theory. Netw. Neurosci. 2022, 6, 213–233. [Google Scholar] [CrossRef]
- Tao, Y.; Rapp, B. Investigating the network consequences of focal brain lesions through comparisons of real and simulated lesions. Sci. Rep. 2021, 11, 2213. [Google Scholar] [CrossRef]
- Razban, R.M.; Pachter, J.A.; Dill, K.A.; Mujica-Parodi, L.R. Early path dominance as a principle for neurodevelopment. Proc. Natl. Acad. Sci. USA 2023, 120, e2218007120. [Google Scholar] [CrossRef]
- Achard, S.; Salvador, R.; Whitcher, B.; Suckling, J.; Bullmore, E. A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs. J. Neurosci. 2006, 26, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.; Martin, R.; Andras, P.; Young, M.P. Simulation of robustness against lesions of cortical networks. Eur. J. Neurosci. 2007, 25, 3185–3192. [Google Scholar] [CrossRef] [PubMed]
- Lynall, M.-E.; Bassett, D.S.; Kerwin, R.; McKenna, P.J.; Kitzbichler, M.; Muller, U.; Bullmore, E. Functional connectivity and brain networks in schizophrenia. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 9477–9487. [Google Scholar] [CrossRef]
- Cabral, J.; Hugues, E.; Kringelbach, M.L.; Deco, G. Modeling the outcome of structural disconnection on resting-state functional connectivity. NeuroImage 2012, 62, 1342–1353. [Google Scholar] [CrossRef]
- Joyce, K.E.; Hayasaka, S.; Laurienti, P.J. The Human Functional Brain Network Demonstrates Structural and Dynamical Resilience to Targeted Attack. PLoS Comput. Biol. 2013, 9, e1002885. [Google Scholar] [CrossRef]
- Guo, S.; Chen, X.; Liu, Y.; Kang, R.; Liu, T.; Li, D. Percolation Analysis of Brain Structural Network. Front. Phys. 2021, 9, 698077. [Google Scholar] [CrossRef]
- Mastrandrea, R.; Piras, F.; Gabrielli, A.; Banaj, N.; Caldarelli, G.; Spalletta, G.; Gili, T. The unbalanced reorganization of weaker functional connections induces the altered brain network topology in schizophrenia. Sci. Rep. 2021, 11, 15400. [Google Scholar] [CrossRef]
- Langton, C.G. Computation at the edge of chaos: Phase transitions and emergent computation. Phys. Nonlinear Phenom. 1990, 42, 12–37. [Google Scholar] [CrossRef]
- Bertschinger, N.; Natschläger, T. Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks. Neural Comput. 2004, 16, 1413–1436. [Google Scholar] [CrossRef]
- Gao, J.; Barzel, B.; Barabási, A.-L. Universal resilience patterns in complex networks. Nature 2016, 530, 307–312. [Google Scholar] [CrossRef]
- Dong, G.; Wang, F.; Shekhtman, L.M.; Danziger, M.M.; Fan, J.; Du, R.; Liu, J.; Tian, L.; Stanley, H.E.; Havlin, S. Optimal resilience of modular interacting networks. Proc. Natl. Acad. Sci. USA 2021, 118, e1922831118. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; Erez, K.; ben-Avraham, D.; Havlin, S. Resilience of the Internet to Random Breakdowns. Phys. Rev. Lett. 2000, 85, 4626–4628. [Google Scholar] [CrossRef] [PubMed]
- Aerts, H.; Fias, W.; Caeyenberghs, K.; Marinazzo, D. Brain networks under attack: Robustness properties and the impact of lesions. Brain 2016, 139, 3063–3083. [Google Scholar] [CrossRef]
- Stanford, W.C.; Mucha, P.J.; Dayan, E. A robust core architecture of functional brain networks supports topological resilience and cognitive performance in middle- and old-aged adults. Proc. Natl. Acad. Sci. USA 2022, 119, e2203682119. [Google Scholar] [CrossRef]
- Crossley, N.A.; Mechelli, A.; Scott, J.; Carletti, F.; Fox, P.T.; McGuire, P.; Bullmore, E.T. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 2014, 137, 2382–2395. [Google Scholar] [CrossRef] [PubMed]
- Colon-Perez, L.M.; Ibanez, K.R.; Suarez, M.; Torroella, K.; Acuna, K.; Ofori, E.; Levites, Y.; Vaillancourt, D.E.; Golde, T.E.; Chakrabarty, P.; et al. Neurite orientation dispersion and density imaging reveals white matter and hippocampal microstructure changes produced by Interleukin-6 in the TgCRND8 mouse model of amyloidosis. NeuroImage 2019, 202, 116138. [Google Scholar] [CrossRef] [PubMed]
- Sahara, N.; Perez, P.D.; Lin, W.-L.; Dickson, D.W.; Ren, Y.; Zeng, H.; Lewis, J.; Febo, M. Age-related decline in white matter integrity in a mouse model of tauopathy: An in vivo diffusion tensor magnetic resonance imaging study. Neurobiol. Aging 2014, 35, 1364–1374. [Google Scholar] [CrossRef]
- Cox, R.W. AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages. Comput. Biomed. Res. 1996, 29, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S. Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage 2002, 17, 825–841. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.; Andersson, J.; Ardekani, B.A.; Ashburner, J.; Avants, B.; Chiang, M.-C.; Christensen, G.E.; Collins, D.L.; Gee, J.; Hellier, P.; et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 2009, 46, 786–802. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.; Kong, R.; Gordon, E.M.; Laumann, T.O.; Zuo, X.-N.; Holmes, A.J.; Eickhoff, S.B.; Yeo, B.T.T. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb. Cortex 2018, 28, 3095–3114. [Google Scholar] [CrossRef]
- Xia, M.; Wang, J.; He, Y. BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics. PLoS ONE 2013, 8, e68910. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Weight-conserving characterization of complex functional brain networks. NeuroImage 2011, 56, 2068–2079. [Google Scholar] [CrossRef] [PubMed]
- Váša, F.; Mišić, B. Null models in network neuroscience. Nat. Rev. Neurosci. 2022, 23, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.H.; Kesler, S.R. Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks. PLoS ONE 2013, 8, e67354. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Bridgeford, E.; Arroyo, J.; Pedigo, B.D.; Saad-Eldin, A.; Gopalakrishnan, V.; Xiang, L.; Priebe, C.E.; Vogelstein, J.T. Statistical Connectomics. Annu. Rev. Stat. Its Appl. 2021, 8, 463–492. [Google Scholar] [CrossRef]
- Fornito, A.; Zalesky, A.; Bullmore, E.T. (Eds.) Chapter 10—Null Models. In Fundamentals of Brain Network Analysis; Academic Press: San Diego, CA, USA, 2016; pp. 355–381. ISBN 978-0-12-407908-3. [Google Scholar]
- Breskin, I.; Soriano, J.; Moses, E.; Tlusty, T. Percolation in Living Neural Networks. Phys. Rev. Lett. 2006, 97, 188102. [Google Scholar] [CrossRef]
- Kong, L.-W.; Li, M.; Liu, R.-R.; Wang, B.-H. Percolation on networks with weak and heterogeneous dependency. Phys. Rev. E 2017, 95, 032301. [Google Scholar] [CrossRef] [PubMed]
- Callaway, D.S.; Newman, M.E.J.; Strogatz, S.H.; Watts, D.J. Network Robustness and Fragility: Percolation on Random Graphs. Phys. Rev. Lett. 2000, 85, 5468–5471. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; ben-Avraham, D.; Havlin, S. Percolation critical exponents in scale-free networks. Phys. Rev. E 2002, 66, 036113. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods for Research Workers, 13th ed.; Rev. in Biological monographs and manuals; Hafner: New York, NY, USA, 1958. [Google Scholar]
- Kendall, M.; Stuart, A. The Advanced Theory of Statistics. Volume 2: Inference and Relationship, 4th ed.; Macmillan: New York, NY, USA, 1979; ISBN 978-0-02-847820-3. [Google Scholar]
- Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1992; ISBN 978-0-521-43108-8. [Google Scholar]
- Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K. Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E 2005, 71, 065103. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Newman, M.E.J. Mathematics of Networks. In The New Palgrave Dictionary of Economics; Palgrave Macmillan: London, UK, 2016; pp. 1–8. ISBN 978-1-349-95121-5. [Google Scholar]
- Latora, V.; Marchiori, M. Efficient Behavior of Small-World Networks. Phys. Rev. Lett. 2001, 87, 198701. [Google Scholar] [CrossRef] [PubMed]
- Guimerà, R.; Amaral, L.A.N. Cartography of complex networks: Modules and universal roles. J. Stat. Mech. Theory Exp. 2005, 2005, P02001. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Kim, D.-J.; Min, B.-K. Rich-club in the brain’s macrostructure: Insights from graph theoretical analysis. Comput. Struct. Biotechnol. J. 2020, 18, 1761–1773. [Google Scholar] [CrossRef] [PubMed]
- Opsahl, T.; Colizza, V.; Panzarasa, P.; Ramasco, J.J. Prominence and Control: The Weighted Rich-Club Effect. Phys. Rev. Lett. 2008, 101, 168702. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, M.P.; Sporns, O. Rich-Club Organization of the Human Connectome. J. Neurosci. 2011, 31, 15775–15786. [Google Scholar] [CrossRef]
- Morone, F.; Makse, H.A. Influence maximization in complex networks through optimal percolation. Nature 2015, 524, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Morone, F.; Min, B.; Bo, L.; Mari, R.; Makse, H.A. Collective Influence Algorithm to find influencers via optimal percolation in massively large social media. Sci. Rep. 2016, 6, 30062. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Improved collective influence of finding most influential nodes based on disjoint-set reinsertion. Sci. Rep. 2018, 8, 14503. [Google Scholar] [CrossRef]
- Hagmann, P.; Cammoun, L.; Gigandet, X.; Meuli, R.; Honey, C.J.; Wedeen, V.J.; Sporns, O. Mapping the Structural Core of Human Cerebral Cortex. PLoS Biol. 2008, 6, e159. [Google Scholar] [CrossRef]
- O’Byrne, J.; Jerbi, K. How critical is brain criticality? Trends Neurosci. 2022, 45, 820–837. [Google Scholar] [CrossRef] [PubMed]
- Zimmern, V. Why Brain Criticality Is Clinically Relevant: A Scoping Review. Front. Neural Circuits 2020, 14, 565335. [Google Scholar] [CrossRef] [PubMed]
- Fosque, L.J.; Williams-García, R.V.; Beggs, J.M.; Ortiz, G. Evidence for Quasicritical Brain Dynamics. Phys. Rev. Lett. 2021, 126, 098101. [Google Scholar] [CrossRef] [PubMed]
- Fraiman, D.; Balenzuela, P.; Foss, J.; Chialvo, D.R. Ising-like dynamics in large-scale functional brain networks. Phys. Rev. E 2009, 79, 061922. [Google Scholar] [CrossRef] [PubMed]
- Jannesari, M.; Saeedi, A.; Zare, M.; Ortiz-Mantilla, S.; Plenz, D.; Benasich, A.A. Stability of neuronal avalanches and long-range temporal correlations during the first year of life in human infants. Brain Struct. Funct. 2020, 225, 1169–1183. [Google Scholar] [CrossRef] [PubMed]
- Suárez, L.E.; Richards, B.A.; Lajoie, G.; Misic, B. Learning function from structure in neuromorphic networks. Nat. Mach. Intell. 2021, 3, 771–786. [Google Scholar] [CrossRef]
- Parker, T.S.; Chua, L.O. Practical Numerical Algorithms for Chaotic Systems; Springer: New York, NY, USA, 1989; ISBN 978-1-4612-8121-4. [Google Scholar]
- Ito, T.; Kulkarni, K.R.; Schultz, D.H.; Mill, R.D.; Chen, R.H.; Solomyak, L.I.; Cole, M.W. Cognitive task information is transferred between brain regions via resting-state network topology. Nat. Commun. 2017, 8, 1027. [Google Scholar] [CrossRef]
- Ito, T.; Yang, G.R.; Laurent, P.; Schultz, D.H.; Cole, M.W. Constructing neural network models from brain data reveals representational transformations linked to adaptive behavior. Nat. Commun. 2022, 13, 673. [Google Scholar] [CrossRef] [PubMed]
- Suárez, L.E.; Mihalik, A.; Milisav, F.; Marshall, K.; Li, M.; Vértes, P.E.; Lajoie, G.; Misic, B. Connectome-based reservoir computing with the conn2res toolbox. Nat. Commun. 2024, 15, 656. [Google Scholar] [CrossRef]
- Albers, K.J.; Ambrosen, K.S.; Liptrot, M.G.; Dyrby, T.B.; Schmidt, M.N.; Mørup, M. Using connectomics for predictive assessment of brain parcellations. NeuroImage 2021, 238, 118170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotlarz, P.; Febo, M.; Nino, J.C.; on behalf of the Alzheimer’s Disease Neuroimaging Initiative. Brain Network Modularity and Resilience Signaled by Betweenness Centrality Percolation Spiking. Appl. Sci. 2024, 14, 4197. https://doi.org/10.3390/app14104197
Kotlarz P, Febo M, Nino JC, on behalf of the Alzheimer’s Disease Neuroimaging Initiative. Brain Network Modularity and Resilience Signaled by Betweenness Centrality Percolation Spiking. Applied Sciences. 2024; 14(10):4197. https://doi.org/10.3390/app14104197
Chicago/Turabian StyleKotlarz, Parker, Marcelo Febo, Juan C. Nino, and on behalf of the Alzheimer’s Disease Neuroimaging Initiative. 2024. "Brain Network Modularity and Resilience Signaled by Betweenness Centrality Percolation Spiking" Applied Sciences 14, no. 10: 4197. https://doi.org/10.3390/app14104197
APA StyleKotlarz, P., Febo, M., Nino, J. C., & on behalf of the Alzheimer’s Disease Neuroimaging Initiative. (2024). Brain Network Modularity and Resilience Signaled by Betweenness Centrality Percolation Spiking. Applied Sciences, 14(10), 4197. https://doi.org/10.3390/app14104197