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Abstract: Modularity and resilience are fundamental properties of brain network organization
and function. The interplay of these network characteristics is integral to understanding brain
vulnerability, network efficiency, and neurocognitive disorders. One potential methodology to
explore brain network modularity and resilience is through percolation theory, a sub-branch of graph
theory that simulates lesions across brain networks. In this work, percolation theory is applied to
connectivity matrices derived from functional MRI from human, mice, and null networks. Nodes, or
regions, with the highest betweenness centrality, a graph theory quantifier that examines shortest
paths, were sequentially removed from the network. This attack methodology led to a rapid fracturing
of the network, resulting in two terminal modules connected by one transfer module. Additionally,
preceding the rapid network fracturing, the average betweenness centrality of the network peaked
in value, indicating a critical point in brain network functionality. Thus, this work introduces a
methodological perspective to identify hubs within the brain based on critical points that can be used
as an architectural framework for a neural network. By applying percolation theory to functional brain
networks through a network phase-transition lens, network sub-modules are identified using local
spikes in betweenness centrality as an indicator of brain criticality. This modularity phase transition
provides supporting evidence of the brain functioning at a near-critical point while showcasing a
formalism to understand the computational efficiency of the brain as a neural network.

Keywords: graph theory; percolation theory; connectomics; modularity; resilience; neural network

1. Introduction

The application of mathematical concepts of graph theory to networks derived from
neuroimaging data continues to advance the understanding of the structural and functional
properties of the human brain [1]. Graph theory quantifiers may serve as promising non-
invasive biomarkers for investigating fundamental mechanisms of cognition, emotion, and
neuropsychiatric and neurological diseases [2]. When applied to resting-state functional
magnetic resonance imaging (rs-fMRI), a neuroimaging modality that measures brain
activity by measuring changes in blood flow, graph theory algorithms may help reveal
emergent properties of central nervous system function that would otherwise not be
captured by seed-based fMRI analyses or single-circuit electrophysiological methods.

One such emergent topological feature is the grouping of nodes into communities or
modules [3]. Modularity in rs-fMRI networks has been identified across many studies and
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species, yet whether this is a principal feature of brain organization still warrants further
investigation [4]. There are several approaches to investigating the modular organization of
networks, and all are easily applied to brain networks. Modularity algorithms result in the
identification of communities of non-overlapping nodes with high-density within-group
edges and low-density between-module connections [3]. Additionally, recent work has
incorporated machine learning models to identify brain network modules [5]. However,
currently available methods are limited by the lack of information on the relationship
between communities. Moreover, the development of quantifier markers for functional
transitions between number, size, and connectivity between communities could help inform
how modular organization is altered under disease conditions and the relationship between
identified community nodes and network resilience.

The relationship between nodal communities can be understood using percolation
theory, a sub-branch of graph theory that directly addresses network resilience through
iterative and simulated destruction of network connectivity. Percolation can be broadly
applied to structural and functional neuroimaging data from studies on brain development
to neurological diseases such as Alzheimer’s [6–15]. It is well established that percolation
can identify distinct transition states, so-called phase transitions, which mark a critical point
between a fully connected supercritical regime to subcritical disconnected configurations.
In the present work, we harness percolation theory’s ability to determine criticality to assess
a novel marker of human brain function. In dynamic systems, such as neural networks,
the boundary between order and chaos (i.e., edge of chaos) often contains states that allow
maximized computational processing [16,17]. The ability to store, retrieve, and transfer
information fluctuates between distinct states of network stability.

The interplay of percolation theory and network resilience has been extensively ex-
plored in theoretical and real-world networks [18,19]. In general, network resilience refers
to the ability of a network to maintain functionality despite perturbations to the net-
work [20]. Analytically, resilience can be defined as a differential equation that incorporates
system dynamics, varying environmental conditions, and a state-dependent point [18].
This framework has been applied to human brain networks [21] to understand topological
resilience in aging [22] and brain disorders [23].

However, the intersection of percolation theory, network resilience, and brain network
modularity in examining network phase transitions and criticality has not been explored. By
incorporating these aspects of network theory to study brain organization, computational
network modules and properties can be extracted from real-world brain networks derived
from neuroimaging. Our work, using connectomics derived from fMRI, yields significant
supporting evidence of brain networks functioning at a near-critical point while also
providing a new mechanism for identifying modules in the brain through betweenness
centrality percolation. This work provides a framework for translating brain networks
directly to neural networks for potential neuromorphic computing applications.

2. Materials and Methods
2.1. Mice Neuroimaging Methodology

The mouse data and image processing used in this study were originally collected
and processed in Colon-Perez et al. [24], and previous connectomic analysis has been
performed in our prior work [6]. Briefly, functional images of control littermates (n = 17,
male = 9, female = 8) while under isoflurane anesthesia were collected using a single-shot
spin-echo echo planar imaging (EPI) sequence with the following parameters: echo time
(TE) = 15 ms, repetition time (TR) = 2 s, 180 repetitions, 15 × 11 mm2 in plane, 14 slices with
0.9 mm thickness per slice, data matrix = 64 × 48. Mouse brain images were acquired on an
11.1 Tesla MRI scanner (Magnex Scientific Ltd., Oxford, UK) with a Resonance Research Inc.
gradient set (RRI BFG-113/60, maximum gradient strength of 1500 mT/m at 150 Amps
and a 130 µs risetime; RRI, Billerica, MA, USA) and controlled by a Bruker Paravision 6.01
console (Bruker BioSpin, Billerica, MA, USA) as previously reported [25].
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Average BOLD signals from each region of interest (ROI) were extracted based on
their atlas location (90 ROIs, 45 per hemisphere) and used in voxel-wise cross-correlations
to generate Pearson correlation maps and 4005 pairwise correlation coefficients to be
imported to MATLAB as edge weights for network analysis. All correlation r values were
z-transformed prior to statistical analyses. Correlation matrices were then normalized in
MATLAB from zero to one. As a note, mouse results in this study are primarily used to
demonstrate the generalizability of our methods across neuroimaging species.

2.2. Human Neuroimaging Methodology
2.2.1. Human Model Database and Image Acquisition

Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
repository (ida.loni.usc.edu). Data use received prior approval by the ADNI and the
University of Florida Institutional Review Board (IRB201901878). Fifty-one control subjects
were included in this study (female = 29, ages 70–93; male = 22, ages 71–95). For each
subject, a T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) scan and
an echo planar image were originally collected on a 3 Tesla Siemens scanner. The MPRAGE
had a 240 × 256 × 176 data matrix with 1 mm3 resolution, TE = 3 ms, TR = 2300 ms,
inversion time (TI) = 900 ms, and a 9◦ flip angle. Resting-state EPI scans (eyes open) were
collected with 64 × 64 × 48 slices at a 3.4 mm3 voxel resolution, and 197 volume repetitions
with TE = 30 ms, TR = 3000 ms, and a 90◦ flip angle.

2.2.2. Human Model Image Preprocessing and Network Generation

Resting-state processing was carried out using software tools in Analysis of Functional
NeuroImages (AFNI) [26], FMRIB Software Library (FSL) [27], and Advanced Normal-
ization Tools (ANTs) [28]. A schematic of the image processing pipeline can be found in
Figure 1. First, (1) the brain was extracted for both anatomical and functional scans using
FSL BET, then (2) the scans were motion-corrected using FSL MCFLIRT and filtering signal
drift (high-pass filtering below 0.009 Hz) prior to running subject independent component
analysis (ICA) using FSL MELODIC. This initial subject ICA was used to detect noisy signal
components from thirty total components per subject. A trained observer labeled noisy
components. These components were suppressed using a soft (“non-aggressive”) regres-
sion approach, as implemented in FMRIB Software Library (FSL 6.0.3) using fsl_regfilt [27].
A low-pass filter (>0.12 Hz) and spatial smoothing (5 mm FWHM) was then applied to the
fMRI scans.

(3) Preprocessed anatomical and fMRI scans were aligned to the MNI152 template
(2 mm version). The extracted brain maps were linearly registered to the template using the
FSL linear registration tool (FLIRT) [27]. The linear registration output was then nonlinearly
warped to the template space using ANTs. Anatomical-to-template linear and nonlinear
transformation matrices were applied to fMRI scans at a later stage. Time-series functional
images were split into 197 individual volumes, and the first in the series was linearly
aligned to the anatomical scan using FLIRT. ANTs were used to warp the lower resolution
functional images to their structural counterpart (using a single stage step deformable
b-spline syn with a 26-step b-spline distance). (4) Linear and nonlinear warping matrices
for fMRI-to-anatomical alignment were applied to individual scans in the time series,
then the merged 4D functional time series were moved to the atlas space using the prior
anatomical-to-template transformation matrices.

A total of 300 ROI masks, divided into 150 left and 150 right ROIs, were included in our
analyses. (5) Nodes were generated under the guidance of the Schaefer 300 functional par-
cellation [29]. Center voxel coordinates (see above) were used for 3D network visualizations
in BrainNet viewer in MATLAB [30]. (6) Signal time series were extracted from prepro-
cessed fMRI scans with the assistance of ROI mask overlays. This generated 300 individual
ROI text files per subject that contained L2-normalized resting-state signals as a vector of
197 data points.
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Figure 1. Overview of connectomic pipeline from human neuroimaging to network generation. (1) 
The brain of each subject was extracted using FSL BET. (2) fMRI time series were then despiked, 
motion-corrected, and detrended. Nuisance signals were removed using ICA-based regression and 
the signal underwent low-pass filtering and spatial smoothing. (3) Preprocessed anatomical and 
fMRI scans were aligned to the MNI152 template (2 mm version). (4) Linear and nonlinear warping 
matrices for fMRI-to-anatomical alignment were applied to individual scans in the time series, then 
the merged 4D functional time series were moved to the atlas space using the prior anatomical-to-
template transformation matrices. (5) Nodes were generated under the guidance of the Schaefer 300 
functional parcellation [29]. (6) Signal time series were extracted from preprocessed fMRI scans with 
the assistance of ROI mask overlays. (7) The time-series files were used in cross-correlations and in 
calculations of Pearson r coefficients for every pairwise combination of ROIs (1dCorrelate in AFNI). 
The resulting matrices were (8) normalized and (9) thresholded across different graph density 
thresholds (5–30%) to remove spurious edges and negative correlations. Lastly, (10) network quan-
tifiers were calculated, and percolation analysis was conducted. 
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Figure 1. Overview of connectomic pipeline from human neuroimaging to network generation.
(1) The brain of each subject was extracted using FSL BET. (2) fMRI time series were then despiked,
motion-corrected, and detrended. Nuisance signals were removed using ICA-based regression and
the signal underwent low-pass filtering and spatial smoothing. (3) Preprocessed anatomical and
fMRI scans were aligned to the MNI152 template (2 mm version). (4) Linear and nonlinear warping
matrices for fMRI-to-anatomical alignment were applied to individual scans in the time series, then
the merged 4D functional time series were moved to the atlas space using the prior anatomical-to-
template transformation matrices. (5) Nodes were generated under the guidance of the Schaefer
300 functional parcellation [29]. (6) Signal time series were extracted from preprocessed fMRI scans
with the assistance of ROI mask overlays. (7) The time-series files were used in cross-correlations
and in calculations of Pearson r coefficients for every pairwise combination of ROIs (1dCorrelate
in AFNI). The resulting matrices were (8) normalized and (9) thresholded across different graph
density thresholds (5–30%) to remove spurious edges and negative correlations. Lastly, (10) network
quantifiers were calculated, and percolation analysis was conducted.

(7) The time-series files were used in cross-correlations and in calculations of Pearson
r coefficients for every pairwise combination of ROIs (1dCorrelate in AFNI). The resulting
number of pairwise correlations was 44,850 per subject (after removing 300 self-correlations).
Correlation coefficients were imported to MATLAB and Fisher’s transform was applied to
ensure a normal distribution of z values prior to analyses. (8) Correlation matrices were then
normalized in MATLAB from zero to one. (9) Matrices were thresholded across different
graph density thresholds (5–30%) to remove spurious edges and negative correlations. That
is, for example, in the normalization step, all values are rescaled to the range [−1, 1], and in
thresholding, all values that fall below the threshold are turned to 0 (e.g., for 5% threshold,
all values less than 0.95 are removed).
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2.3. Connectivity Matrix Analysis and Graph Theory Methodology
2.3.1. Group-Average and Null Matrix Generation

In addition to individual-level analysis, percolation theory analysis (detailed in
Section 2.3.3) was performed on group-average-level data and null models. To gener-
ate group-average matrices, all human (n = 51) and mice (n = 17) matrices were averaged
before thresholding. To generate the null model, “null_model_und_sign [31]” in the Brain
Connectivity Toolbox [2] in MATLAB (9.10.0.1739362 (R2021a) Update 5) was used to
randomize pre- and post-thresholded group-average human data with a 0.1 frequency of
weight sorting.

It is worth mentioning that the choice of a null model when exploring brain network
properties has been shown to affect the results and conclusions obtained [32,33]. Null
models should be used when examining network properties to assess if the expected brain
network property occurs at a rate higher than chance [34]. Null-model choice can impact
different normalized measures including path length, small-worldness, and clustering [33].
Therefore, when looking at network properties, null-model choice should be judiciously
selected to match the network properties that are influenced by the analysis [35].

For example, in the case of percolation analysis, the most important network properties
are degree [36] and strength [37] distributions since the scale of the network plays a role
in how it responds to percolations [38,39]. Therefore, we chose to implement Rubinov
and Sporns’ null model that maintains degree distribution, strength distribution, and
graph density by rewiring edges from an input matrix (group-averaged human data) [31].
Additionally, pre- and post-thresholded matrices were used as input matrices to understand
if the thresholding process modifies the null model. Lastly, the correlation coefficient was
used to compare strength distributions between the input matrix and the null model [40–42]
to ensure the null model matched the strength distribution. In both null-model methods,
the correlation coefficient was greater than 0.99, indicating the null model matched the
strength distribution of the human data.

2.3.2. Graph Theory Measures

(10) Weighted nodal quantifiers were calculated using the Brain Connectivity Tool-
box [2] in MATLAB (9.10.0.1739362 (R2021a) Update 5) to create different attack schemes.
Detailed explanations for the six measures used (clustering coefficient [43,44], degree cen-
trality [2], eigenvector centrality [45], local efficiency [46], participation coefficient [47],
and strength [2]) can be found within their respective references, since they do not have
a major role in this work compared to betweenness centrality. Betweenness centrality
(BC) [48] (Brain Connectivity Toolbox’s “betweenness_wei”) [2] quantifies the fraction
of shortest paths that flow through each node in the network. BC is represented by the
following equation:

bi =
∑h,j∈N

ρhj(i)
ρhj

h ̸= j, h ̸= i, j ̸= i
, (1)

where ρhj(i) is the shortest path between nodes h and j that passes through node i and ρhj
is the number of shortest paths between nodes h and j. The shortest path is important for
network function, since it represents how information will flow most efficiently throughout
the network.

Alongside nodal measures calculated for attack schemes, two additional modularity
measures were explored: Newman’s modularity [3] and rich-club identification [49–51].
Newman’s modularity (Brain Connectivity Toolbox’s “modularity_und”) [2], identifying
non-overlapping modules by comparing within to between module connectivity, was
calculated using the following equation:

QW =
1

lW ∑i,j∈N

[
wij −

kW
i kW

j

lW

]
δmi ,mj , (2)
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where lW is the sum of all weights in the network, wij is the connection between node i and
node j, k is the degree of the node in the network, mi and mj are the modules containing
nodes i and j, respectively, δmi ,mj = 1 if mi = mj, and 0 otherwise.

Rich-club organization (Brain Connectivity Toolbox’s “rich_club_wu”) [2], organizes
the network into three categories: rich-club nodes, feeder nodes, and local nodes. Rich-club
nodes, which are high-degree nodes that are densely connected to other high-degree nodes,
are connected to local nodes, or low-degree nodes, through feeder nodes. For weighted
networks, the following equation also incorporates edge strength:

φW(k) =
W>k

∑
E>k
l=1 wranked

l

, (3)

where W>k is the sum of weights in the subnetwork N>k by N>k, k is degree centrality, and
1 ≤ l ≤ E is the ranked weights of the edges of the matrix. The rich-club coefficient is then
normalized against the rich-club coefficient of a random network. The random network
was derived using the same null process described above.

2.3.3. Percolation Theory Framework

(10) Using the previously mentioned nodal quantifiers, brain networks were analyzed
using percolation theory through the targeted removal of nodes based on an iteratively
calculated nodal quantifier. First, in each attack scheme, a nodal quantifier was calculated
for all nodes across the network. Next, the node with the highest value had all connections
changed to zero, representing removal from the network. Lastly, the largest cluster size,
or the largest fully connected component of the network, was measured. This process
was repeated until all nodes were removed from the network, resulting in a completely
disconnected network.

Alongside the seven quantifier-based attacks, two additional attack schemes were
implemented: random and collective influence. In the random attacks, nodes are removed
using MATLAB’s pseudorandom number generator produced by the “randi” function.
The collective influence attack scheme utilizes an optimized percolation method through
energy minimization to break apart network components [52,53]. Collective influence
was calculated using ComplexCi in C++ [54]. While collective influence identifies optimal
percolation pathways, it is important to note that it has no quantifiable value outside of
network percolation.

2.3.4. Module Identification Using Percolation Theory

Similarly to calculating the largest cluster size after each attack, the betweenness
centrality of every node was iteratively calculated and then averaged to create an average
betweenness centrality for the network. When plotting the average betweenness centrality
and largest cluster size against the fraction of attacks, large phase transitions, or decreases
in largest cluster size, are preceded by spikes in average betweenness centrality.

Alongside calculating the largest cluster and average betweenness centrality, the
resulting matrix after each attack is saved. Cluster size groupings can then be calculated
using Brain Connectivity Toolbox’s “get_components” on the resulting matrix immediately
after the phase transition [2]. The nodes within the two largest cluster sizes are thus the
terminal modules, while any removed nodes are classified as the transfer module.

Disconnected nodes, either from higher thresholds or small breaks in network compo-
nents, can either be omitted or arbitrarily included in any module, preferably the transfer
module. Additionally, the choice of which phase transition to utilize when identifying
modules is arbitrary. In this work, average betweenness centrality spikes with the largest
accompanying drop in the largest cluster size were examined, but other methods utilizing
the largest spike in average betweenness centrality are equally valid. Phase transition
modules were visualized using BrainNet Viewer [30], a graphical tool to visualize brain
networks, via a surface mesh version of the MNI152 template.
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3. Results

While previous studies have explored percolation theory applied to brain networks,
our novel perspective examines a significant decrease in brain network cluster size as a po-
tential phase transition. Large drops in cluster size due to a single attack represent a module
being removed from the network since a single attack should only reduce the largest cluster
size by one. While nine different types of attacks were tested (Supplementary Figure S1),
BC demonstrated a noticeably larger phase transition. BC quantifies how often a node lies
within the shortest paths in a network. Thus, removing nodes based on BC removes nodes
required for optimal communication between modules in the brain. This is supported by
BC attacks degrading brain networks at the fastest rate (fewest attacks) [6] (Supplementary
Figure S1). The expedited degradation is incremental rather than gradual, indicating that
BC attacks optimally degrade the network to separate large functional modules from the
core of the network. This incremental degradation demonstrates phase-transition behavior
from a supercritical regime or a fully connected network to a subcritical regime composed of
smaller clusters, as seen by the large drop-off in cluster size (Figure 2). Subsequent drops in
cluster size indicate further sub-modules identified by this method, which can be optimized
to select a desired number of modules, similar to previous modularity algorithms [3,49,55].
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Figure 2. Individual-level subject percolation showing the average betweenness centrality spike
coinciding with a significant drop in the largest cluster across different thresholds (5–30%). The gray
shaded area represents the phase transition through the critical point. Plots with two gray shaded
areas represent thresholds that have two potential phase transitions. The shaded area with the red
asterisk is the phase transition shown in the brain inset. In the brain inset, the orange nodes show
nodes part of the largest clusters while the red nodes in the after image are completely disconnected
from the orange cluster. As seen throughout different thresholds, the regions identified from the
phase transitions are relatively consistent, with one region located near the central gyrus and the
subsequent region located in the anterior and posterior parts of the brain.
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This network phase transition, or large drop in cluster size, can also be identified
by peaks in average BC for the network. Figure 2 shows the average BC and cluster size
plotted against the number of attacks at a series of thresholds. Each peak in average
BC demonstrates a localized critical point, and the largest peak demonstrates a global
critical point whereby the network is degraded the most. A spike in average BC signifies
a single path, or node, for information to flow between two hubs. However, looking at
the maximum nodal BC versus attacks does not always convey a decrease in cluster size
due to spurious peaks in maximum nodal BC. This discrepancy between average BC and
maximum nodal BC is due to the ability for a node not to be a critical one but still have a
relatively high BC compared to other nodes in the network.

These results are consistent across different connectomic networks, including networks
derived from fMRI of mouse brains (Supplementary Figures S2 and S3), null models
generated from human data (Supplementary Figures S4 and S5), and group-average level
networks (Supplementary Figures S6 and S7); however, phase transitions are considerably
less pronounced in both null models (excluding 15% post-threshold null model) and group-
average mouse models. The comparison against null models is particularly important,
since they have the same degree/strength distribution as a human network (correlation
coefficient greater than 0.99), thus meaning the spiking and phase transition is most likely a
feature of brain network organization. Moreover, it is well known that one limitation within
connectomics is the reliance on choosing a threshold for networks to minimize spurious
edges while reducing the removal of true correlations, impacting network quantifiers and
community structures. Remarkably however, this phase transition methodology, including
the BC spike prediction, works across numerous thresholds with just a few differences.
As the network threshold decreases, the phase transition and BC peak occur at a higher
fraction of attacks. Additionally, different thresholds have a different number of phase
transitions. High (Figure 2A,B) and low (Figure 2E,F) thresholds have a single phase
transition indicated by a single large peak, while in-between thresholds (Figure 2C,D) have
dual-phase transitions indicated by two large peaks. With lower thresholds, the phase
transition understandably appears at later attacks given the greater number of connections
overall, yet the community structures are relatively consistent across thresholds (Figure 2).
Even at significantly different thresholds (5% Figure 2A and 30% Figure 2F), the phase
transition results in two existing modules, one near the central gyrus and a second in both
the anterior and posterior of the brain. In the case of more than one phase transition, the
choice of phase transition determines how many nodes are included in the transfer module
as opposed to the terminal modules.

The ability to identify modules using a BC phase transition lens allows for the identifi-
cation of unique functional components of brain networks. To illustrate this, Figure 3 shows
different modularity measures for an individual subject compared against the phase transi-
tion modularity described in this work at a 10% graph density threshold. Figure 3A shows
an example of connectivity matrix analysis that visualizes connections present between
each node. The matrices are colored by modules found using the phase transition modular-
ity method, with black denoting no connections found at the node-to-node edge. Nodes
(x and y axes) are rearranged based on different modularity methods with the module
denoted on the right-hand side; however, within-module node rearrangement is arbitrary.
The functional atlas used to generate the brain networks results in one dense cluster in
the visual network with more sparsely interconnected regions across the brain (Figure 3B).
Both rich-club modularity (Figure 3C) [49–51] and Newman’s modularity (Figure 3D) [3]
show modules that contain nodes that have connections across numerous modules. Thus,
the functional brain atlas (Figure 3B), rich-club modularity (Figure 3C), and Newman’s
modularity (Figure 3D) all create dependent modules, since modules contain nodes that
connect across numerous other modules. In contrast, phase transition modularity resulted
in three distinct modules, two completely independent of each other (Figure 3E). Specif-
ically, two modules from splitting the largest cluster and one module composed of the
removed nodes. The two modules generated from the cluster, which will be denoted as
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terminal modules, are only connected to each other through the third removed module, or
transfer module. No other modularity measure creates fully independent modules shown
by the lack of connections between the two terminal modules (Figure 3E).
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Figure 3. (A) Representative connectivity matrix example illustrating key features shown by the
following heatmaps from an individual subject. Nodes (x and y axes) are rearranged based on
different modularity methods with the module denoted on the right-hand side; however, within-
module node rearrangement is arbitrary. The matrices are colored by modules found using the
phase transition modularity method, with black denoting no connections found at the node-to-node
edge. Connections near the diagonal (light and navy blue) represent dense and sparse module
connectivity, respectively. Off-diagonal clusters (green) represent between-module connections.
Vis: visual; SomMot: somatomator; DorsAttn: dorsal attention; SalVent: salience/ventral attention;
TempPar: temporoparietal. (B) Connectivity matrix organized by the Schaefer 300 node functional
parcellation [29] used to create the original connectivity matrices. (C) Connectivity matrix orga-
nized by identifying features of the rich club: rich nodes, feeder nodes, and local nodes [49–51].
(D) Connectivity matrix organized by Newman’s modularity [3]. (E) Connectivity matrix organized
by phase transition modularity. The large black squares demonstrate the reliance on the transfer
module (yellow) to connect the terminal modules.
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4. Discussion

The phase transition behavior of the brain networks in response to betweenness
centrality percolations can provide insight into brain resilience and optimization. Brain
networks were highly vulnerable to BC attacks (Figure 2 and Figure S6) which has been
shown in previous research [6,14]. However, the associated phase transition preceded by a
spike in average BC demonstrates the functional trade-off of relying on being near a phase
transition for optimal processing [56,57]. Recent work has demonstrated healthy brains
lie at a near-critical threshold, rather than exactly at a critical point [56]. Remaining at a
near-critical point is believed to balance computational efficiency and global dynamics.
While many biological research efforts have looked at local criticality through neuronal
spiking [58], criticality can also be examined at the global level through brain networks.
This present work supports the hypothesis that the brain functions at a near-critical state,
demonstrated by the percentage of attacks needed before a phase transition (significant
drop in cluster size). If brain networks were maintained at a critical point, it would only
take a small number of attacks to produce the phase transition. While this occurs at very
high thresholds (≤2%), lower thresholds require a larger number of attacks to reach this
phase transition (Figure 2), demonstrating a near-critical nature rather than strictly lying at
a critical point. This distance, or number of attacks, to a critical point may for example serve
as a biomarker for neurodegeneration while providing an indication of robustness against
neurodegeneration before significant clinical or functional symptomatology is present.

This phase transition signified by the BC spike could also be used to support the critical
brain hypothesis. The critical brain hypothesis states the brain functions near a phase transi-
tion boundary, or on the edge of chaos, for optimal processing [56]. Support for this theory
has been found from microscale spike recordings [58] to macroscale neuroimaging such as
fMRI [59,60]. Evidence has also been found in the connectomic analysis of neuromorphic
hardware [61]. However, criticism of the theory stems from the complicated definition of
“criticality” and where the brain lies on the spectrum of criticality. It is important to stress
that in this work, criticality is defined as the connectedness of the network as a unit, or
largest cluster. While this definition fits within the bounds of traditional percolation theory
regarding crystal structure, it does limit the quantifiability of “chaos.” For example, typical
neural network processing measures such as Poincare and Lyapunov exponents cannot be
utilized since the data are not defined with respect to time, but with respect to the number
of nodes removed [62].

This phase transition modularity also offers a unique lens to view brain modularity
through transfer and terminal hubs. This modularity configuration of transfer modules
has been proposed in previous work [63]. Similarly, rich-club modularity, which has been
widely used across connectomic studies [49–51], uses a similar idea whereby feeder nodes
connect non-rich-club nodes to the central rich club. However, instead of individual feeder
nodes, this work categorizes nodes critical for information flow between modules as a
module itself. This modularity perspective aligns with a neural network framework where
the terminal modules act as input and output layers and the information transfer module
acts as a hidden layer connecting them.

Therefore, one potential application of the phase transition modularity is quantifiably
translating brain networks into neural networks (Figure 4). While previous efforts have
used connectome networks to generate neural networks [64], this method provides a
definitive mapping or allocation of nodes to specific neural network layers. The transfer
module can define the hidden layer, and the two other modules, or terminal modules, can
act as pseudo-input/output layers, with one terminal module functioning as the input
layer and the other as the output layer. It is worth noting that while these terminal layers
are interchangeable between input and output layers, the most important finding is the
necessity of the transfer module to communicate between the two terminal modules. For
example, this network configuration can then input into connectome-based computing
software, such as conn2res [65], to simulate reservoir computing based on human fMRI.



Appl. Sci. 2024, 14, 4197 11 of 15

This neural network configuration thus enables the quantification of the processing power
of the connectome network using clearly defined modules through percolation theory.
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Figure 4. (A) Visual representation of the modules identified using individual-level subject perco-
lation. The red and orange nodes represent nodes part of their respective terminal module, while
the yellow nodes represent nodes in the transfer module. (B) Neural network representation as
a potential application of phase transition modularity. Transfer modules identified using phase
transition modularity can act as hidden layers, while terminal layers function as either input or
output layers.

This work does have some inherent limitations. It is known that the field of connec-
tomics has limitations regarding atlas choice. The atlas chosen can influence the community
structures identified using percolation modularity; however, as shown using null models
and mouse data, this methodology works regardless of network construction methods. Ad-
ditionally, this methodology only identified three functional hubs in the brain, as opposed
to other modularity algorithms identifying smaller clusters. However, the goal of this work,
rather than exclusively identifying modules in the brain that correspond to a specific func-
tion, also includes using a new perspective to translate fMRI into a neural network. Thus,
three modules fit within the schema of neural networks, including three general layers:
input, output, and hidden. Specific to this work is one possible limitation to the widespread
practical application of this methodology, the run time, since betweenness centrality is a
computationally expensive algorithm that increases in run time with increasing network
size. However, specifically for brain networks and connectomics, atlases used to generate
connectivity matrices often have fewer than 400 nodes [66]. This work, using 300 nodes,
had run times of around four minutes (MacBook Pro 2019 (Apple, Cupertino, CA, USA),
2.6 GHz 6-Core Intel Core i7 (Intel, Santa Clara, CA, USA), 16 GM 2667 MHz DDR4 (SK
HYNIX, Icheon, Republic of Korea), AMD Radeon Pro 5300M 4 GB (AMD, Santa Clara, CA,
USA), Intel UHD Graphics 630 1536 MG) for each subject at our lowest typical threshold
(40%), demonstrating this methodology is useful and time-effective for brain modularity
analysis and is far less computationally expensive than small-worldness or rich-club anal-
ysis, which requires null networks [49–51]. Additionally, our findings may be a result of
general network properties that may not be specific to brain networks [32,33]; however, the
less pronounced phase transition found in null models that control for degree and strength
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distribution indicate this is most likely a feature of brain networks. An important note is
that while our null model controls for network aspects that have been previously shown
to be important for percolation response [36–39], it may not control for every property
that is important for the percolation modularity and betweenness centrality spiking in this
work. More complex and conservative null models are currently being developed that
may provide better insight and comparison to our current work [32]. Thus, future work
can explore this percolation modularity and betweenness centrality phenomenon with
more extensive null models to enhance the comparative analysis. Lastly, our data include
exclusively elderly (ages 70–95) human participants, which may impact generalizability;
however, the inclusion of both human and mouse data lend increased generatability to
cross-species brain network analysis.

5. Conclusions

This work explores brain connectomics and modularity through a phase transition and
criticality lens. Our work shows a novel brain modularity methodology that can identify
community structures by implementing percolation theory with betweenness centrality that
works across species (human, mice) and null networks. Additionally, we provide further
evidence of the brain functioning at a near-critical state predicted by a peak in average
betweenness centrality, with implications for neural networks, neuromorphic architecture,
and neurodegenerative diseases. Future work should explore this phase transition and
near-critical behavior through an energy/cost minimization lens while also elucidating
reasons for differences in spiking across networks through comparisons to more complex
null models and degree/strength distributions. Additionally, longitudinal connectomic
analysis of patients with neurodegenerative diseases should explore if the trend in rising
average betweenness centrality can be a predictive factor for cognitive decline.
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