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Abstract: The recognition and localization of strawberries are crucial for automated harvesting
and yield prediction. This article proposes a novel RTF-YOLO (RepVgg-Triplet-FocalLoss-YOLO)
network model for real-time strawberry detection. First, an efficient convolution module based on
structural reparameterization is proposed. This module was integrated into the backbone and neck
networks to improve the detection speed. Then, the triplet attention mechanism was embedded
into the last two detection heads to enhance the network’s feature extraction for strawberries and
improve the detection accuracy. Lastly, the focal loss function was utilized to enhance the model’s
recognition capability for challenging strawberry targets, which thereby improves the model’s recall
rate. The experimental results demonstrated that the RTF-YOLO model achieved a detection speed
of 145 FPS (frames per second), a precision of 91.92%, a recall rate of 81.43%, and an mAP (mean
average precision) of 90.24% on the test dataset. Relative to the baseline of YOLOv5s, it showed
improvements of 19%, 2.3%, 4.2%, and 3.6%, respectively. The RTF-YOLO model performed better
than other mainstream models and addressed the problems of false positives and false negatives in
strawberry detection caused by variations in illumination and occlusion. Furthermore, it significantly
enhanced the speed of detection. The proposed model can offer technical assistance for strawberry
yield estimation and automated harvesting.

Keywords: object detection; YOLOv5; structural reparameterization; feature enhancement

1. Introduction

Strawberry is among the most popular small berries worldwide due to its high eco-
nomic and nutritional values [1]. However, strawberry fruit matures quickly and is sus-
ceptible to damage, which can easily result in decay and economic loss if not harvested
promptly. Currently, strawberry harvesting relies on traditional manual approaches, which
causes problems of high labor intensity and costs [2]. Automated strawberry harvesting
can effectively improve productivity and reduce labor costs, which presents a promising
solution to these challenges.

Strawberry detection is a crucial technology for achieving automated harvesting.
Traditionally, the primary detection methods involve the integration of machine learn-
ing algorithms and computer vision techniques. Image-processing techniques, such as
gray morphology, threshold segmentation, logical operations, the OTSU (Nobuyuki Otsu)
method, and mean shift segmentation, are widely employed to extract the visual char-
acteristics of fruits from various color spaces [3,4]. Subsequently, the extracted visual
characteristics are combined with prediction algorithms, such as Kalman filtering, and ma-
chine learning algorithms, such as K-nearest neighbor and SVMs (support vector machines),
to facilitate target recognition and localization [5–7]. While the mentioned methods can
effectively identify fruit targets in certain environments, their performance and robustness
may be affected by fluctuating lighting and fruit occlusion [8].
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Currently, deep neural network methods have gained popularity for strawberry de-
tection due to their robust feature extraction capabilities [9]. Applying deep neural net-
works with high accuracy and speed for strawberry harvesting machinery has drawn
much research attention. Zhang et al. [10] proposed an improved lightweight network
RTSD-Net based on YOLOv4-Tiny for strawberry target detection under field conditions.
Similarly, Yu et al. [11] presented a novel strawberry detection method implemented on a
harvesting robot to localize picking points based on the lightweight network Mobilenet-V1.
Mejia et al. [12] proposed a strawberry localization method and an autonomous rover sys-
tem, which utilizes image-processing techniques and the Mobilenet-V2 network to estimate
strawberry ripeness in field conditions. Originally designed for embedded devices, these
models prioritized lightweight design and detection speed. However, this emphasis com-
promised their accuracy in complex environments, which was only approximately 80%.

Many researchers employed two-stage detection algorithms, which are typically rep-
resented by the R-CNN (region-based convolutional neural network) series, to enhance
strawberry detection accuracy. Yu et al. [13] proposed a novel algorithm to achieve the
visual localization of strawberry picking points based on the Mask R-CNN algorithm,
which demonstrated robustness for overlapping and occluded fruits under various lighting
conditions. Tang et al. [14] proposed a strawberry detection method that combines Mask
R-CNN, region segmentation techniques, and SVM classifiers, which can accurately detect
strawberries at six different ripeness levels. Perez-Borrero et al. [15] proposed a specialized
Mask R-CNN model for strawberry instance segmentation, which promised both speed and
precision outcomes. Chen et al. [16] utilized a UAV to capture near-surface photographs of
strawberry fields and employed the Faster R-CNN algorithm to detect and count flowers,
mature strawberries, and immature strawberries, which achieved an average counting
accuracy of 84.1%. Also, Zheng et al. [17] proposed a detection model based on the Faster
R-CNN algorithm for counting strawberry fruit and flowers and effectively addressed the
occlusion problem. Zhou et al. [2] proposed a Faster-RCNN-based strawberry-monitoring
system that uses image acquisition and transfer learning to detect target fruits and measure
strawberry ripeness and achieved an average accuracy exceeding 86%. Li et al. [18] intro-
duced an intelligent system that uses Faster R-CNN to detect strawberries in field scenarios,
which achieved high accuracy for the automatic monitoring and harvesting of strawberries.
While these R-CNN-based models demonstrated high detection accuracies, their two-stage
processing typically led to slower operation speeds, averaging around 15 FPS.

To balance detection accuracy and speed, single-stage detection algorithms have been
widely employed in strawberry detection. The YOLO series is a typical one-stage detec-
tion algorithm with a speed advantage achieved by directly predicting classifications and
bounding boxes. Wang et al. [19] proposed a DSE (detailed semantics enhancement) model
based on YOLOv3 for multi-stage strawberry detection, which excelled in identifying dif-
ferent strawberry stages, with an average precision of 86.58%. However, the model’s large
size, with 300 million parameters, resulted in a slower detection speed of just 18 FPS and
hindered deployment on embedded devices. Du et al. [8] proposed a DSW-YOLO(DCNv3-
SA-WIoU-YOLO) network model for detecting strawberries at different occlusion levels,
which achieved an average precision of 86.7%. Zhou et al. [20] introduced a YOLOv3-based
method for classifying strawberry maturity in UAV (unmanned aerial vehicle) images,
which achieved an average accuracy of 88%. The aforementioned YOLO-based models have
effectively improved the detection speed, but there is still room for improvement in the
detection accuracy. Chai et al. [21] proposed a novel strawberry detection algorithm based
on a unique combination of YOLOv7 and augmented reality technology, which achieved
a high F1 score of 92%. However, the method’s accuracy in natural environments cannot
be guaranteed, as the detection environment was limited to a greenhouse. Li et al. [22]
proposed a multi-stage strawberry detection algorithm by integrating the ASFF (adaptive
spatial feature fusion) module into YOLOv5, which improved the detection performance in
natural environments, with an average precision exceeding 90%. However, this integration
also led to a significant decrease in detection speed.
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In summary, most research focused on improving specific performance metrics without
achieving a well-balanced trade-off between model accuracy, speed, and size. To address
this problem, an RTF-YOLO network model based on YOLOv5 is proposed in this paper to
detect strawberry fruits. The main contributions of this work are summarized as follows:

(1) A novel neural network model was proposed for strawberry detection under vary-
ing illumination and occlusion scenarios, which demonstrated improved speed and
accuracy compared with other mainstream networks.

(2) An efficient convolution module based on structural reparameterization was proposed
and fused into the backbone and neck networks, improving the model’s detection
speed from 122 to 145 FPS.

(3) The triplet attention mechanism and focal loss function were introduced to improve
the detection precision, which led to a 3.6% increase in the mAP0.5, reaching 90.24%.

The rest of this article is organized as follows. Section 2 introduces the specific
algorithm, while Section 3 focuses on the results of the conducted experiments to evaluate
and compare the proposed model with state-of-the-art methods. Section 4 summarizes the
main conclusions of this work.

2. Materials and Methods
2.1. Image Acquisition And Augmentation

In this study, the growth stages of strawberries were observed, and images were
captured using a camera. We collected a total of 2040 images, which were split into training,
validation, and testing datasets with proportions of 70%, 20%, and 10%, respectively. These
images were labeled as ripen and unripen, with a total count of 8712 strawberry targets,
as shown in Table 1.

In natural environments, illumination variations and occlusion instances are the main
factors that affect the detection performance. The dataset included samples under such
scenarios to enhance the model’s generalization performance, as shown in Figure 1.

The data were augmented with the following methods: horizontal flipping, rotating
by 90 degrees, rotating by 180 degrees, rotating by 270 degrees, and randomly changing
the saturation and brightness [23], as shown in Figure 2. The number of images increased
to 9180 after the data augmentation.

Figure 1. Images under different lighting and occlusion scenarios: (a) normal scenario, (b,c) occlusion
scenarios, (d) low-light scenario, (e) high-light scenario, and (f) mixed low-light and high-light scenario.
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Figure 2. Image augmentation methods: (a) original image, (b) horizontal mirror, (c) 90° clockwise
rotation, (d) 180° clockwise rotation, (e) 270° clockwise rotation, and (f) random transformation of
saturation and brightness.

Table 1. Details of the strawberry dataset used for training, validating, and testing the proposed model.

Dataset No. Images
Label

Ripen Unripen Total

Training 1428 3240 2952 6192
Validation 408 962 738 1700

Test 204 370 450 820

2.2. RFT-YOLO for Detecting Strawberry

This paper proposes a novel RTF-YOLO model derived from YOLOv5. The framework
of RTF-YOLO is shown in Figure 3, and the specific module structures of YOLOv5 are
shown in Figure 4.

Figure 3. The overall framework of the RTF-YOLO model. The backbone network consists of
QARepNeXt, Conv, and SPPF modules. The neck network consists of FPN and PAN structures and
the triplet attention mechanism. The head network includes three detection heads with different
resolutions and utilizes the focal loss function for target classification.

YOLOv5 is a convolutional neural network mainly comprising three parts: a backbone
network, a neck network, and a detection head. The backbone network consists of the Conv,
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C3 (cross-stage partial), and SPPF (spatial pyramid pooling—fast) modules. The Conv
and C3 modules are the primary feature extractors, while the SPPF is employed to extract
multi-scale features to improve the detection accuracy for objects of varying sizes.

YOLOv5s’s neck part was constructed by PANet, which employs a hierarchical FPN
(feature pyramid network) structure [24] and PAN (path aggregation network) structure [25]
to transmit distinctive semantic attributes and positional characteristics from top to bottom
and vice versa. PANet enhances the receptive field and provides a richer input representa-
tion. YOLOv5s’s detection head comprises three convolutional layers to detect objects at
distinct scales. This multi-scale design, coupled with varied aspect ratio anchor boxes, en-
hances the detection performance across diverse object sizes and shapes. YOLOv5 utilizes
a compound loss function, which comprises localization loss, confidence loss, and classifi-
cation loss. The CE (cross-entropy) loss and GIOU (generalized intersection over union)
method were selected for the classification loss and localization loss, respectively.

Figure 4. The C3 and SPPF modules of YOLOv5. The C3 combines N bottleneck blocks with three
Conv modules, which optimizes the feature fusion for efficient feature extraction. The SPPF module
generates multi-scale feature maps by applying max pooling at different scales, which enriches the
semantic information of the feature representation.

The RTF-YOLO model essentially follows YOLOv5s’s architecture due to its superiority
and enhances the backbone network, neck network, and loss function. First, the C3 module
was replaced by the proposed QARepNeXt module to reduce the computational complexity
based on structure reparameterization technology. Then, the triplet attention mechanism
was embedded in the neck network to enhance feature fusion. Lastly, the focal loss function
was introduced to replace the CE loss function, which can balance the positive and negative
examples and strengthen the learning ability of challenging examples.

2.2.1. Backbone

The backbone network was reconstructed with structure reparameterization technol-
ogy [26] and the QARepVgg block [27].

Many mainstream studies focused on well-designed architectures like ResNet, Mo-
bileNet, and Inception. These networks use multi-branch parallelism to increase the model’s
representational capacity and improve the accuracy. However, complex multi-branch de-
signs lead to increased memory access and usage, which, in turn, reduces the model’s
inference speed [26,28].

Ding et al. [26] proposed the RepVgg block based on the structure reparameterization
technology. The RepVgg block has different structures during training and inferencing.
In training, the RepVgg Block has three parallel branches, namely, the 3× 3 convolution,
1× 1 convolution, and Identify branches, with each followed by a BN (batch normaliza-
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tion) layer. During inference, the three parallel branches are converted into a single-path
structure, as shown in Figure 5a, specifically:

(1) In the 1× 1 convolution branch, the 1× 1 convolution is converted into an equivalent
3× 3 convolution by padding.

(2) In the identity branch, the identity is converted into an equivalent 1× 1 convolution
by using the identity matrix as the kernel. Then, the 1× 1 convolution is converted
into a 3× 3 convolution by padding.

(3) All three branches are converted into the structure of a 3× 3 convolution followed
by a BN layer. Then, the 3× 3 convolution and BN layer are fused into a single 3× 3
convolution on each branch.

(4) The 3× 3 convolutions of the three branches are merged into one branch through
addition.

(a) RepVgg Block (b) QARepVgg Block

Figure 5. Reparameterization of a QARepVgg block compared with RepVgg. The main improvements
were as follows: (1) the BN layers followed by both the 1 × 1 branch and identity branches were
removed, and (2) a new BN layer was appended to the convolutional layer obtained from the fusion
of multiple branches.

The RepVgg block achieved an optimal balance between performance and inference
speed. However, in quantization scenarios, models with the RepVgg Block experienced
a significant decline in performance, including an over 20% top one accuracy drop on
ImageNet with INT8 (8-bit integer) inference.

Chu et al. [27] conducted an in-depth analysis of performance degradation during the
standard quantization. The authors introduced a simple yet effective improved structure,
QARepVgg block, which benefited from the advantages of reparameterization and pos-
sessed quantization-friendly attributes, as illustrated in Figure 5b. Consequently, networks
based on the QARepVgg block significantly minimize the performance discrepancy be-
tween INT8 and FP32 (32-bit floating point), which enhances the model’s suitability for
deployment on edge devices.

We utilized the QARepVgg block to create the QARepNeXt module. In detail, the width
(the size of the feature map) of the QARepNeXt module was kept consistent with that of
the C3 module, and the stacking layers of the QARepVgg block were aligned with the
BottleNeck in the C3 module. Similar to RepVgg, QARepNeXt operates as a multi-branch
parallel structure during training and converts to a single-path structure during inference,
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as depicted in Figure 6. The multi-branch structure promotes diverse feature learning and
robustness during training but increases the computational complexity. Converting to a
single-path structure can enhance the inference speed while preserving the benefits of the
features learned during training.

The QARepNeXt module was implemented to replace the C3 module in the YOLOv5
model, which resulted in an enhanced backbone and neck network. This substitution
led to a 26% elevation in inference speed while maintaining the model’s original perfor-
mance quality.

(a) QARepNeXt Training (b) QARepNeXt Inference

Figure 6. Illustration of the QARepNeXt module, which adopts a QARepVgg block (multi-branch
structure) during training and a convolution module (single-branch structure) during inference.

2.2.2. Attention Mechanism in the Neck Network

Compared with the C3 structure, QARepNeXt has relatively fewer parallel branches,
which slightly diminishes the model’s representational capacity. Therefore, we applied
the triplet attention mechanism [29] to the fused feature maps in the neck network [30] to
enhance the model’s feature extraction capabilities.

The triplet attention modules calculated the attention weights by capturing the inter-
actions between different dimensions of the input tensor. It fuses three parallel branches
for the (channel, height), (channel, width), and (height, width) dimensions, as shown in
Figure 7. The Z-pool layer combines the average pooled and max pooled features across
each dimension to reduce the tensor’s zeroth dimension to two. This can obtain a detailed
tensor representation while reducing its depth and making subsequent computations more
efficient. The mathematical representation of Z-Pool can be defined as

Z-Pool(x) = [MaxPool0d(x), AvgPool0d(x)]. (1)

We only applied the triple attention mechanism to the last two layers of the neck
network, which contain higher-level semantic features, as depicted in Figure 3. This could
improve the detection ability without significantly increasing the detection latency.

Figure 7. Illustration of the triplet attention, which has three parallel branches.

2.2.3. Loss Function

In our field strawberry detection scenario, some instances were difficult to detect
due to lighting variations, leaf occlusions, and similar colors between the foreground and
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background. To address this, Lin et al. [31] proposed the focal loss function, which can
mitigate the foreground–background class imbalance problem and enhance the learning of
challenging cases. This approach significantly improved the detection accuracy.

The focal loss function reduces the weight assigned to well-classified instances of loss
by reshaping the standard cross-entropy loss, which is defined as

CE(p, y) =
{
−log(p) i f y = 1
−log(1− p) otherwise,

(2)

where y is a component of {±1} that indicates the ground truth, and p ∈ [0, 1] demonstrates
the probability for the class labeled as y = 1. To simplify our notation, let us define pt
as follows:

pt =

{
p i f y = 1
1− p otherwise,

(3)

and the CE loss can be rewritten as

CE(p, y) = CE(pt) = −log(pt). (4)

The class imbalance problem is typically addressed by introducing a weight parameter
α within the range [0, 1] for class 1 and 1− α for class −1. With the definition of αt being
the same as pt, the α-balanced CE loss can be written as

CE(pt) = −αtlog(pt). (5)

Although α can balance the importance of positive and negative examples, it cannot
differentiate between easy and hard examples. To address this, the focal loss function
introduces a modulating factor (1− pt)γ to reduce the importance of easy examples and
direct the training toward hard examples. The focal loss function is expressed as follows:

FL(pt) = −αt(1− pt)
γlog(pt), (6)

where the tunable focusing parameter γ > 0.
The modulating factor effectively reduces the impact of loss caused by easy examples.

For instance, if γ = 2, an example with a classification of pt = 0.95 will demonstrate
400× lower loss compared with CE. Consequently, there was an increased significance in
rectifying misclassified examples.

3. Experiments And Results
3.1. Experimental Setting
3.1.1. Parameters And Equipment

We conducted the experiments with a batch size of 16, an image size of 640 × 640 pixels,
and 300 epochs. The remaining parameters were kept as the default values of YOLOv5s.
The runtime environment is shown in Table 2.

Table 2. The experimental environment used in the current study.

Hardware and Software Configuration

CPU Intel(R) Core(TM) i9-11900K
RAM 64 GB
GPU GeForce RTX 2080Ti
Operating system Windows 10
Cuda Cuda 11.3.0
Data processing Python 3.10
Deep learning framework Pytorch 1.9.0
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3.1.2. Index Definition

Various metrics were employed to measure the effectiveness of RTF-YOLO, namely,
recall, precision, AP (average precision), mAP (mean average precision), parameter count,
FPS, and FLOPs (floating point operations). The formulas for calculating these performance
metrics are as follows:

R =
TP

TP + FN
, (7)

P =
TP

TP + FP
, (8)

F1 =
2× P× R

P + R
, (9)

AP =
∫ 1

0
P(R)dR, (10)

mAP =
∑n

i=1 APi

n
, (11)

where TP represents the count of accurate predictions the model makes for positive ex-
amples. In contrast, FP denotes the count of negative examples incorrectly identified
as positive. FN signifies the measure of positive samples erroneously categorized as
negative. F1 is a composite evaluation index of P and R. AP is the area under the P-R
(precision–recall) curve, indicating the overall model performance. A larger area implies
better performance. mAP, the mean value of AP across all classes, indicates the model’s
detection performance. FLOPs refer to the computational complexity measurement of a
model, while the detection speed is evaluated with FPS, which represents the number of
images the model can process per second during inference.

3.2. Experimental Results and Analysis

This paper proposes three improved network models derived from YOLOv5: R-YOLO,
RT-YOLO, and RTF-YOLO. R-YOLO only utilized the QARepNeXt module for improve-
ment. RT-YOLO incorporated both the QARepNeXt module and the triplet attention
mechanism for its enhancement. Meanwhile, RTF-YOLO combined the QARepNeXt mod-
ule, the triplet attention mechanism, and the focal loss function for improvement. Several
experiments were conducted to validate the improved models’ effectiveness.

3.2.1. Experiments of the QARepNeXt Module

To validate the effectiveness of the QARepNeXt module, several improved C3 modules
based on mainstream lightweight networks, such as GhostNetV2, MobileNetV3, and
FasterNet, were constructed to replace the original C3 module in YOLOv5. Table 3 presents
the experimental results of the different models.

Table 3. Performance, complexity, and analysis speed of various backbones.

Backbone mAP0.5 (%) mAP0.75 (%) mAP0.5:0.95 (%) Params (M) FLOPs (G) FPS

YOLOv5 86.55 62.08 55.61 7.03 16.0 122
GhostNetV2 87.05 58.53 53.95 4.90 10.6 114
MobileNetV3 86.77 58.74 54.63 6.44 14.1 122
ShuffleNetV2 85.52 61.39 53.72 4.85 10.3 97
InceptionNet 87.10 63.72 55.61 5.37 11.7 94
FasterNet 87.34 64.82 57.44 5.72 12.6 120
QARepNeXt 86.58 65.46 56.87 13.00 33.6 154

We strived to find a fast backbone network to meet the need for real-time strawberry
detection. Among various metrics, the actual detection speed, that is, FPS, served as our
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primary selection criterion for the backbone. According to the results in Figure 3, these
lightweight models effectively reduced the model’s parameter count and FLOPs. However,
these improved models, except for QARepNeXt, did not demonstrate performance im-
provements that matched the reduction in FLOPs. The detection speed was determined by
both FLOPs and FLOPS (floating point operations per second) [28], which is captured by

FPS =
FLOPs
FLOPS

(12)

It is important to achieve higher FLOPS beyond simply reducing FLOPs for faster
neural networks. While many attempts have been made to reduce FLOPs, such as reduc-
ing the parameters, they seldom consider optimizing FLOPS simultaneously to achieve
truly low latency. The QARepNeXt converts to a single-path structure during inference,
while other models all have complex multi-branch designs. The single-path structure is a
hardware-efficient architecture that can utilize computing ability and memory bandwidth
more effectively [26], which results in higher FLOPS. Despite having higher parameters and
FLOPs, the QARepNeXt achieved the best detection speed. In conclusion, we selected the
QARepNeXt as the primary module for the backbone and neck, which efficiently improved
the detection speed without compromising accuracy.

3.2.2. Experiments of the Triplet Attention Mechanism

The attention mechanisms were embedded in the last two layers of R-YOLO’s neck
network to better extract crucial features. We conducted comparative experiments on
various types of attention mechanisms, including channel attention mechanisms, such
as SE, and channel and spatial attention mechanisms, such as CBAM and the triplet.
The experimental results for different attention mechanisms are shown in Table 4.

According to the results in Table 4, all the attention mechanisms improved the detection
accuracy of R-YOLO. Given an input image, the channel attention focused on what was
meaningful. It considered each channel of a feature map as a feature detector, contributing
more to the classification. In this study, the primary challenge was to accurately identify
the target class, and thus, the channel attention contributed more to the model’s accuracy.
This explained why the SE attention mechanism, which only included the channel attention
part, achieved a significant performance improvement [32]. Contrarily, the spatial attention
component complemented the channel attention by emphasizing the precise localization
of informative parts, which led to further detection accuracy improvements. As a result,
the channel and spatial attention mechanisms achieved a better performance than SE.
Since the triplet attention can capture the cross-dimensional interaction of the channel
and spatial dimension, it achieved the highest detection precision rate, mAP0.5, mAP0.75,
and mAP0.5:0.95 metrics. Therefore, we selected the triplet attention mechanism to enhance
the model’s feature extraction.

Table 4. Performance comparison of R-YOLO with various attention mechanisms.

Model P (%) R (%) mAP0.5 (%) mAP0.75 (%) mAP0.5:0.95
(%) FPS

R-YOLO 89.05 78.50 86.58 62.75 54.87 154
R-YOLO + SE 89.69 79.44 88.02 62.24 55.35 149
R-YOLO + CBAM 89.49 81.26 88.54 62.07 55.80 137
R-YOLO + coordinate 89.96 80.48 88.24 62.14 55.48 141
R-YOLO + NAM 89.84 80.40 88.10 62.36 55.06 152
R-YOLO + SGE 89.37 80.02 87.82 62.78 54.93 141
R-YOLO + SimAM 90.34 80.52 89.02 63.19 56.07 139
R-YOLO + triplet 91.43 81.05 89.21 63.46 56.29 145
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3.2.3. Experiments of the Focal Loss Function

The focal loss function was integrated with RT-YOLO to improve the recall rate by
enhancing the model’s learning ability toward challenging examples. The focal loss function
has two key parameters, α and γ. In our experiment, we explored various values of α
and γ, where α ∈ [0.1, 0.2] and γ ∈ [1, 5], and found that the optimal result was achieved
when α = 0.13 and γ = 1.4 on the validation dataset, as shown in Table 5. We applied
the best parameter values on the test dataset and achieved an improved mAP0.5 of 90.24%,
which manifested the model’s robustness. A lower value of α (0.13 in this study) is typically
chosen in conjunction with a higher value of γ (1.4 in this study) [31]. The results of our
research are in agreement with this assertion.

Table 5. Performance (mAP0.5(%)) of the focal loss function under varying α and γ parameters.

α

γ
1.00 1.20 1.40 1.60 2.00 2.40 3.00 5.00

0.10 88.26 87.72 89.63 88.28 88.82 82.96 73.98 51.57
0.11 87.41 88.31 89.97 87.77 88.48 83.18 75.11 52.33
0.12 88.37 88.36 90.16 89.08 87.66 84.17 72.32 55.10
0.13 88.81 89.60 90.32 88.04 88.57 84.88 76.97 54.84
0.15 89.67 88.67 89.84 89.06 88.61 83.59 79.63 53.91
0.20 88.75 88.27 88.31 87.66 86.79 85.95 83.90 53.07

3.3. Ablation Experiments of Different Improved Models

The detection results of different improved models are shown in Table 6 and Figure 8.
R-YOLO improved the detection speed by 32 FPS while maintaining the mAP0.5 value
essentially unchanged. Compared with R-YOLO, RT-YOLO improved the mAP0.5 by
2.6 points, but the attention mechanism introduced an increase in FLOPs, which resulted
in a slight reduction in the detection speed. Finally, RTF-YOLO integrated the focal loss
function with RT-YOLO, which improved the model’s recall rate and improved by more
than 1 mAP0.5 point. Ultimately, compared with the original YOLOv5 model, our proposed
RTF-YOLO model achieved an almost 3.6 point mAP0.5 improvement and a 23 FPS increase
in detection speed.

The confusion matrix of different improved models is shown in Figure 9. In the confu-
sion matrix, the horizontal axis represents the ground truth labels, while the vertical axis
represents the labels predicted by the model. The first two columns represent the counts of
the ripen and unripen strawberry labels, respectively. Their sum equalled the total number
of labels in the test dataset in Table 1, which was 820. The triplet attention mechanism
boosted the feature extraction, which raised the count of accurately detected strawberries
by 32. Unripened strawberries were susceptible to false detections and missed detections
for resembling leaves in color. The focal loss function could enhance the learning capacity
for these challenging objects. As a result, RTF-YOLO reduced the count of unripened
strawberries’ false and missed detections by six compared with RF-YOLO.
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(a) (b)

Figure 8. The precision–recall curves. (a) The recall–precision curve of different improved models.
(b) The recall–precision curve of various categories obtained by RTF-YOLO.

(a) YOLOv5. (b) R-YOLOv5.

(c) RT-YOLOv5. (d) RTF-YOLO.

Figure 9. Comparative confusion matrices of various improved models.

Table 6. The ablation experiment results of different improved models.

Model P (%) R (%)
AP0.5 (%)

mAP0.5 (%) mAP0.75 (%) mAP0.5:0.95 (%) FPS
Unripen Ripen

YOLOv5 89.67 77.21 82.60 90.50 86.55 62.08 55.61 122
R-YOLO 89.05 78.50 82.20 90.90 86.58 62.75 54.87 154
RT-YOLO 91.43 81.05 84.60 93.50 89.21 63.46 56.29 145
RTF-YOLO 91.92 81.43 86.30 94.30 90.24 64.84 57.65 145

The visualization results of different improved models are depicted in Figure 10.
The r1 label in the diagram signifies unripened strawberries, whereas the r2 label signified
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ripened strawberries. All the improved models demonstrated some enhancements in the
occurrences of false positives and negatives. However, considering the overall performance,
RTF-YOLO achieved the best results. For example, as shown in (a), the YOLOv5 model
incorrectly detected the leaves in the bottom-right and right sides as unripened strawberry
fruits. The RT-YOLO model resolved the false positive problem but introduced a false
negative in the top right. RTF-YOLO, on the other hand, successfully addressed both types
of problems. As shown in (b), YOLOv5 and R-YOLO suffered from false negatives for
unripened strawberries, which had colors similar to the leaves. However, RTF-YOLO effec-
tively eliminated false negatives by enhancing the learning of such challenging examples.

Figure 10. Visualization results of YOLOv5, R-YOLO, RT-YOLO, and RTF-YOLO are shown in their
respective columns, with subfigures (a–c) serving as three examples. The false positive samples
are encircled with a yellow dashed line, while the false negative samples are encircled with a blue
dashed line.

Comparative Experimental Analysis of Different Models

We compared RTF-YOLO with other mainstream target detection networks, including
YOLOv5s, YOLOv5n, ASFF-YOLOv5 [22], DSE-YOLOv5 [19], DSW-YOLOv5 [8], and Faster
R-CNN, as shown in Table 7. According to the experimental results, Faster R-CNN achieved
a recall rate of 81.04%, but its precision rate was only 38.43%, which led to many false
detections of strawberries. In contrast, SSD achieved a precision rate of 82.33%, but its
recall rate was only 19.24%, which led to many missed detections. Faster RCNN employed
a single high-level feature map for target classification and localization, which led to
its inadequate detection ability for small- and multi-scale targets. Although SSD used
multi-scale feature maps from different layers, it failed to fully exploit the information
from low-level high-resolution feature maps, which is vital for small object detection.
As a result, neither of the two networks could meet the requirements for multi-stage
strawberry detection.

Table 7. Comparative analysis of performance and efficiency metrics for various object detection models.

Model P (%) R (%) mAP0.5 (%) Params (M) FPS

Faster R-CNN 38.43 81.04 64.32 137.10 23
SSD 82.33 19.24 63.24 26.29 50
YOLOv5 89.67 77.21 86.65 7.03 122
ASFF-YOLOv5 86.00 81.75 87.25 12.46 100
DSE-YOLO 85.34 81.09 87.98 224.39 21
DSW-YOLO 82.80 82.10 86.70 32.40 42
RTF-YOLO 91.92 81.43 90.24 13.00 145
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YOLOv5 utilized the PANet network to integrate feature maps from diverse levels,
which enhanced the receptive field and achieved a richer input representation. Models
based on YOLOv5 achieved better detection accuracy. The mAP0.5 metric for RTF-YOLO
was 90.24%, which showed improvements of 3.6% and 3% compared with YOLOv5s and
ASFF-YOLOv5, respectively. YOLOv5’s single-stage detection scheme offered a higher
detection speed. However, introducing enhancement modules, such as the ASFF module,
DSE module, and attention mechanism, increased the model complexity and reduced the
detection speed. Benefiting from RTF-YOLO’s improved backbone network, its detection
speed surpassed YOLOv5s and other YOLO-based improved networks by over 19% and
45%, respectively. Although DSE-YOLO and DSW-YOLO achieved a high detection accu-
racy, the large model sizes and slower detection speeds limit their deployment on edge
computing devices. In contrast, RTF-YOLO offered a threefold advantage in detection
speed and model scale. Therefore, RTF-YOLO was more suitable for detecting strawberries
in complex environments in real time.

4. Conclusions

This article proposes a novel RTF-YOLO network model for strawberry detection un-
der fluctuating lighting and fruit occlusion scenarios. The RTF-YOLO model was obtained
by integrating YOLOv5 with the QARepNeXt module, the triplet attention mechanism,
and the focal loss function. The QARepNeXt module improved the detection speed of the
model, while the triplet attention mechanism enhanced the extraction capability. The focal
loss function was utilized to address the foreground–background class imbalance problem
and enhance the learning ability of challenging examples. The model’s performance was
validated with a dataset collected from the field. The experimental results showed that the
model achieved a precision of 91.92%, a recall rate of 81.43%, an mAP of 90.24%, and a
detection speed of 145 FPS. Compared with other mainstream object detection algorithms,
RTF-YOLO was more advantageous in terms of the mAP, model size, and detection speed.
Consequently, the proposed algorithm can provide guidance for the yield prediction and
automated harvesting of strawberries.
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