Study on Slump and Compressive Strength of Gangue Based on Aggregate Size Gradation
Abstract
:1. Introduction
2. Experimental Material
2.1. Gangue Paste Aggregate
2.2. Gangue Paste Auxiliary Material
2.3. Cementing Agent
2.3.1. Slag Powder
2.3.2. Cement Clinker
2.3.3. Flue Gas Desulfurization Gypsum
3. Experimental
3.1. Experimental Design
3.1.1. Talbot Theory
3.1.2. Orthogonal Experimental Design
3.2. Experimental Method
3.2.1. Standard Slump Test Procedure
3.2.2. Uniaxial Compressive Strength Test
4. Experimental Results and Analysis
4.1. Experimental Results
4.2. Analysis of Slump Test Results of Aggregate Size Gradation
4.3. Relationship between Slump of Filling Paste and Mass Fraction
4.4. Analysis of Compressive Strength Results of Aggregate Size Gradation
4.5. Relationship between Slump and Yield Stress
Paste Type | a2 | b2 | R2 | p |
---|---|---|---|---|
Coarse–fine aggregate ratio 7:3 | 2325.43 | −1.24 | 0.98 | 4.551 × 10 −4 |
Coarse–fine aggregate ratio 6:4 | 2355.85 | −1.23 | 0.97 | 4.831 × 10 −4 |
Coarse–fine aggregate ratio 5:5 | 5079.57 | −1.35 | 0.97 | 3.749 × 10 −4 |
Coarse–fine aggregate ratio 4:6 | 6288.95 | −1.42 | 0.97 | 6.013 × 10 −4 |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, T.Q. Study on Geochemical Characteristics of Coal Gangue Filling Materials and Migration Behavior of Heavy Metal Elements; China Mining University: Xuzhou, China, 2019. [Google Scholar]
- Wu, Q.; Liu, H.L.; Chen, Q. Theory and practice of mine environmental remediation model. J. China Coal Soc. 2017, 42, 1085–1092. [Google Scholar]
- Wang, X.H.; Liu, F.; Ni, M. Research and application of spontaneous combustion treatment and ecological restoration of gangue mountain. Coal Sci. Technol. 2019, 48 (Suppl. S2), 128–131. [Google Scholar]
- Cai, M.F.; Xue, D.L.; Ren, F.H. Metal deep mining situation and development strategy. J. Eng. Sci. 2019, 9, 417–426. [Google Scholar]
- Wu, A.X.; Wang, Y.; Wang, H.J. Current status and trend of paste filling technology. Met. Mine 2016, 481, 1–9. [Google Scholar]
- Wu, A.X.; Li, H.; Cheng, H.Y. Research status and prospect of rheology of total tailings paste (Part 1): Concept, characteristics and model. J. Eng. Sci. 2020, 7, 803–813. [Google Scholar]
- Wu, A.X.; Li, H.; Cheng, H.Y. Research status and prospect of rheology of total tailings paste (Part II): Rheological measurement and prospect. Lancet J. Eng. Sci. 2021, 4, 451–459. [Google Scholar]
- Yin, S.; Liu, J.; Chen, W.; Zou, L.; Kou, Y.Y.; Li, X.W. Effect of different coarse aggregates on coagulation performance and ratio optimization of paste. Chin. J. Eng. Sci. 2019, 42, 829–837. (In Chinese) [Google Scholar]
- Gong, P.; Ma, Z.; He, Z.X.; X, M.; C, T. Evolution mechanism of surrounding rock structure in goaf retaining roadway of gangue filling face. J. Min. Saf. Eng. 2023, 40, 764–773+785. [Google Scholar]
- Wang, F.T.; Li, G.; Ban, J.G.; Peng, X.N.; Li, S.T.; Liu, S.T. Study on co-bearing effect of filling body and coal pillar in deep mining. J. Min. Saf. Eng. 2019, 37, 311–318. [Google Scholar]
- Li, J.; Yilmaz, E.; Cao, S. Influence of solid content, cement/tailings ratio, and curing time on rheology and strength of cemented tailings backfill. Minerals 2020, 10, 922. [Google Scholar] [CrossRef]
- Wang, H.J.; Wang, X.L.; Kou, Y.P. All backfilling materials of high concentration of cemented filling with loop test. J. Eng. Sci. 2021, 2, 215–222. [Google Scholar]
- Clayton, S.; Grice, T.G.; Boger, D.V. Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int. J. Miner. Process. 2003, 70, 3–21. [Google Scholar] [CrossRef]
- Tan, Z.; Bernal, S.A.; Provis, J.L. Reproducible mini-slump test procedure for measuring the yield stress of cementitious pastes. Mater. Struct. 2017, 50, 1–12. [Google Scholar] [CrossRef]
- Kou, Y.P.; Jiang, H.Q.; Ren, L.; Yilmaz, E.; Li, Y. Rheological properties of cemented paste backfill with alkali-activated slag. Minerals 2010, 3, 288. [Google Scholar] [CrossRef]
- Murata, J. Flow and deformation of fresh concrete. Mater. Struct. 1984, 17, 117–129. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Hassani, F. Experimental study on collapse of yield Stress of paste Tailings. Met. Mine 2017, 1, 30–36. [Google Scholar]
- Tanigawa, Y.; Mori, H. Analytical study on deformation of fresh concrete. J. Eng. Mech. 1989, 115, 493–508. [Google Scholar] [CrossRef]
- Carnogursky, E.A.; Fall, M.; Haruna, S. Rheology and setting time of saline cemented paste backfill. Miner. Eng. 2023, 202, 108258. [Google Scholar] [CrossRef]
- Wu, A.X.; Jiao, H.Z.; Wang, H.J.; Li, H.; Yi, H.B.; Liu, X.H.; Liu, S.Z. Yield Stress detection and optimization of paste Tailings. J. Cent. South Univ. Nat. Sci. Ed. 2013, 44, 3370–3376. [Google Scholar]
- Meng, Y.; Zhang, Z.Y.; Zhang, X.G.; Yan, Y.G.; Li, F. Research on optimization of crushing system for paste filling gangue in Coal mine. Coal Technol. 2018, 37, 24–26. [Google Scholar]
- Li, X.W.; Wen, X.J.; Cheng, L.C. Study on performance of filling materials replaced by coal ash paste by gangue powder. Coal Eng. 2023, 55, 136–142. [Google Scholar]
- Yan, S.-F. Experimental Research and Application of Bulk Solid Modified Filling Cementing Materials; Hebei University of Engineering: Handan, China, 2022. [Google Scholar]
- Wu, L.B.; Wang, Y.M.; Chen, W. Based on orthogonal experiment of red mud pulverized coal proportioning optimization of plaster filling material. J. Min. Res. Dev. 2020, 40, 45–49. [Google Scholar]
- Beijing Concrete Association organized GB/T 17671-2021 "Cement mortar Strength Test Method (ISO Method)" training meeting. Concrete 2022, 6, 12.
- Wang, W.Y. Some problems in the implementation of GB/T 17671-1999 cement mortar strength inspection method (ISO method). Cement 2000, 7, 1–3. [Google Scholar]
- Wang, F. Study on Grading Design and Road Performance of Cement-Stabilized Crushed Stone for Skeleton Dense Structure; Wuhan Institute of Technology: Wuhan, China, 2018. [Google Scholar]
Compound | SiO2 | Al2O3 | Na2O | MgO | K2O | CaO | Fe2O3 | Other |
---|---|---|---|---|---|---|---|---|
content% | 52.81 | 22.35 | 1.18 | 1.21 | 1.33 | 1.64 | 5.12 | 14.36 |
Category | Fine Particle Size Gangue Aggregate | Coarse Particle Size Gangue Aggregate |
---|---|---|
Particle size/mm | 0.3–5 mm | 5–25 mm |
Value of K | Mass Ratio/% | Approximate Ratio | |
---|---|---|---|
0.05–5 mm | 5–25 mm | ||
0.3 | 0.62 | 0.38 | 6:4 |
0.4 | 0.53 | 0.47 | 5:5 |
0.5 | 0.44 | 0.56 | 4:6 |
0.6 | 0.38 | 0.62 | 3:7 |
Materials | Gangue Powder | Gangue Aggregate | Cementing Agent |
---|---|---|---|
content% | 27.6% | 64.4% | 8% |
Level | Factor | |
---|---|---|
A% | B | |
1 | 78 | 7:3 |
2 | 80 | 6:4 |
3 | 82 | 5:5 |
4 | 84 | 4:6 |
Test Group Number | Mass Fraction/% | Coarse–Fine Aggregate Ratio | Uniaxial Compressive Strength/MPa | Slump/mm | |||
---|---|---|---|---|---|---|---|
1 d | 3 d | 7 d | 28 d | ||||
1 | 78 | 7:3 | 0.14 | 1.23 | 2.37 | 2.52 | 257 |
2 | 78 | 6:4 | 0.37 | 1.97 | 2.27 | 2.78 | 238 |
3 | 78 | 5:5 | 0.63 | 2.91 | 3.17 | 3.35 | 225 |
4 | 78 | 4:6 | 0.54 | 2.61 | 2.85 | 3.16 | 216 |
5 | 80 | 7:3 | 0.18 | 1.52 | 2.67 | 2.86 | 223 |
6 | 80 | 6:4 | 0.45 | 2.31 | 2.68 | 3.17 | 215 |
7 | 80 | 5:5 | 0.70 | 2.56 | 3.45 | 3.67 | 210 |
8 | 80 | 4:6 | 0.62 | 2.38 | 3.17 | 3.31 | 202 |
9 | 82 | 7:3 | 0.28 | 2.08 | 3.01 | 3.21 | 203 |
10 | 82 | 6:4 | 0.55 | 2.71 | 3.36 | 3.38 | 196 |
11 | 82 | 5:5 | 0.82 | 3.19 | 3.65 | 3.81 | 191 |
12 | 82 | 4:6 | 0.69 | 2.97 | 3.34 | 3.58 | 189 |
13 | 84 | 7:3 | 0.38 | 2.24 | 3.39 | 3.77 | 184 |
14 | 84 | 6:4 | 0.64 | 3.06 | 3.68 | 4.01 | 178 |
15 | 84 | 5:5 | 0.91 | 3.84 | 4.43 | 4.73 | 175 |
16 | 84 | 4:6 | 0.79 | 3.46 | 3.86 | 4.33 | 171 |
Paste Type | a1 | b1 | R2 | p |
---|---|---|---|---|
Coarse–fine aggregate ratio 7:3 | −11.95 | 1184.7 | 0.98 | 1.353 × 10 −4 |
Coarse–fine aggregate ratio 6:4 | −9.55 | 1012.7 | 0.99 | 1.345 × 10 −2 |
Coarse–fine aggregate ratio 5:5 | −8.45 | 884.7 | 0.99 | 4.989 × 10 −5 |
Coarse–fine aggregate ratio 4:6 | −7.4 | 793.9 | 0.99 | 2.712 × 10 −4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Yuan, H.; Zhai, S.; Geng, Z.; Huo, F. Study on Slump and Compressive Strength of Gangue Based on Aggregate Size Gradation. Appl. Sci. 2024, 14, 4214. https://doi.org/10.3390/app14104214
Pan Y, Yuan H, Zhai S, Geng Z, Huo F. Study on Slump and Compressive Strength of Gangue Based on Aggregate Size Gradation. Applied Sciences. 2024; 14(10):4214. https://doi.org/10.3390/app14104214
Chicago/Turabian StylePan, Yue, Hao Yuan, Shengyu Zhai, Zhongcheng Geng, and Fulin Huo. 2024. "Study on Slump and Compressive Strength of Gangue Based on Aggregate Size Gradation" Applied Sciences 14, no. 10: 4214. https://doi.org/10.3390/app14104214
APA StylePan, Y., Yuan, H., Zhai, S., Geng, Z., & Huo, F. (2024). Study on Slump and Compressive Strength of Gangue Based on Aggregate Size Gradation. Applied Sciences, 14(10), 4214. https://doi.org/10.3390/app14104214