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Abstract: This paper proposes the design of virtual antenna arrays with frequency diversity for
radar systems in fifth-generation flying ad hoc networks. These virtual arrays permit us to detect
targets from the sky with flying drones. Each array element is composed of a microstrip antenna
mounted on quadcopter drones and is virtually connected with the other elements. The antennas
are tuned to work at the lower fifth-generation frequency band of 3.5 GHz. The design process
considers the optimization of frequency offsets and positions for each element to obtain a side lobe
level reduction. This methodology is carried out by particle swarm optimization. Several design
examples are presented with random frequency offsets and non-uniform positions. These designs are
compared to uniform-spaced arrays excited with Hamming frequency offsets. The simulation results
show that using random frequency offsets and non-uniform positions provides a minor side lobe
level reduction. This research demonstrates the feasibility of using virtual arrays for radar systems in
fifth-generation flying ad hoc networks.

Keywords: FANET; virtual antenna array; 5G; radar system; frequency diversity

1. Introduction

Flying ad hoc networks (FANETs) facilitate many activities in society, such as agri-
cultural processes, security, communications, and so on. This is possible with a swarm of
drones wirelessly connected with low-gain antennas. In these swarms, the antenna system
is crucial for effective performance; thanks to the antenna, it is possible to collect data from
the sky with drones. However, reaching far targets is impossible when low-gain antennas
are used. In recent years, the concept of virtual antenna arrays (VAAs), comprising a
group of nodes formed by the low-gain antennas of each drone of the swarm [1–4], was
introduced. This permits the antenna system to increase the directivity to reach far targets.
Some interesting studies are being published on this topic; for instance, a polyhedral VAA
with isotropic sources was studied with a direction-of-arrival estimation scheme [5]. In
addition, the positions of isotropic sources were optimized to obtain high directivity and
side lobe level reduction [6–8]. In [9], a comparison was made of a single element and a
virtual linear array with the optimum service time when both used the same power. A
non-uniform virtual array of isotropic sources was designed for an optimum side lobe,
transmission power, and motion energy consumption [10]. A demonstration of the feasi-
bility of VAA for multi-port input and multi-port output radars was reported in [11,12].
Previous research [13] proposed a sizeable VAA using a GPS to communicate over long
distances. Research on forming a VAA to maintain an air object was reported in [14]. Other
important papers have published VAAs based on the drone cluster approach in the presence
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of position errors [15,16]. Recently, the effects of the drone structure in virtual arrays were
studied in [8]. In addition, new research presented time-modulated VAAs with dipoles [17]
and patch elements [18,19]. In summary, the previous works mainly proposed VAAs for
communication systems of FANETs. However, the topic of VAAs is still maturing and has
many opportune areas for research. In that context, this paper presents the application of
VAAs for radar systems mounted on a FANET at 3.5 GHz. This frequency is very suitable
for emerging radar systems in the fifth generation (5G). Previously, this scenario has not
been studied in the literature. New FANETs will require communication with new 5G
systems soon at the band of 3.5 GHz. To that end, we propose the design of frequency
diversity virtual arrays (FDVAs) to detect objects in far targets with a 5G-FANET. It is
important to highlight that frequency diversity has been utilized in traditional arrays [20],
but not with virtual arrays. For instance, different frequency diversity arrays (FDAs) with a
uniform linear topology were designed by using Hamming [21–23], logarithmic [24–28],
and random frequency offsets [29–31]. These approaches generally utilize the spacing
among the antennas of λ/2. On the other hand, two-dimensional topologies of FDAs,
such as concentric rings [32] and rectangular [33], have been studied. In addition, three-
dimensional spherical topologies were proposed in [34]. A novel FDA was also synthesized
with time modulation [35]. These previous papers analyzed FDAs with isotropic antennas.
Moreover, one piece of research [33] proposed an FDA with Yagi patch antennas. Here,
the main contribution is the design of a non-uniform FDVA with elliptic patch antennas
mounted on quadcopter drones. The main challenge was to find the optimum frequency
offsets and positions of the nodes. This was achieved to obtain a side lobe level reduction.
The methodology was carried out by particle swarm optimization (PSO). Several design
examples with different numbers of antennas are presented.

2. Virtual Array Model

Each element of the FDVA consists of an elliptic patch antenna assembled on a quad-
copter drone, as shown in Figure 1. The maximum size of the drone is 131 mm. The parts
of the drone consist of metal and carbon fiber. The antenna is strategically located on the
side of the drone to focus the radiation on the front.
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Figure 1. Element model of FDVA.

The radiation pattern for a VAA of N elements is formulated by the next formula [21],

P(θ, d) =
N

∑
n=1

g(θ)ej(kxnsinθ+2π( f0+ fn)(d−d0)/c) (1)

where θ is the elevation angle, and the wave number is defined as k = 2π/λ with λ as the
wavelength in the initial frequency f 0. The variable xn is the element position in space.
The term fn is the frequency offset concerning f 0. The difference between frequency offsets
is ∆fn = (fn − f n−1). The variable d is the distance variable. The term d0 is the distance
between the array and the maximum radiation. The constant c is the velocity of light in
a vacuum. The function g(θ) is the element pattern of the nth antenna in the frequency
f 0. This function considers the pattern distortion due to the aircraft structure depicted in
Figure 1. The elliptical patch antenna is shown in Figure 2. The antenna material is an FR4
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substrate of 1.6 mm thickness, with a permittivity of εr = 4.3, a tangential loss of δ = 0.0025,
and a copper layer of 0.04 mm. The physical dimensions are W = 37.5 mm, L = 25 mm,
G = 37.5 mm, R = 9 mm, r = 6.5 mm, h = 17.6 mm, x = 1.9 mm, and lg = 9 mm. The antenna
parameters were calculated based on the theory reported in [36]. It should be noted that the
radiation pattern of the FDVA was simulated in the CST microwave studio. The reflection
coefficient is shown in Figure 3; this antenna operates from 3.25 GHz to 3.79 GHz. We
selected this element because it is low profile, which is an important characteristic when
the antenna is mounted on a drone. Nevertheless, the drone can use a different antenna
element. The selection of the best antenna for a frequency diversity virtual array is an open
research topic.
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Figure 2. Antenna element: (a) back view; (b) front view.
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Figure 3. S11 parameter of the antenna element.

3. Problem Statement and Fitness Function

The design problem is to discover the optimum location coordinate xn and frequency
offset fn for each element of the FDVA, to obtain optimum radiation patterns. The terms
f0 and d0 are considered constants during the optimization process. In this scenario, the
optimization variables are computed as,

Q =
[
q1, q2, . . . , qi

]
(2)

qi =
[

xi
n, f i

n

]
(3)
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The Q term is a matrix of optimization variables, and each element qi represents
the location xn and the frequency offset fn. The index term i is an individual from the
swarm. During the optimization method, the spacings xn are searched by defining a spacing
sn = xn − xn−1 among the drones within the range of sn ϵ [1.7 λ, 2.7 λ], where the wavelength
λ is considering the frequency f 0 = 3.5 GHz. This constraint is to avoid a possible collision
of drones. The frequency offsets, such as fn ϵ [1 KHz, 20 KHz], are also constrained. The
objective function of this optimization is computed with the next expression:

o f = max(SLL) (4)

SLL is the maximum side lobe level for the radiation patterns P(θ,d). The algorithm
PSO minimizes the objective function of, obtaining the optimum radiation patterns defined
in Equation (1). The methodology of PSO is taken as in [37]. This methodology is very
efficient for the design of antenna arrays, as mentioned in [37]. However, we do not claim
that PSO is the best algorithm for an FDVA. The design process used the PSO just as a tool
to find the optimization variables. The next section will describe the simulation results.

4. Simulation Results

The particle swarm algorithm was coded in MATLAB under a computer with four
Xeon processors (model E5-2640) and 256 GB of memory (RAM). The configuration of
the PSO was set as follows: number of iterations imax = 1800, number of agents psize = 50,
inertial weight w varies downward in the range of [0.95–0.4], and acceleration constants
c1 = c2 = 2. This configuration has been tested with good results in antenna array optimiza-
tion [37]. We established the FDVA with N = 6, 9, and 12 antenna elements. We performed
cases with symmetry and no symmetry of the locations and frequency offsets around the
origin. We summarize the results of the optimization in Table 1, which contains numerical
values of the optimization variables xn and fn. In addition, Table 1 shows the values of
the side lobe levels in a normalized magnitude. The cases with symmetry obtained better
SLL reductions than those with no symmetry. Figure 4 shows the fitness function values
during the optimization process for the cases with no symmetry. The PSO converges at the
optimum solution. Figure 5 depicts the optimization variables’ distributions. Using sym-
metrical distributions would decrease the hardware complexity of the antenna array. The
symmetrical random distributions are better than the traditional Hamming distributions
regarding SLL reductions.

Table 1. Optimization variables and fitness function values.

N Symmetry Normalized
SLL Directivity Locations xn

(λ) Frequencies fn (KHz)

6 Yes 0.7706 6.56 dB 0, 1.7652, 4.4652, 7.0634, 9.7634,
11.5286

16.248, 12.135, 2.388, 2.388, 12.135,
16.248

9 Yes 0.5828 8.49 dB 0, 2.6582, 5.3208, 7.1053, 8.8719,
10.6385, 12.4230, 15.0856, 17.7438

19.744, 15.234, 12.436, 1.624, 4.664,
1.624, 12.436, 15.234, 19.744

12 Yes 0.5192 9.05 dB
0, 2.6613, 5.1533, 7.4415, 9.1495,

10.8621, 13.5126, 15.2252, 16.9332,
19.2214, 21.7134, 24.3747

10.57043, 19.94567, 17.6699, 1, 1.32935,
9.02219, 39.02219, 1.3293, 1, 17.6699

19.94567, 10.57043

6 No 0.7121 6.95 dB 0, 2.6412, 4.5123, 6.3544, 8.1316, 9.8321 14.3043, 19.217, 1, 1.7049, 11.1150,
2.5609

9 No 0.5904 8.43 dB 0, 2.6994, 5.3944, 8.0934, 9.8727,
12.5459, 14.3622, 16.0889, 17.8965

4.466, 3.308, 19.106, 0.1304, 1, 11.775,
1.171, 07.367, 18.245

12 No 0.5386 9.19 dB
0, 2.6986, 4.3989, 7.0827, 9.1845,

11.2371, 13.7306, 15.7537, 17.4566
19.1796, 20.9382, 23.6236

3.697, 19.408, 3.252, 6.969, 20.000,
13.671, 1, 19.997, 6.018, 17.358, 19.680,

12.929
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Now, these distributions generate the radiation patterns shown in Figures 6–8 for
the cases with different numbers of antennas. Firstly, observe the radiation generated
by the Hamming distribution in the three figures. These patterns contain grating lobes
due to the spacing of the antennas at greater than λ/2. Nevertheless, it is impossible to
use λ/2 as the spacing because this collides with the drones. In this case, the Hamming
distributions are not suitable for this application. The random distributions obtain radiation
with no grating lobes, as depicted in the three figures. One can infer that these distributions
are better solutions for the FDVA. The symmetrical and non-symmetrical distributions
generate similar patterns, and the SLL values change only slightly, although symmetrical
distributions have the advantage of reducing hardware complexity.
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Table 2 contains a comparison with previous studies in the field of virtual antenna
arrays. The main contribution of this work is the use of frequency diversity in virtual
antenna arrays for 5G-FANETs. Moreover, most previous works used isotropic and dipole
antennas with no drone structures. However, exploring the scenario of real antennas
mounted on a drone is very important before real experimentation. Furthermore, other
works utilized patch antennas at a frequency of 2.4 GHz. Here, the designs utilized the
recently opened band of 3.5 GHz. Additionally, the previous papers designed virtual arrays
with other techniques such as time modulation or only random positions. Previously,
frequency diversity was not used in virtual arrays. As such, our contribution represents
an advance in this topic, which permits the topic to mature. The frequency diversity in
virtual antenna arrays may permit using a FANET as a radar system in future emerging
applications.

Table 2. Comparison with virtual arrays.

Work Array Topology Type of
Antenna Frequency Drone Algorithm Perturbations

Ref. [5] 3D polyhedral and
linear Isotropic Not included Not included DOA Not included

Ref. [6] 3D random Isotropic Not included Not included DEMO Not included

Ref. [7] 3D random in 4
layers Isotropic Not included Not included Not included Not included

Ref. [17]
Uniform linear and

square with time
modulation

Dipole Not included Not included PSO Not included

Ref. [9] Non-uniform linear Isotropic Not included Not included Deterministic Not included

Ref. [10] 3D random Isotropic Not included Not included DPINSGA-II Not included
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Table 2. Cont.

Work Array Topology Type of
Antenna Frequency Drone Algorithm Perturbations

Ref. [15] Non-uniform linear Isotropic Not included Not included Nelder mead
simplex method Included

Ref. [16] Non-uniform linear Isotropic Not included Not included SOCP Included

Ref. [8] 3D random Square patch 2.4 GHz Included DEMO Not included

Ref. [18]
Non-uniform linear

with time
modulation

Square patch 2.4 GHz Not included IWO Not included

Ref. [19]
Non-uniform linear

with time
modulation

Fed-slot 2.4 GHz and 5.5
GHz Included DEMO Included

This Work
Non-uniform linear

with frequency
diversity

Elliptic patch 3.25 GHz to
3.79 GHz Included PSO Not Included

Finally, it is important to compare this study with previous papers in the field of FDAs.
In this case, Table 3 compares the most representative works in this field. Most of these
works present FDAs with linear topologies and isotropic antennas. The frequency offsets
are Hamming, logarithmic, and random distributions. The main difference concerning this
work is the combination of random frequency offsets and non-uniform antenna locations,
the 5G frequency band, and the use of elliptic patch antennas mounted on real drones.

Table 3. Comparison with previous FDAs.

Work Array
Topology Antenna Frequency

Offsets fn

Initial Frequency
f 0 and Uniform

∆fn

Distance
d

Maximum
Direction
(d0, θ0)

Symmetry Algorithm Antenna
Spacing

Ref. [24]
Linear

N = 5, 10,
15, 17

Isotropic
Hamming

and
logarithmic

f 0 = 10 GHz
∆fn = 3 kHz,

2 kHz

0–2 km

2 × 105 km
0–90 km

0–1000 km

θ0 = 0◦ 1 × 105 km
30◦ 500 km

θ0 = 0◦ 15 km,
45 km, 745 km
θ0 = 30◦ 500 km
θ0 = 0◦ 500 km

Yes/No Not
applied

λ
λ/2
λ/4

Ref. [6]
Square

N = 16, 8,
4

Patch
Yagui

1–2 GHz
2–4 GHz

Not
specified Not specified Not

specified θ0 = 0◦ Not
specified

Not
applied 30 mm

Ref. [38] Linear
N = 10 Isotropic Not

specified
f 0 = 10 GHz
∆fn = 10 kHz 5–15 km θ0 = 0◦ 20 km No (CMT)

algorithm λ/2

Ref. [29] Linear
N = 10 Isotropic Random f 0 = 10 GHz

∆fn = 5 KHz. 0–25 km

θ0 = 0◦ 0◦

θ0 = 0◦ 1.91◦ 1 km
θ0 = 0◦ 56.44◦

25 km

No Not
applied λ/2

Ref. [25] Linear
N = 15 Isotropic Logarithmic

f 0 = 5 GHz
δ = 30 KHz

∆fn = log(m + 1)δ
0–60 km θ0 = 10◦ 25 km Not

specified
Not

specified λ/4

Ref. [26] Linear
N = 33 Isotropic

Hamming
and

logarithmic

f 0 = 10 GHz
∆fn = 85 kHz. 0–50 km θ0 = 0◦ 25 km Yes Not

specified 0.24 m

Ref. [30] Linear
N = 16 Isotropic Random

f 0 = 10 GHz
∆fn ϵ

[100 KHz–
10,000 KHz]

10–15 km θ0 = π/3 10.11 km No
Simulated
annealing
algorithm

Ref. [26]
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Table 3. Cont.

Work Array
Topology Antenna Frequency

Offsets fn

Initial Frequency
f 0 and Uniform

∆fn

Distance
d

Maximum
Direction
(d0, θ0)

Symmetry Algorithm Antenna
Spacing

Ref. [27] Linear
N = 10

Aperture
antennas

Logarithmic
and

Hamming

f 0 = 10 GHz
∆fn = 50 KHz. 20–80 km θ0 = 20◦ 50 km Yes Genetic

algorithm 0.015 m

Ref. [21] Linear
N = 20 Isotropic Hamming f 0 = 10 GHz 300–600

km θ0 = 0◦ 450 km No PSO λ/2 =
0.015 m

Ref. [28] Linear
N = 16 Isotropic Logarithmic f 0 = 10 GHz,

∆fn = 30 KHz 50–100 km θ0 = 25◦ 75 km
θ0 = 0◦ 30◦ 82 km No

Genetic
algorithm,

MUSIC
algorithm

Ref. [34]

Spherical
random
N = 18

elements

Isotropic Not
specified Not specified 10–1000

km θ0 = 90◦ 100 km No Not
specified

Not
speci-
fied

Ref. [31] Linear- rid
N = 51 Isotropic Random

f 0= 37.5 GHz
carrier

∆fn = 1 MHz

Not
specified Not specified No

BP-based
3D

imaging
algorithm

4 m

Ref. [39]
Linear

N = 7 and
35

Isotropic Not
specified

f 0 = 10 GHz
∆fn = 4 KHz 15–45 km θ0 = 20◦ 30 km

θ0 = 0◦ 30 km No PSO
algorithm λ/2

Ref. [40]
Linear
N = 23,

101
Isotropic Not

specified

f 0 = 3 GHz
∆fn = Not
specified

0–20 km θ0 = 0◦ 10 km No

Artificial
bee colony

(ABC)
optimizer

λ/2

Ref. [23] Linear
N = 8 Isotropic Hamming f 0 = 10 GHz

∆fn = 10 KHz 15–45 km θ0 = 0◦ 30 km No PSO
Algorithm λ/2

Ref. [22] Linear
N = 5 Isotropic Hamming

f 0 = 1 GHz
∆fn = 1 kHz,

10 MHz,
200 MHz

0–100 km θ0 = 0◦ 60 km No CLEAN
algorithm λ/2

This
work

Non-
uniform

linear
N= 6, 9
and 12

Elliptic
patch Random f0 = 3.5 GHz 0–50 km θ0 = 0◦ 25 km Yes PSO Non-

uniform

5. Conclusions

This paper has presented virtual antenna arrays with frequency diversity in the context
of 5G communications at 3.5 GHz. We studied the performance of virtual arrays with
random frequency offsets and non-uniform locations of the nodes. This combination of
variables obtained better results in the radiation patterns than the traditional schemes of
Hamming distributions with uniform antenna locations. The results demonstrate that these
arrays can form a radar system with a FANET to detect objects from the sky. Future works
will focus on validating the findings of this study with experimental tests.
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