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Abstract: This study aimed to develop an artificial neural network (ANN) model for predicting the
yield strength of a weld metal composed of austenitic stainless steel and compare its performance with
that of conventional multiple regression and machine learning models. The input parameters included
the chemical composition of the nine effective elements (C, Si, Mn, P, S, Ni, Cr, Mo, and Cu) and the
heat input per unit length. The ANN model (comprising five nodes in one hidden layer), which was
constructed and trained using 60 data points, yielded an R2 value of 0.94 and a mean average percent
error (MAPE) of 2.29%. During model verification, the ANN model exhibited superior prediction
performance compared with the multiple regression and machine learning models, achieving an
R2 value of 0.8644 and a MAPE of 3.06%. Consequently, the ANN model effectively predicted the
variation in the yield strength and microstructure resulting from the thermal history and dilution
during the welding of 3.5–9% Ni steels with stainless steel-based welding consumables. Furthermore,
the application of the prediction model was demonstrated in the design of welding consumables and
heat input for 9% Ni steel.

Keywords: artificial neural network; yield strength; weld metal; austenitic stainless steel; dilution;
microstructure

1. Introduction

Considering that the mechanical properties of weld metal are influenced by both
its chemical composition and thermal history during welding, exploring the correlations
among these factors has garnered significant interest and led to numerous studies in this
area. Although the conventional multiple regression analysis (MRA) has historically been
utilized to predict the mechanical properties of various materials based on their chemical
compositions [1–3], recent research is increasingly focusing on applying artificial intelli-
gence techniques, including machine learning (ML) algorithms and neural networks [4–7].
Generally, artificial neural networks (ANNs) have demonstrated a superior prediction
performance compared to MRAs [8–11]. Moreover, ANNs have proven to be more effective
in handling non-linear problems with larger datasets [12,13]. However, in addition to an
increasing need to leverage the continuously evolving artificial intelligence technology,
research on predicting the mechanical properties of weld metals has been relatively limited
because the mechanical properties of the weld metal are influenced by the chemical compo-
sition and by the thermal history, such as the welding heat input per unit length, making
them more challenging to predict compared to the base metal properties.

Among the different types of steel, austenitic stainless steel is notable for its excellent
corrosion resistance, formability, and weldability [14–18]. Owing to these properties,
austenitic stainless steel is widely used in the energy industry for applications in power
plants, petrochemical processes, and the transportation of liquefied natural gas. Welding
consumables based on austenitic stainless steel can be utilized for welding austenitic
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stainless steel, as well as 9% Ni steel and high-manganese steel, to reduce welding material
costs, while also ensuring weldability [19–25].

When austenitic welding consumables are used with various base metals, the chemical
composition of the weld metal is affected by the degree of dilution between the base
metal and the welding consumables [26,27]. Consequently, there is a growing demand for
predicting the mechanical properties of weld metals based on their chemical composition
and applied welding heat input per unit length, which varies with the use of austenitic
stainless steel-based welding consumables through dilution with various base metals.

Recent research has led to the development of models to predict the yield strength of
austenitic stainless steel-based weld metals using MRA and ML [28,29]. Interestingly, the
accuracy of the model developed using conventional MRA was slightly higher than that of
the ML model. To overcome these limitations of ML, it is necessary to utilize ANNs, which
are already reported to have a better prediction performance than MRA. While mechanical
property prediction using ANNs for various steel-based metals [30–36] is being actively
researched, ANNs have been applied in non-ferrous weld metals and special processes
such as friction stir welding (FSW), but there has been comparatively less exploration in
steel weld metals [37–39].

Therefore, this study aimed to develop ANN models for predicting the yield strength
of weld metals based on austenitic stainless steel and to evaluate their performance, par-
ticularly focusing on predicting the yield strength based on the chemical composition of
the weld metal and the welding heat input per unit length. A total of 200 data points were
used for the model training and verification. A dataset consisting of 160 data points with
various chemical compositions and heat inputs was used to train the prediction models,
while the additional 40 data points were used for model verification. To evaluate the yield
strength prediction model using the ANN, its accuracy was compared and analyzed against
prediction models developed using MRA and ML with the same dataset.

2. Materials and Methods
2.1. Data Preparation

The training dataset, extracted from evaluation reports obtained from welding con-
sumable manufacturers and shipyards, consisted of 160 data points. Various base metals,
including high-manganese steel, stainless steel, and 9% nickel steel, were welded using
an austenitic stainless-steel filler metal. The input parameters of the model include the
chemical composition of the weld metal, including nine alloying elements (C, Si, Mn, P, S,
Ni, Cr, Mo, and Cu), and the welding heat input per unit length. The output parameter of
the model was the yield strength of the weld metal. The statistical characteristics of the
collected data are summarized in Table 1.

Table 1. Descriptive statistics of the dataset for model training.

No. Descriptive
Statistics

Variable (Unit)

C
(wt%)

Si
(wt%)

Mn
(wt%)

P
(wt%)

S
(wt%)

Ni
(wt%)

Cr
(wt%)

Mo
(wt%)

Cu
(wt%)

Heat Input
(kJ/cm)

Yield Strength
(MPa)

1 Min. 0.014 0.15 1.01 0.001 0.001 0.014 1.21 0 0 9 335
2 Max. 0.45 0.99 22 0.026 0.015 20.4 25.4 3.66 0.3 37.4 565
3 Mean 0.18 0.49 4.48 0.013 0.005 12.5 15.5 1.92 0.07 14.8 451
4 Std. Dev 0.12 0.17 3.63 0.004 0.003 4.0 4.96 1.25 0.05 5.22 51.11

Additional data points for austenitic stainless-steel weld metals were collected from
published papers [40–44] and mill test certificates from shipyards to validate the prediction
models developed in this study, with 40 data points used for the model verification,
accounting for 25% of the training data points. The ranges of each parameter in the
validation dataset are listed in Table 2.
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Table 2. Descriptive statistics of the dataset for the verification test.

No. Descriptive
Statistics

Variable (Unit)

C
(wt%)

Si
(wt%)

Mn
(wt%)

P
(wt%)

S
(wt%)

Ni
(wt%)

Cr
(wt%)

Mo
(wt%)

Cu
(wt%)

Heat Input
(kJ/cm)

Yield Strength
(MPa)

1 Min. 0.02 0.3 0.61 0.011 0.001 7.85 14.99 0.02 0 7 327

2 Max. 0.19 0.96 5.75 0.043 0.032 18.04 21.06 3.41 0.29 28 510

3 Mean 0.07 0.62 2.52 0.020 0.01 10.74 17.55 1.48 0.1 15.1 423

4 Std. Dev 0.05 0.16 1.72 0.009 0.007 2.6 1.75 1.15 0.07 5.38 40.71

2.2. Multiple Regression Analysis (MRA)

A linear multiple-regression model was constructed using the training dataset. Pre-
vious studies [28,29] demonstrated the excellent predictive performance of multiple re-
gression models in estimating the yield strength from the chemical composition and heat
input per unit length. Notably, the contents of the four major elements (C, Cr, Mo, and Cu)
and heat input per unit length were identified as significant parameters in prior multiple
regression models and were thus selected as input parameters for the multiple regression
model in this study. Additionally, a linear regression model incorporating all elemental
contents was included in the ML models, which are explained in the following section.

2.3. Prediction Models Based on Machine Learning (ML)

The prediction models were developed using the regression learner application in
MATLAB (R2022a edition). Several ML algorithms, including linear regression, decision
tree, support vector machine (SVM), regression tree ensemble, and Gaussian process
regression (GPR) [45,46], were utilized to establish yield-strength prediction models. The
input parameters for the model consisted of the chemical composition of the weld metal
and heat input.

The linear regression model predicts the value of a dependent variable by assuming
a linear relationship between the independent and dependent variables. Decision-tree
algorithms involve multistage decision-making processes comprising complex decision
trees from simple decisions to predict the final dependent variable.

The regression tree ensemble technique combines multiple decision trees to create
a robust model using boosting and bagging methods. SVM was originally designed for
binary classification problems but can be adapted for regression tasks to find a hyperplane
that maximally separates data points. Various SVM models (linear, quadratic, cubic, fine,
medium, and coarse Gaussian SVM) were employed for training. GPR utilizes Gaus-
sian processes for regression modelling, employing the squared exponential, Matern 5/2,
exponential, and rational quadratic kernels.

To evaluate the performance of the developed model, a comparative assessment
was conducted using various predictive models to enable a comprehensive analysis of
their effectiveness.

2.4. Prediction Models Based on Artificial Neural Network (ANN)

The prediction models were developed using the neural net fitting application in MAT-
LAB (R2022a edition). ANN modelling involves simultaneous training and verification.
The training utilized the same 160 data points for MRA and ML, whereas the validation
employed the same 40 data points. To ensure data separation, the “divideind” function was
employed to designate indices from 1 to 160 for training and from 161 to 200 for verification.

A shallow neural network (SNN) with one hidden layer, and an ANN with multiple
hidden layers were constructed. The input layer comprised 10 nodes, representing 10 input
parameters, while the output layer consisted of 1 node. In the SNN structure, only one
hidden layer was used; however, the number of nodes in the hidden layer varied from
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2 to 20. In the ANN structure, the hidden layer varies in the node count from 2 to 20, as
depicted in Figure 1.
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Figure 1. ANN structure as a diagram.

3. Results
3.1. Multiple Regression Analysis Results

A MRA was conducted using five input parameters: C, Cr, Mo, Cu, and heat input
(HI), as identified in previous studies [28,29]. The regression results are expressed in
Equation (1).

Yield Strength (MPa) = 314 + 352C + 2.96Cr + 24.97Mo + 472Cu − 3.37Heat Input (HI) (1)

where the chemical composition is given in wt%, and the heat input is in kJ/cm. The
adjusted coefficient of determination (R2) for Equation (1) is 0.9226.

3.2. Machine Learning Models

Figure 2 illustrates the R2 values of the prediction models developed using linear
regression, decision trees, SVM, and GPR. Models such as the interaction linear regression,
coarse decision tree, and cubic SVM models are not presented in Figure 2 because their
R2 values are less than 0.50. Among the models considered, six demonstrated R2 values
exceeding 0.92: linear regression, robust linear regression, linear SVM, squared exponential
GPR, Matern 5/2 GPR, and rational quadratic GPR.

For a more comprehensive evaluation of model accuracy, Table 3 summarizes the
mean absolute percentage errors (MAPEs) and R2 values for models with an R2 value of
0.90 or higher.

According to Table 3, the GPR models share an R2 value of 0.92 with linear regression,
robust linear regression, and linear SVM but exhibit the lowest MAPEs, i.e., 2.37%, indi-
cating their excellence among the ML models examined. Additionally, the GPR models
displayed identical MAPEs of 2.37%, with the predicted yield strength values differing only
by decimal places. Among these, the Matern 5/2 GPR can be considered a representative
model based on previous research findings [29]. The robust linear regression and linear
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SVM showed comparable MAPEs of 2.51%, differing insignificantly from the GPR models
by only 0.14%. Moreover, the linear regression model deviated by only 0.02% compared to
the robust linear regression and linear SVM.

Table 3. Accuracy of machine learning models.

Model MAPE (%) R2

Linear regression 2.53 0.92
Robust linear regression 2.51 0.92

Linear SVM 2.51 0.92
Squared exponential GPR 2.37 0.92

Matern 5/2 GPR 2.37 0.92
Rational quadratic GPR 2.37 0.92
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Figure 2. Prediction models using regression learner application.

Consequently, among the ML models listed in Table 3, those excluding the squared
exponential GPR and rational quadratic GPR, which share nearly identical prediction
characteristics with Matern 5/2 GPR, were selected for comparison with the MRA and
ANN models.

3.3. Artificial Neural Network (ANN) Models

Figure 3 illustrates the R2 values for the training, validation, and all datasets as
the number of nodes in the hidden layer varied from 2 to 20. As shown in Figure 3,
when the number of nodes in the hidden layer exceeded 10, the R2 value of the training
model remained high, exceeding 0.94. However, the R2 values of the validation models
consistently fell below 0.80, notably lower than when the number of nodes in the hidden
layer was 10 or fewer.

Consequently, in the range of 2–10 nodes in the hidden layer, the disparity between the
R2 values of the training and validation models was relatively small. The best performance
is observed when the number of nodes is five; the R2 values for the training and validation
models are 0.94 and 0.86, respectively. To denote each model by considering a varying
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number of nodes in the hidden layer, the ANN model can be represented as follows:
[number of nodes in the input layer = 10] × [number of nodes in the hidden layer = 2–20]
× [number of nodes in the output layer = 1]. Therefore, when the number of nodes in the
hidden layer is five, this can be succinctly expressed as 10 × 5 × 1.
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Figure 3. R2 values for ANN prediction models.

Among the training models developed using the 160 datasets, Figure 4 presents a
comparison of the MAPEs and R2 values of the MRA, ML, and ANN (10 × 5 × 1). The
ANN model exhibited the highest R2 value (0.94) and the lowest MAPE (2.29%), confirming
its accuracy as the best prediction model compared to other models.
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A residual analysis was conducted for the models depicted in Figure 4 to evaluate
the tendency of the model residuals. Figure 5 illustrates the residuals from the prediction
models, revealing a random distribution without any discernible trends in the measured
yield strength. The yield strength was determined through tensile testing, using round bar
specimens (Figure 6), conducted in accordance with ASTM E8-16: Standard Test Methods
for Tension Testing of Metallic Materials [47].
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3.4. Model Verification Results Using Additional Data Points

The MRA, ML, and ANN models developed in this study were validated using
additional data points not utilized during the training step. Table 4 summarizes the MAPE
and R2 values to ensure the accuracy of the models during the validation process. The
verification results of the previously developed prediction models further confirmed that
the ANN model with a 10 × 5 × 1 structure exhibited the lowest MAPE of 3.06% and
the highest R2 value of 0.8644 compared to other models. While the Matern 5/2 GPR
model exhibited the lowest MAPE among the ML models during the model training step,
it recorded the highest MAPE, i.e., 4.78%, and the lowest R2 value, i.e., 0.6097, during
the model-verification step. Interestingly, the multiple regression model, which had a
higher mean absolute MAPE than the ML models during model training, demonstrated
a higher prediction accuracy during model validation. Figure 7 compares the measured
yield strength of the additional dataset with that predicted by the developed models.

Table 4. Accuracy of models for model validation.

Model MAPE (%) R2

Multiple
regression—Equation (1) 3.25 0.8227

Linear regression 4.02 0.7330
Robust linear regression 3.88 0.7484

Linear SVM 3.81 0.7483
Matern 5/2 GPR 4.78 0.6097

ANN—10 × 5 × 1 3.06 0.8644

Analyzing the correlation between the measured and predicted yield strengths based
on Figure 7, we see that the Matern 5/2 GPR model exhibits the lowest R2 value, indicating
relatively large discrepancies between the measured and predicted values at certain data
points, reaching up to 95 MPa. The coefficient of determination and MAPE of machine
learning-based prediction models may be influenced by the attributes of the model and
the quantity of data points. The ANN model displayed a maximum difference of 35 MPa
between the measured yield strength and the predicted value, the lowest among the
compared models. Moreover, the ANN model has relatively fewer data points that deviate
significantly from the trend line of the graph compared to the other models, thus ensuring
the highest accuracy.

These results confirm that the ANN models overcame the predictive performance
limitations observed in the models developed through MRA and ML.
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4. Application
4.1. Development of Deep Learning-Based Prediction Model

The ANN model developed in this study was a shallow neural network with one
hidden layer. Attempts have been made to develop better prediction models through deep
learning-based models using deep neural networks with two or more hidden layers to
improve predictive performance. In shallow neural networks, when the number of nodes
in the hidden layer exceeded 10, the R2 values of the validation models were consistently
below 0.80. Consequently, when developing a deep-learning model with two hidden layers,
the number of nodes in each hidden layer ranged from 2 to 10.

Figure 8 illustrates the R2 values for the training, validation, and all datasets of the
deep learning-based prediction models with two hidden layers. Similar to the method used
to denote shallow neural network models, a deep neural network model with two hidden
layers is expressed as [number of nodes in the input layer = 10] × [number of nodes in
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the first hidden layer = 2–10] × [number of nodes in the second hidden layer = 2–10] ×
[number of nodes in the output layer = 1]. Figure 8 confirms that the deep-learning models
with the highest R2 values for the training models were 10 × 3 × 3 × 1 and 10 × 5 × 5 × 1,
with three or five nodes in the hidden layers. Considering the validation results, the R2

value of the 10 × 5 × 5 × 1 model was higher than that of the 10 × 3 × 3 × 1 model,
indicating that the 10 × 5 × 5 × 1 model was the best among the deep-learning models
with two hidden layers.
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Figure 8. R2 values for deep-learning prediction models.

Both the shallow neural network with one hidden layer and the deep neural network
with two hidden layers achieved high prediction accuracy when the number of nodes was
set to five. Consequently, the number of nodes in the hidden layers was fixed at five, and
the R2 values were obtained by increasing the number of hidden layers from one to five, as
shown in Figure 9.

When the number of hidden layers was set to 1, the R2 value of the training model
was 0.94. When the number of hidden layers increased to five, the R2 value remained
constant at 0.94. However, with four hidden layers, the R2 value reached its peak at 0.96.
Conversely, during model validation, the 10 × 5 × 1 model with one hidden layer exhibited
the highest R2 value, i.e., 0.86. As the number of hidden layers increases, the R2 value
progressively decreases.

Therefore, despite simultaneously considering changes in the number of nodes and
adding two or more hidden layers, the prediction accuracy of the validation model tends to
decrease because of overfitting during the training process [48,49]. In this study, the yield
strength prediction model for weld metals based on austenitic stainless steel confirmed that
the artificial neural network model with a shallow neural network structure of 10 × 5 × 1
was the best.
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Figure 9. R2 values of deep-learning models with five nodes in hidden layers.

4.2. Dilution and Yield Strength of Stainless Steel-Based Weld Metal in 3.5–9% Ni Steels

For a specific combination of welding consumables and base metals, the degree of
chemical heterogeneity within the weld is influenced by the dilution, which significantly
affects the metallurgical microstructure and mechanical properties of steel welds [50–54].

Considering the chemical composition of the final weld metal resulting from the
amalgamation of the base metal and welding consumable, the dilution rate can be expressed
by the following equation [28,55]:

D (%) =
Cw − Cwc

Cb − Cwc
× 100 (2)

where D represents the dilution rate; and Cw, Cwc, and Cb denote the elemental compositions
of the weld metal, welding consumables, and base metal, respectively.

The ANN-based yield strength prediction model of the weld metal developed in this
study can predict the variation in the yield strength of the weld metal, considering dilution
when welding 3.5–9% Ni steel, primarily used for low-temperature environments [56–60],
using stainless steel-based welding consumables.

To predict the change in the yield strength, four types of base materials (3.5% Ni, 5%
Ni, 9% Ni steel, and high-Mn steel) and one fully austenitic stainless steel-based welding
consumable were employed, as outlined in Table 5. High-Mn steel was included for
comparison with the predicted results for 3.5–9% Ni steel.
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Table 5. Chemical composition of base metals and welding consumables (wt%).

C Si Mn P S Ni Cr Mo Cu

Base metal—3.5% Ni steel 0.097 0.287 0.635 0.005 0.0007 3.49 0.03 0.06 0.03

Base metal—5% Ni steel 0.05 0.2 0.74 0.001 0.0005 5.08 0.02 0.04 0.02

Base metal—9% Ni steel 0.054 0.235 0.537 0.003 0.0008 9.24 0.01 0.05 0.01

Base metal—high-Mn steel 0.42 0.27 23.84 0.014 0.002 0.027 3.16 0.01 0.43

Welding consumable—fully austenitic 0.19 0.3 1.05 0.011 0.004 18.04 16.86 3.33 0

The predicted yield strength with respect to the change in chemical composition
owing to dilution is shown in Figure 10. Considering that dilution varies depending on the
welding position, current, speed, and heat input, the heat input per unit length was fixed at
10 kJ/cm.
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Figure 10. Predicted yield strength according to dilution and chemical composition changes by
base metals.

As shown in Figure 10, a similar trend was observed for the 3.5%, 5%, and 9% Ni
steels, where the predicted yield strength decreased as the dilution increased. However, the
opposite trend was noted for high-Mn steel, where the predicted yield strength increased
as the dilution increased. The main reason for these results is that, in the case of 3.5–9% Ni
steel, the C, Cr, and Mo contents in the fully austenitic welding consumable are relatively
high compared to the base metals used in this study. Conversely, in the case of high-Mn
steel, the primary reason is that the C and Cu contents of the base metal are higher than
those of the filler consumables.

Based on the minimum yield strength requirement of 9% Ni steel, 400 MPa [19], the
predicted yield strengths are summarized in Table 6 to analyze the limiting dilution at a
fixed heat input of 10 kJ/cm for 9% Ni steel, 3.5% Ni, and 5% Ni. According to Table 6,
the predicted yield strength was not expected to satisfy 400 MPa for 3.5% Ni steel in the
45–50% dilution range and 5% Ni steel and 9% Ni steel in the 40–45% dilution range.
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Table 6. Results of predicting yield strength according to the increase in dilution for 3.5–9% Ni steels.

Dilution
(%)

Predicted Yield Strength (MPa) Remark

3.5% Ni 5% Ni 9% Ni Base Metal

0 477 477 477
5 468 467 467
10 459 457 457
15 450 447 447
20 441 437 438
25 433 428 428
30 424 419 418
35 417 410 409
40 410 402 400
45 403 395 392
50 397 388 384

While managing with a dilution of 40% or less may be feasible, given the relatively low
fixed heat input of 10 kJ/cm, the expected yield strength with increasing heat input for 9%
Ni steel is summarized in Table 7. Among the 3.5–9% Ni steels, the 9% Ni steel, predomi-
nantly utilized in LNG storage tanks and fuel tanks for LNG-powered ships [19,20,61], was
selected. As the heat input increased, the critical dilution required to satisfy the minimum
yield strength of 400 MPa decreased. Notably, when the heat input reaches 30 kJ/cm and
the dilution is 5%, the predicted yield strength is 399 MPa, which falls short of the mini-
mum requirement of 400 MPa. Hence, to accommodate higher maximum heat input levels
while considering dilution, reassessing the composition adjustment of the fully austenitic
stainless steel-based welding consumables employed in this study is imperative.

Table 7. Yield strength prediction according to increase in heat input and dilution for 9% Ni steel.

Dilution
(%)

Predicted Yield Strength (MPa) Remark

10 15 20 25 30 Heat Input (kJ/cm)

0 477 455 440 424 407
5 467 445 429 415 399

10 457 435 417 405 390
15 447 426 407 394 380
20 438 416 397 383 371
25 428 406 387 372 362
30 418 397 377 362 352
35 409 388 368 352 342
40 400 379 359 343 331

4.3. Selection of Stainless Steel-Based Welding Consumable to Expand the Range of Heat Input and
Dilution Applicable to 9% Ni Steel

To prevent the decrease in yield strength caused by dilution when using an austenitic
stainless steel-based welding consumable on 9% Ni steel, the C and Cu contents in the
original fully austenitic welding consumable were increased, and the predicted yield
strengths are shown in Table 8. The C and Cu contents were incrementally increased by
0.1 wt% and 0.05 wt%, respectively, until the C and Cu contents reached 0.45 wt% and
0.3 wt%, respectively, as listed as the maximum contents in Table 1. To check whether
the original fully austenitic microstructure was maintained through chemical composition
adjustment and dilution, the Cr and Ni equivalents of the welding consumables in Table 8
are summarized in a Schaeffler diagram, as shown in Figure 11. The original fully austenitic
welding consumable resulted in a fully austenitic weld metal microstructure with a dilution
of approximately 50%. The modified welding consumables have an increased Ni equivalent
owing to the increase in the C content; therefore, the modified welding consumables are
advantageous for maintaining a fully austenitic microstructure in the weld metal. In



Appl. Sci. 2024, 14, 4224 14 of 18

particular, in modified Case 3, the fully austenitic microstructure was maintained up to a
dilution of approximately 60%.

Table 8. Chemical composition of base metal and modified welding consumables (wt%).

C Si Mn P S Ni Cr Mo Cu

Base metal—9% Ni steel 0.054 0.235 0.537 0.003 0.0008 9.24 0.01 0.05 0.01

Welding consumable—fully austenitic 0.19 0.3 1.05 0.011 0.004 18.04 16.86 3.33 0

Welding consumable—modified fully
austenitic (Case 1)- 0.30 0.3 1.05 0.011 0.004 18.04 16.86 3.33 0.1

Welding consumable—modified fully
austenitic (Case 2) 0.40 0.3 1.05 0.011 0.004 18.04 16.86 3.33 0.2

Welding consumable—modified fully
austenitic (Case 3) 0.45 0.3 1.05 0.011 0.004 18.04 16.86 3.33 0.3
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Considering that modified welding consumable Case 3 maintained a fully austenitic
microstructure up to a dilution of 60%, the previously developed ANN model was used for
each welding consumable at heat inputs of 30, 40, and 50 kJ/cm up to a dilution of 60% (the
original fully austenitic welding consumable had a predicted yield strength of only 407 MPa,
even without any dilution, at a heat input of 30 kJ/cm; therefore, only those data were
included). The yield strengths predicted by the model are listed in Table 9. By increasing
the C and Cu contents, the dilution and heat input ranges that can secure a yield strength of
at least 400 MPa can be expanded. In particular, the modified welding consumables (Case
3) could predict a yield strength of 409 MPa, which satisfies a minimum of 400 MPa at a
heat input of 50 kJ/cm and a dilution of 40%. Therefore, various applications are feasible
with the ANN model, which has a better prediction performance than conventional MRA
and ML.
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Table 9. Yield strength prediction results according to increased heat input and dilution of modified
welding consumables for 9% Ni steel.

Dilution
(%)

Predicted Yield Strength (MPa) Remark

Fully
Austenitic Modified Case 1 Modified Case 2 Modified Case 3 Welding

Consumable

30 30 40 50 30 40 50 30 40 50 Heat Input
(kJ/cm)

0 407 490 456 415 569 528 494 625 587 554
5 399 487 445 404 554 521 479 609 577 536

10 390 476 434 393 539 506 464 592 560 518
15 380 465 423 382 524 491 449 574 542 500
20 371 453 412 371 517 475 433 565 524 482
25 362 442 401 361 502 460 418 547 505 463
30 352 431 390 350 487 445 403 529 487 445
35 342 420 379 340 471 430 388 511 469 427
40 331 409 368 329 456 414 374 492 450 409
45 321 390 358 319 441 400 359 474 432 391
50 312 373 342 309 421 385 345 456 414 374
55 304 362 331 295 404 366 331 432 396 356
60 296 351 313 285 382 351 313 414 374 339

5. Conclusions

In this study, an artificial neural network (ANN)-based model was developed to
predict the yield strength of a weld metal using austenitic stainless steel-based welding
materials. The following conclusions were drawn:

1. Among the training models developed using multiple regression analysis (MRA),
machine learning (ML), and an ANN with 160 datasets, the ANN (10 × 5 × 1) model
with five nodes in one hidden layer emerged as the best prediction model, exhibiting
the highest R2 value (0.94) and the lowest MAPE (2.29%).

2. In the model verification, the ANN (10 × 5 × 1) model also demonstrated a superior
prediction performance compared with the MRA and ML models, achieving the high-
est R2 value, i.e., 0.8644, and the lowest MAPE, i.e., 3.06%. These results confirm that
ANN models minimize overfitting and enhance prediction performance compared to
the MRA and ML models.

3. Despite simultaneously considering changes in the number of nodes and adding
two or more hidden layers, the prediction accuracy of the validation model tends
to decrease because of overfitting during the training process. The yield strength
prediction model for weld metals based on austenitic stainless steel confirmed that the
artificial neural network model with a shallow neural network structure of 10 × 5 × 1
was the most effective.

The ANN model developed in this study can effectively forecast variations in the yield
strength and microstructure resulting from the thermal history and dilution during the
welding of 3.5–9% Ni steels with stainless steel-based welding consumables. The prediction
model optimized the chemical composition of austenitic stainless steel-based welding
consumables in welding 9% Ni steel.

Hence, this study lays the groundwork for the development of a prediction model
leveraging not only machine learning (ML) but also the multiple regression analysis (MRA)
for predicting the yield strength of stainless-steel welds using artificial intelligence, such as
artificial neural networks (ANNs). Unlike MRA, which struggles with non-linear problems
as the dataset grows, ANN excels in solving such complexities, thus enabling the creation
of more accurate prediction models. With the acquisition of reliable and comprehensive
data across various materials, this approach holds promise for predicting the physical
properties of diverse welds.
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