A Polarization-Based Method for Maritime Image Dehazing
Abstract
:1. Introduction
2. Related Work
2.1. The Physical Model of Atmospheric Scattering
2.2. Polarimetric Dehazing Method Based on Stokes Vector
3. Experiments and Proposed Method
3.1. Experimental Environment
3.2. Estimation of
3.3. Separate Seawater Area
4. Results and Discussion
4.1. Subjective Evaluation
4.2. Objective Evaluation
4.3. Limitations of the Proposed Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S. Recent observations and modeling study about sea fog over the Yellow Sea and East China Sea. J. Ocean Univ. China 2012, 11, 465–472. [Google Scholar] [CrossRef]
- Kim, C.K.; Yum, S.S. Local meteorological and synoptic characteristics of fogs formed over Incheon international airport in the west coast of Korea. Adv. Atmos. Sci. 2010, 27, 761–776. [Google Scholar] [CrossRef]
- Ko, W.H.; Kent, M.G.; Schiavon, S.; Levitt, B.; Betti, G. A window view quality assessment framework. Leukos 2022, 18, 268–293. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Liang, J.; Ren, L.; Qu, E.; Hu, B.; Wang, Y. Method for enhancing visibility of hazy images based on polarimetric imaging. Photonics Res. 2014, 2, 38–44. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Li, H.; Wang, B.; Wu, Y.; Zhang, Z. Visual Image Dehazing Using Polarimetric Atmospheric Light Estimation. Appl. Sci. 2023, 13, 10909. [Google Scholar] [CrossRef]
- Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Polarization-based vision through haze. Appl. Opt. 2003, 42, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Dong, Y.; Ren, W.; Pan, J.; Gao, C.; Sang, N.; Yang, M.-H. Semi-supervised image dehazing. IEEE Trans. Image Process. 2019, 29, 2766–2779. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature fusion attention network for single image dehazing. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 11908–11915. [Google Scholar]
- Zhang, W.; Liang, J.; Wang, G.; Zhang, H.; Fu, S. Review of passive polarimetric dehazing methods. Opt. Eng. 2021, 60, 030901. [Google Scholar] [CrossRef]
- Liang, J.; Ju, H.; Ren, L.; Yang, L.; Liang, R. Generalized polarimetric dehazing method based on low-pass filtering in frequency domain. Sensors 2020, 20, 1729. [Google Scholar] [CrossRef]
- Liang, J.; Ren, L.; Liang, R. Low-pass filtering based polarimetric dehazing method for dense haze removal. Opt. Express 2021, 29, 28178–28189. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Ren, L.; Ju, H.; Zhang, W.; Qu, E. Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization. Opt. Express 2015, 23, 26146–26157. [Google Scholar] [CrossRef] [PubMed]
- Shwartz, S.; Namer, E.; Schechner, Y.Y. Blind haze separation. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; pp. 1984–1991. [Google Scholar]
- Namer, E.; Shwartz, S.; Schechner, Y.Y. Skyless polarimetric calibration and visibility enhancement. Opt. Express 2009, 17, 472–493. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Ren, L.-Y.; Ju, H.-J.; Qu, E.-S.; Wang, Y.-L. Visibility enhancement of hazy images based on a universal polarimetric imaging method. J. Appl. Phys. 2014, 116, 173107. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, J.; Ju, H.; Ren, L.; Qu, E.; Wu, Z. Study of visibility enhancement of hazy images based on dark channel prior in polarimetric imaging. Optik 2017, 130, 123–130. [Google Scholar] [CrossRef]
- Guo, T.; Li, N.; Zhang, C. Improved dark channel prior single image defogging. In Proceedings of the 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; pp. 7414–7419. [Google Scholar]
- Ke, K.; Zhang, C.; Wu, M.; Sun, Y. Improved defogging algorithm for sea surface images based on dark channel prior theory. Opt. Eng. 2021, 60, 033104. [Google Scholar] [CrossRef]
- Namer, E.; Schechner, Y.Y. Advanced visibility improvement based on polarization filtered images. In Proceedings of the Polarization Science and Remote Sensing II, San Diego, CA, USA, 31 July–4 August 2005; pp. 36–45. [Google Scholar]
- Qu, Y.; Zou, Z. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature. Opt. Express 2017, 25, 25004–25022. [Google Scholar] [CrossRef]
- McCartney, E.J. Optics of the Atmosphere: Scattering by Molecules and Particles; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Talmage, D.; Curran, P. Remote sensing using partially polarized light. Int. J. Remote Sens. 1986, 7, 47–64. [Google Scholar] [CrossRef]
- Tonizzo, A.; Ibrahim, A.; Zhou, J.; Gilerson, A.; Twardowski, M.; Gross, B.; Moshary, F.; Ahmed, S. Estimation of the polarized water leaving radiance from above water measurements. In Proceedings of the Ocean Sensing and Monitoring II, Orlando, FL, USA, 5–6 April 2010; pp. 17–26. [Google Scholar]
- Schechner, Y.Y.; Nayar, S.K. Generalized mosaicing: Polarization panorama. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 631–636. [Google Scholar] [CrossRef]
- Schechner, Y.Y.; Shamir, J.; Kiryati, N. Polarization and statistical analysis of scenes containing a semireflector. JOSA A 2000, 17, 276–284. [Google Scholar] [CrossRef]
- Ostu, N. A threshold selection method from gray-level histograms. IEEE Trans. SMC 1979, 9, 62. [Google Scholar]
- Najman, L.; Talbot, H. Mathematical Morphology: From Theory to Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Petro, A.B.; Sbert, C.; Morel, J.-M. Multiscale retinex. Image Process. Line 2014, 4, 71–88. [Google Scholar] [CrossRef]
- Meng, G.; Wang, Y.; Duan, J.; Xiang, S.; Pan, C. Efficient image dehazing with boundary constraint and contextual regularization. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 617–624. [Google Scholar]
Method | Entropy | Average Gradient | Standard Deviation | |
---|---|---|---|---|
Image (1) | DCP Retinex | 15.4769 7.6614 | 4.5305 2.4876 | 30.5919 6.2811 |
BCCR | 15.7931 | 3.2304 | 36.3609 | |
Proposed | 17.3816 | 4.5755 | 45.7123 | |
Image (2) | DCP Retinex | 16.5102 6.9300 | 4.5126 1.8675 | 38.9366 5.1372 |
BCCR Proposed | 16.0234 18.1069 | 4.5028 4.4429 | 35.4737 58.2767 | |
Image (3) | DCP Retinex | 16.8367 6.7863 | 4.5385 1.9913 | 42.4886 4.9608 |
BCCR Proposed | 16.7242 17.9113 | 3.8062 4.3091 | 48.8653 53.5727 |
S0 | DCP | BCCR | Proposed | |
---|---|---|---|---|
a-1 | 0.7430 | 1.0000 | 0.6602 | 1.0000 |
a-2 | 0.3743 | 0.6354 | 0.3116 | 0.8559 |
b-3 | 0.3916 | 0.4751 | 0.3242 | 0.6778 |
b-4 | 0.2465 | 0.4188 | 0.1957 | 0.5854 |
DCP | Retinex | BCCR | Proposed | |
---|---|---|---|---|
Run time (sec) | 0.4370 | 11.8328 | 5.0523 | 10.3335 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Zhang, Z.; Zhang, S.; Wang, Z.; Liu, S. A Polarization-Based Method for Maritime Image Dehazing. Appl. Sci. 2024, 14, 4234. https://doi.org/10.3390/app14104234
Ma R, Zhang Z, Zhang S, Wang Z, Liu S. A Polarization-Based Method for Maritime Image Dehazing. Applied Sciences. 2024; 14(10):4234. https://doi.org/10.3390/app14104234
Chicago/Turabian StyleMa, Rui, Zhenduo Zhang, Shuolin Zhang, Zhen Wang, and Shuai Liu. 2024. "A Polarization-Based Method for Maritime Image Dehazing" Applied Sciences 14, no. 10: 4234. https://doi.org/10.3390/app14104234
APA StyleMa, R., Zhang, Z., Zhang, S., Wang, Z., & Liu, S. (2024). A Polarization-Based Method for Maritime Image Dehazing. Applied Sciences, 14(10), 4234. https://doi.org/10.3390/app14104234