Micro- and Nano-Pollutants from Tires and Car Brakes Generated in the Winter Season in the Poznan City Urban Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples for Testing
2.3. Determining the Concentrations of Tire Wear Particles
2.4. Methods
3. Results and Discussion
3.1. Microscopic Analysis
3.1.1. Optical Microscopic Analysis
3.1.2. SEM-EDS Analysis
3.2. Determination of Particle Distribution
3.3. Thermogravimetric Analysis (TGA)
3.4. Spectroscopic Analysis
3.4.1. NMR Spectroscopy
3.4.2. FT-IR Spectroscopy
3.4.3. XRD Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and Road Wear Particles (TRWP)—A Review of Generation, Properties, Emissions, Human Health Risk, Ecotoxicity, and Fate in the Environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef] [PubMed]
- Milani, M.; Pucillo, F.P.; Ballerini, M.; Camatini, M.; Gualtieri, M.; Di Martino, S.F. First Evidence of Tyre Debris Characterization at the Nanoscale by Focused Ion Beam. Mater. Charact. 2004, 52, 283–288. [Google Scholar] [CrossRef]
- Sarkissian, G. The Analysis of Tire Rubber Traces Collected After Braking Incidents Using Pyrolysis-Gas Chromatography/Mass Spectrometry. J. Forensic Sci. 2007, 52, 1050–1056. [Google Scholar] [CrossRef]
- De Oliveira, T.; Muresan, B.; Ricordel, S.; Lumière, L.; Truong, X.-T.; Poirier, L.; Gaspéri, J. Realistic Assessment of Tire and Road Wear Particle Emissions and Their Influencing Factors on Different Types of Roads. J. Hazard. Mater. 2024, 465, 133301. [Google Scholar] [CrossRef] [PubMed]
- Stalnaker, D.O.; Turner, J.L.; Parekh, D.; Whittle, B.; Norton, R. Indoor Simulation of Tire Wear: Some Case Studies. Tire Sci. Technol. 1996, 24, 94–118. [Google Scholar] [CrossRef]
- Wik, A.; Dave, G. Occurrence and Effects of Tire Wear Particles in the Environment—A Critical Review and an Initial Risk Assessment. Environ. Pollut. 2009, 157, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Panko, J.M.; Chu, J.; Kreider, M.L.; Unice, K.M. Measurement of Airborne Concentrations of Tire and Road Wear Particles in Urban and Rural Areas of France, Japan, and the United States. Atmos. Environ. 2013, 72, 192–199. [Google Scholar] [CrossRef]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire Wear Particles in the Aquatic Environment—A Review on Generation, Analysis, Occurrence, Fate and Effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef]
- Hays, M.D.; Cho, S.-H.; Baldauf, R.; Schauer, J.J.; Shafer, M.M. Particle Size Distributions of Metal and Non-Metal Elements in an Urban Near-Highway Environment. Atmos. Environ. 2011, 45, 925–934. [Google Scholar] [CrossRef]
- Wi, E.; Park, E.; Shin, H.; Hong, J.; Jeong, S.; Kwon, J.-T.; Lee, H.-J.; Lee, J.; Kim, Y. Overall Distribution of Tire-Wear Particles, Nanocarbon Black, and Heavy Metals in Size-Fractionated Road Dust Collected from Steel Industrial Complexes. Sci. Total Environ. 2023, 884, 163878. [Google Scholar] [CrossRef]
- Harrison, R.M.; Jones, A.M.; Gietl, J.K.; Yin, J.; Green, D.C. Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Nonexhaust Traffic Particles Derived from Atmospheric Measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef] [PubMed]
- Councell, T.B.; Duckenfield, K.U.; Landa, E.R.; Callender, E. Tire-Wear Particles as a Source of Zinc to the Environment. Environ. Sci. Technol. 2004, 38, 4206–4214. [Google Scholar] [CrossRef] [PubMed]
- Adachi, K.; Tainosho, Y. Characterization of Heavy Metal Particles Embedded in Tire Dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- ADAC. Tyre Wear Particles in the Environment. 2022. Available online: https://assets.adac.de/image/upload/v1639663105/ADAC-eV/KOR/Text/PDF/Tyre_wear_particles_in_the_environment_zkmd3a.pdf (accessed on 8 April 2024).
- Dumont, E.R.; Gao, X.; Zheng, J.; Macairan, J.; Hernandez, L.M.; Baesu, A.; Bayen, S.; Robinson, S.A.; Ghoshal, S.; Tufenkji, N. Unraveling the Toxicity of Tire Wear Contamination in Three Freshwater Species: From Chemical Mixture to Nanoparticles. J. Hazard. Mater. 2023, 453, 131402. [Google Scholar] [CrossRef] [PubMed]
- Knight, L.J.; Parker-Jurd, F.N.F.; Al-Sid-Cheikh, M.; Thompson, R.C. Tyre Wear Particles: An Abundant yet Widely Unreported Microplastic? Environ. Sci. Pollut. Res. Int. 2020, 27, 18345–18354. [Google Scholar] [CrossRef] [PubMed]
- Järlskog, I.; Jaramillo-Vogel, D.; Rausch, J.; Gustafsson, M.; Strömvall, A.-M.H.; Andersson-Sköld, Y. Concentrations of Tire Wear Microplastics and Other Traffic-Derived Non-Exhaust Particles in the Road Environment. Environ. Int. 2022, 170, 107618. [Google Scholar] [CrossRef] [PubMed]
- Bouredji, A.; Pourchez, J.; Forest, V. Biological Effects of Tire and Road Wear Particles (TRWP) Assessed by in Vitro and in Vivo Studies—A Systematic Review. Sci. Total Environ. 2023, 894, 164989. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Gao, J.; Liu, Y.; Dave, K.; Chen, J.; Federici, M.; Perricone, G. Comparative Analysis of Non-Exhaust Airborne Particles from Electric and Internal Combustion Engine Vehicles. J. Hazard. Mater. 2021, 420, 126626. [Google Scholar] [CrossRef]
- Obereigner, G.; Shorten, R.; Meier, F.; Jones, S.; Wikström, N.; Del Re, L. Active Limitation of Tire Wear and Emissions for Electrified Vehicles; SAE Technical Paper Serie; SAE International: Warrendale, PA, USA, 2021. [Google Scholar] [CrossRef]
- Rødland, E.S.; Lind, O.C.; Reid, M.J.; Heier, L.S.; Okoffo, E.D.; Rauert, C.; Thomas, K.V.; Meland, S. Occurrence of Tire and Road Wear Particles in Urban and Peri-Urban Snowbanks, and Their Potential Environmental Implications. Sci. Total Environ. 2022, 824, 153785. [Google Scholar] [CrossRef]
- Vijayan, A.; Österlund, H.; Magnusson, K.; Maršálek, J.; Viklander, M. Microplastics (MPs) in Urban Roadside Snowbanks: Quantities, Size Fractions and Dynamics of Release. Sci. Total Environ. 2022, 851, 158306. [Google Scholar] [CrossRef]
- Calarnou, L.; Traïkia, M.; Leremboure, M.; Malosse, L.; Dronet, S.; Delort, A.-M.; Besse-Hoggan, P.; Eyheraguibel, B. Assessing Biodegradation of Roadway Particles via Complementary Mass Spectrometry and NMR Analyses. Sci. Total Environ. 2023, 900, 165698. [Google Scholar] [CrossRef]
- Thomas, J.; Moosavian, S.K.; Cutright, T.J.; Pugh, C.; Soucek, M.D. Method Development for Separation and Analysis of Tire and Road Wear Particles from Roadside Soil Samples. Environ. Sci. Technol. 2022, 56, 11910–11921. [Google Scholar] [CrossRef] [PubMed]
- Rødland, E.S.; Lind, O.C.; Reid, M.J.; Heier, L.S.; Skogsberg, E.; Snilsberg, B.; Gryteselv, D.; Meland, S. Characterization of Tire and Road Wear Microplastic Particle Contamination in a Road Tunnel: From Surface to Release. J. Hazard. Mater. 2022, 435, 129032. [Google Scholar] [CrossRef]
- Kim, G.; Lee, S.-H. Characteristics of Tire Wear Particles Generated by a Tire Simulator under Various Driving Conditions. Environ. Sci. Technol. 2018, 52, 12153–12161. [Google Scholar] [CrossRef] [PubMed]
- Park, I.-Y.; Kim, H.; Lee, S.-H. Characteristics of Tire Wear Particles Generated in a Laboratory Simulation of Tire/Road Contact Conditions. J. Aerosol Sci. 2018, 124, 30–40. [Google Scholar] [CrossRef]
- Tonegawa, Y.; Sasaki, S. Development of Tire-Wear Particle Emission Measurements for Passenger Vehicles. Emiss. Control Sci. Technol. 2021, 7, 56–62. [Google Scholar] [CrossRef]
- Klöckner, P.; Seiwert, B.; Eisentraut, P.; Braun, U.; Reemtsma, T.; Wagner, S. Characterization of Tire and Road Wear Particles from Road Runoff Indicates Highly Dynamic Particle Properties. Water Res. 2020, 185, 116262. [Google Scholar] [CrossRef]
- Mennekes, D.; Nowack, B. Tire Wear Particle Emissions: Measurement Data Where Are You? Sci. Total Environ. 2022, 830, 154655. [Google Scholar] [CrossRef]
- Marwood, C.A.; McAtee, B.L.; Kreider, M.L.; Ogle, R.S.; Finley, B.L.; Sweet, L.; Panko, J.M. Acute Aquatic Toxicity of Tire and Road Wear Particles to Alga, Daphnid, and Fish. Ecotoxicol. 2011, 20, 2079–2089. [Google Scholar] [CrossRef]
- Yang, K.; Jing, S.; Liu, Y.; Yan, M.; Yi, X.; Liu, L. Acute Toxicity of Tire Wear Particles, Leachates and Toxicity Identification Evaluation of Leachates to the Marine Copepod, Tigriopus japonicus. Chemosphere 2022, 297, 134099. [Google Scholar] [CrossRef]
- Halle, L.L.; Palmqvist, A.; Kampmann, K.; Jensen, A.A.; Hansen, T.; Khan, F.R. Tire Wear Particle and Leachate Exposures from a Pristine and Road-Worn Tire to Hyalella Azteca: Comparison of Chemical Content and Biological Effects. Aquat. Toxicol. 2021, 232, 105769. [Google Scholar] [CrossRef] [PubMed]
- Panko, J.M.; Kreider, M.L.; McAtee, B.L.; Marwood, C.A. Chronic Toxicity of Tire and Road Wear Particles to Water- and Sediment-Dwelling Organisms. Ecotoxicology 2012, 22, 13–21. [Google Scholar] [CrossRef]
- Cunningham, B.; Harper, B.; Brander, S.M.; Harper, S.L. Toxicity of Micro and Nano Tire Particles and Leachate for Model Freshwater Organisms. J. Hazard. Mater. 2022, 429, 128319. [Google Scholar] [CrossRef] [PubMed]
- Day, K.E.; Holtze, K.E.; Metcalfe-Smith, J.L.; Bishop, C.; Dutka, B.J. Toxicity of Leachate from Automobile Tires to Aquatic Biota. Chemosphere 1993, 27, 665–675. [Google Scholar] [CrossRef]
- Khan, F.R.; Halle, L.L.; Palmqvist, A. Acute and Long-Term Toxicity of Micronized Car Tire Wear Particles to Hyalella azteca. Aquat. Toxicol. 2019, 213, 105216. [Google Scholar] [CrossRef]
- Gualtieri, M.; Andrioletti, M.; Vismara, C.; Milani, M.; Camatini, M. Toxicity of Tire Debris Leachates. Environ. Int. 2005, 31, 723–730. [Google Scholar] [CrossRef]
- Mian, H.R.; Chippi-Shreshta, G.; McCarty, K.; Hewage, K.; Sadiq, R. An Estimation of Tire and Road Wear Particles Emissions in Surface Water Based on a Conceptual Framework. Sci. Total Environ. 2022, 848, 157760. [Google Scholar] [CrossRef]
- Filella, M.; Reimann, C.; Biver, M.; Rodushkin, I.; Rodushkina, K. Tellurium in the Environment: Current Knowledge and Identification of Gaps. Environ. Chem. 2019, 16, 215. [Google Scholar] [CrossRef]
- Yin, B.; Wang, J.; Jia, H.; He, J.; Zhang, X.; Xu, Z. Enhanced Mechanical Properties and Thermal Conductivity of Styrene–Butadiene Rubber Reinforced with Polyvinylpyrrolidone-Modified Graphene Oxide. J. Mater. Sci. 2016, 51, 5724–5737. [Google Scholar] [CrossRef]
- Yan, C.; Chen, B.; Li, X.; He, J.; Zhao, X.; Zhu, Y.; Yang, R. Silicon Hybrid EPDM Composite with High Thermal Protection Performance. Polymers 2024, 16, 695. [Google Scholar] [CrossRef]
- Mis-Fernández, R.; Azamar-Barrios, J.A.; Ríos-Soberanis, C.R. Characterization of the Powder Obtained from Wasted Tires Reduced by Pyrolysis and Thermal Shock Process. J. Appl. Res. Technol. 2008, 6, 95–104. [Google Scholar] [CrossRef]
- Characterization of EPDM Rubber by TGA and Hi-Res’ TGA. Available online: https://www.tainstruments.com/pdf/literature/TS-79.pdf (accessed on 8 April 2024).
- Cataldo, F. On the Characterisation of Carbon Black from Tire Pyrolysis. Fuller. Nanotub. Carbon Nanostruct./Fuller. Nanotub. Carbon Nanostruct. 2019, 28, 368–376. [Google Scholar] [CrossRef]
- Kyari, M.Z.; Cunliffe, A.A.; Williams, P.T. Characterization of Oils, Gases, and Char in Relation to the Pyrolysis of Different Brands of Scrap Automotive Tires. Energy Fuels 2005, 19, 1165–1173. [Google Scholar] [CrossRef]
- Guleria, S.P.; Dutta, R.K. Unconfined Compressive Strength of Fly Ash–Lime–Gypsum Composite Mixed with Treated Tire Chips. J. Mater. Civ. Eng. 2011, 23, 1255–1263. [Google Scholar] [CrossRef]
- Amir, A.; Saad, N.H.; Ramli, A.S.; Abd Rashid, A.; Yusoff, N.; Abdullah, N.R.; Kasolang, S.; Jaffar, A. Thermal and rheological behavior of recycled rubber/natural rubber blends in recycle tire process. J. Teknol. 2015, 76, 89–94. [Google Scholar] [CrossRef]
Trade Name of the Type of Winter Tire Tested | Mass of Tires Wearing Out While Driving [g/1000 km] | Trade Name of the Type of Winter Tire Tested | Mass of Tires Wearing Out While Driving [g/1000 km] |
---|---|---|---|
BF Goodrich G-Force Winter 2 | 100 | Barum Polaris 5 | 143 |
Michelin Alpin 6 | 105 | Continental Winter Contact TS860 | 145 |
Vredestein Wintrac | 109 | GT Radial Winter Pro 2 | 149 |
General Tire Altimax Winter 3 | 124 | Laufenn i Fit+ LW31 | 159 |
Nokian WR Snowproof | 127 | Yokohama Bluearth*Winter V906 | 163 |
Dunlop Winter Response-2 | 132 | Falken Eurowinter HS01 | 164 |
Goodyear Ultra Grip 9+ | 134 | Maxxis Premitra Snow WP6 | 167 |
Kumho Wintercraft WP51 | 137 | Bridgestone Blizzak LM005 | 171 |
No. | Place of Sample Collection | Abbreviation | Sample Type |
---|---|---|---|
1 | Szymanowskiego street | SZY | Roadside sand |
2 | Umultowska street | UMU | Roadside sand |
3 | Biskupińska street | BIS | Roadside sand |
4 | Parking on the Morasko campus | CZT1 | Snow deposit |
5 | Parking on the Morasko campus | CZT2 | Snow deposit |
6 | Parking lot at the Stefan Batory estate | BAT | Standing water |
7 | DK11 street | DK11 | Snow deposit |
Sample | Solvent | Concentration [mg/100 g] |
---|---|---|
SZY | DCM [a] | 6.95 |
iPrOH [b] | 16.27 | |
UMU | DCM | 11.54 |
iPrOH | 16.39 | |
BAT | DCM | 37.84 |
iPrOH | 48.65 | |
CZT1 | DCM | 18.67 |
iPrOH | 52.01 | |
BIS | DCM | 5.82 |
iPrOH | 8.71 | |
DK11 | DCM | 1.58 |
iPrOH | 11.92 | |
CZT2 | DCM | 22.78 |
iPrOH | 23.23 |
Sample Name | Element Symbol|Atomic Concentration [%] | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BAT sediment | O | 57.05 | Ca | 12.49 | C | 21.09 | N | 9.37 | ||||||||
BAT sediment | O | 59.77 | Si | 10.00 | Al | 10.04 | Na | 8.51 | C | 11.35 | ||||||
SZY sediment | O | 57.17 | Si | 14.06 | C | 17.41 | Al | 5.47 | Na | 5.69 | Te | 0.16 | ||||
SZY sediment | O | 57.36 | C | 29.75 | Ca | 8.21 | Na | 1.85 | Cl | 1.04 | Si | 1.19 | Al | 0.51 | ||
BIS sediment | O | 65.97 | Si | 12.39 | Fe | 5.12 | Al | 9.88 | Mg | 4.20 | K | 1.77 | ||||
CZT2 sediment | O | 65.84 | Si | 12.69 | Al | 8.84 | C | 12.63 | ||||||||
UMU sediment | O | 60.98 | Si | 9.67 | Al | 8.95 | Fe | 3.13 | C | 13.86 | Na | 1.39 | Te | 0.24 | Cl | 0.52 |
DCM extracts * | C | 100 |
Sample | Fraction | Homogenity | Surface Area [m2/kg] | Dx (10) [μm] | Dx (50) [μm] | Dx (90) [μm] |
---|---|---|---|---|---|---|
SZY | <25 μm | 0.901 | 1329 | 1.93 | 7.73 | 24.0 |
25–40 μm | 0.765 | 553.2 | 4.01 | 42.3 | 109 | |
40–100 μm | 0.925 | 511.7 | 4.15 | 58.2 | 165 | |
CZT2 | <25 μm | 0.871 | 1409 | 1.91 | 6.93 | 20.4 |
25–40 μm | 1.569 | 909.4 | 2.60 | 15.54 | 83.5 | |
40–100 μm | 3.007 | 144.1 | 62.4 | 229 | 2230 | |
UMU | <25 μm | 0.733 | 1031 | 2.54 | 10.8 | 27.9 |
25–40 μm | 0.567 | 321.6 | 10.6 | 48.4 | 105 | |
40–100 μm | 0.957 | 489.8 | 3.77 | 59 | 168 | |
BIS | <25 μm | 0.676 | 998 | 2.68 | 10.9 | 26.4 |
25–40 μm | 0.702 | 367.8 | 8.4 | 46.3 | 113 | |
40–100 μm | 0.554 | 182.6 | 22.6 | 120 | 251 |
SZY | Tmax1 [°C] | Tmax2 [°C] | Tmax3 [°C] | Tmax4 [°C] | Tmax5 [°C] |
---|---|---|---|---|---|
<25 μm | 64.7 | 302.7 | 437.9 | 652.3 | 939.1 |
25–40 μm | 65.3 | 308.6 | 438.4 | 642.2 | 893.1 |
40–100 μm | 65.9 | 312.8 | 435.3 | 636.9 | 883.8 |
100–250 μm | 63.6 | 335.7 | 438.4 | 624.3 | 866.4 |
250 μm–1 mm | 62.5 | 319.9 | 440.2 | 630.1 | 908.7 |
UMU | Tmax1 [°C] | Tmax2 [°C] | Tmax3 [°C] | Tmax4 [°C] | Tmax5 [°C] |
<25 μm | 64.7 | 299.8 | 437.7 | 657.5 | 871.6 |
25–40 μm | 67.9 | 308.5 | 432.3 | 646.5 | 925.3 |
40–100 μm | 74.8 | 311.2 | 430.8 | 633.8 | - |
100–250 μm | 70.1 | 316.9 | 431.9 | 641.9 | 858.2 |
250 μm–1 mm | 65.2 | 322.7 | 442.2 | 639.1 |
CZT2 | Tmax1 [°C] | Tmax2 [°C] | Tmax3 [°C] | Tmax4 [°C] |
---|---|---|---|---|
<25 μm | 67.9 | 316.3 | 435.0 | 700.3 |
25–40 μm | 69.8 | 319.1 | 438.2 | 703.2 |
40–100 μm | 72.6 | 326.3 | 442.3 | 680.0 |
100–250 μm | 66.5 | 336.0 | 448.0 | 691.3 |
250 μm–1 mm | 66.2 | 335.9 | 449.4 | 686.4 |
BIS | Tmax1 [°C] | Tmax2 [°C] | Tmax3 [°C] | Tmax4 [°C] |
<25 μm | 71.9 | 310.6 | 428.6 | 670.6 |
25–40 μm | 70.5 | 317.0 | 433.0 | 668.4 |
40–100 μm | 71.5 | 323.0 | 437.0 | 669.5 |
100–250 μm | 70.6 | 327.3 | 431.7 | 669.7 |
250 μm–1 mm | 69.3 | 324.4 | 433.7 | 678.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przekop, R.E.; Sztorch, B.; Pakuła, D.; Romańczuk-Ruszuk, E.; Konieczna, R.; Frydrych, M. Micro- and Nano-Pollutants from Tires and Car Brakes Generated in the Winter Season in the Poznan City Urban Environment. Appl. Sci. 2024, 14, 4235. https://doi.org/10.3390/app14104235
Przekop RE, Sztorch B, Pakuła D, Romańczuk-Ruszuk E, Konieczna R, Frydrych M. Micro- and Nano-Pollutants from Tires and Car Brakes Generated in the Winter Season in the Poznan City Urban Environment. Applied Sciences. 2024; 14(10):4235. https://doi.org/10.3390/app14104235
Chicago/Turabian StylePrzekop, Robert E., Bogna Sztorch, Daria Pakuła, Eliza Romańczuk-Ruszuk, Roksana Konieczna, and Miłosz Frydrych. 2024. "Micro- and Nano-Pollutants from Tires and Car Brakes Generated in the Winter Season in the Poznan City Urban Environment" Applied Sciences 14, no. 10: 4235. https://doi.org/10.3390/app14104235
APA StylePrzekop, R. E., Sztorch, B., Pakuła, D., Romańczuk-Ruszuk, E., Konieczna, R., & Frydrych, M. (2024). Micro- and Nano-Pollutants from Tires and Car Brakes Generated in the Winter Season in the Poznan City Urban Environment. Applied Sciences, 14(10), 4235. https://doi.org/10.3390/app14104235