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Abstract: The strategic selection of suppliers and the allocation of orders across multiple periods
have long been recognized as critical aspects influencing company expenditure and resilience. Lever-
aging the enhanced predictive capabilities afforded by machine learning models, direct lookahead
models—linear programming models that optimize future decisions based on forecasts generated
by external predictive modules—have emerged as viable alternatives to traditional deterministic
and stochastic programming methodologies to solve related problems. However, despite these
advancements, approaches implementing direct lookahead models typically lack mechanisms for
updating forecasts over time. Yet, in practice, suppliers often exhibit dynamic behaviours, and
failing to update forecasts can lead to suboptimal decision-making. This study introduces a novel
approach based on parametrized direct lookahead models to address this gap. The approach explic-
itly addresses the hidden trade-offs associated with incorporating forecast updates. Recognizing
that forecasts can only be updated by acquiring new data and that the primary means of acquiring
supplier-related data is through order allocation, this study investigates the trade-offs between
data acquisition benefits and order allocation costs. An experimental design utilizing real-world
automotive sector data is employed to assess the potential of the proposed approach against various
benchmarks. These benchmarks include decision scenarios representing perfect foresight, no data
acquisition benefits, and consistently positive benefits. Empirical findings demonstrate that the
proposed approach achieves performance levels comparable to those of decision-makers with perfect
foresight while consistently outperforming benchmarks not balancing order allocation costs and data
acquisition benefits.

Keywords: supply chain risk management; supplier selection; order allocation; machine learning;
continuous training

1. Introduction

Supplier selection and order allocation (SSOA) has always received considerable
attention in the supply chain management (SCM) community [1]. Indeed, considering that
an efficient selection of suppliers and a proper allocation of orders can reduce costs, improve
product quality, and ensure timely delivery, its impact on the company’s performance is
evident. For many companies, the cost of raw materials and components represents 50% to
80% of the final cost of the finished product [2]. Moreover, small deliveries can decrease
sales by up to 10%, and delays of up to 45 days can result in an almost 40% loss in sales [3].

In addition to its relevance, SSOA has gained interest among scholars because of the
challenges the problem presents. Properly assigning orders to selected suppliers in future
periods requires knowing in advance future supplier performance. Uncertainty about the
future is thus one of the main challenges this problem presents. Secondly, when orders
need to be allocated over multiple periods, the problem presents in the form of a sequential
decision-making one, where past decisions affect future periods as well. Lastly, the presence
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of uncertainty about future supplier forecasts and the sequential nature of the problem
present a third challenge. When forecasts are related to supplier performance, there is a
peculiar interdependence between the possibility of obtaining forecast updates and how
orders are allocated to suppliers. Updating forecasts related to supplier performance
requires sending orders to suppliers themselves, as this is the only possibility for acquiring
new supplier-related data.

Due to the relevance of the problem and its challenges, researchers have started to
develop mathematical formulations to solve it. First, approaches providing a solution for a
single period in the future have been considered, and those dealing with multiple periods
have also been generated. Similarly, deterministic models (i.e., not dealing with future
uncertainty) have been investigated, while risk and uncertainty have been progressively
considered. Indeed, multiperiod formulations that consider risk factors have become
essential to effectively capture the dynamic nature of business. At the same time, the
increased instability of supply chains has led to rethinking the SSOA not only to reduce
cost but also to gain resilience and ensure business continuity. As a consequence, stochastic
programming is now a widely adopted technique for building models for SSOA to cope
with uncertainty.

However, recent advancements in machine learning (ML) and deep learning (DL)
have opened the door to alternative solutions in the management of supply chain
problems [4–8]. Indeed, existing approaches for multiperiod SSOA present some limi-
tations when addressing its main challenges. First, deterministic models are not able to
deal with future uncertainty about supplier performance. Secondly, according to [9], al-
though stochastic programming presents several benefits, it is limited in its application
to real-life problems due to the high computational complexity that some scenarios can
generate. Lastly, even if reinforcement learning has been proposed for solving several
allocation problems in the supply chain [10,11], it requires numerous interactions with
the environment to learn the optimal way to allocate orders in SSOA, and, in real-world
applications, this necessity is risky and expensive.

Conversely, direct lookahead models (DLMs) are a potentially effective solution for
real industrial problems. They can deal with the necessity of estimating future supplier
performance and not require learning how to allocate orders recurring to a trial-and-error
strategy. Indeed, DLMs assume the form of linear programming models where future
decisions are taken considering the forecast provided by predictive models. The possibility
of integrating ML and DL models in the predictive modules of these approaches has
recently led several authors to consider this approach [12–17].

However, despite the advancements made by these newly proposed approaches, the
main motivation leading this work is that all these studies assume that forecasts remain
stable over time. However, suppliers often change their performance due to unexpected
events, making initial predictions unreliable. Adopting updating mechanisms in these
forecasts thus represents a fundamental necessity to capture real-life dynamics. However,
as previously mentioned, one of the challenges of the problem is that updating forecasts
related to supplier performances requires sending orders to suppliers, as this is the only
way to acquire new delivery data. From this perspective, new approaches have not been
built to balance the trade-off between the benefits of data acquisition and the costs related
to this acquisition (i.e., the cost of sending orders to suppliers). In the new AI era, where
data are the fuel [18–20], approaches to solving the multiperiod SSOA problem thus need
to be rethought explicitly to tackle this new trade-off.

Given the relevance of the topic and the lack of studies on this aspect, this study aims
to offer two innovative contributions:

1. The formulation of a new approach based on a parametrized DLM for solving the
multiperiod SSOA problem, considering the trade-off between order emission costs
and data acquisition benefits when forecasts related to the risk of non-punctual
deliveries from suppliers are considered.
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2. An empirical evaluation of the advantages that the proposed approach can offer
compared to benchmark approaches, representing, respectively, a decision-maker
with perfect knowledge of the future and two decision-makers where classical DLM
models are implemented without balancing the trade-off between data acquisition
benefits and order emission costs.

The structure of this paper unfolds as follows: Section 2 provides an in-depth explo-
ration of the research background, reviewing pertinent literature. Section 3 delineates the
proposed approach, elucidating its constituent modules and expounding the experimental
design employed to evaluate the efficacy of the approach. Section 4 presents the findings
garnered from the experimental design. Subsequently, Section 5 discusses the results and
encapsulates the conclusions drawn from this study.

2. Literature Review

This section presents literature on different deterministic and stochastic approaches
used to solve the multiperiod SSOA problem when considering different risks. Afterwards,
approaches based on DLM are reviewed to present the state of the art of these methods.
Lastly, addressing the limitations identified in existing approaches, the main novelties of
the proposed study are highlighted.

2.1. Deterministic and Stochastic Programming in Multiperiod SSOA

Various strategies have been explored to manage the risks within the framework
of the multiperiod SSOA problem. One prevalent approach involves the development
of mathematical models, often formulated as linear programming models, where risk
parameters are expressed as deterministic values, such as rates or percentages. In several
notable studies, including those by [21,22], risk has been quantified in terms of deterministic
rates and percentages. For instance, ref. [21] assessed supplier quality risk by quantifying
the expected defect rate of purchased components, while ref. [22] measured supplier
delivery delays and quality risks as percentages of products delivered on time and rejection
rates of products, respectively. An alternative approach demonstrated in the investigation
by [23] involves representing supplier disruption risk based on the availability of suppliers
per period. This approach recognizes the impact of supplier availability on the overall
risk profile and decision-making process within the SSOA problem. Conversely, ref. [24]
adopted a comprehensive perspective by concurrently considering multiple risks alongside
quality risks. They employed a failure mode and effect analysis (FMEA) to compute a single-
risk metric summarizing the identified risks. Similarly, refs. [25,26] integrated various
risk factors into a single metric using different methodologies, facilitating a holistic risk
assessment within the SSOA framework. Lastly, ref. [27] introduced a unified risk metric
to model supplier cost risk in their approach. By consolidating diverse risk factors into a
single metric, they simplified the decision-making process and enhanced the efficiency of
their optimization model.

While the deterministic models adopted in these studies provide valuable insights,
they must be considered limited by the assumption that the exact future value of risks is
known in advance. As this assumption is not always valid, researchers have thus started to
design stochastic formulations of the multiperiod SSOA problem to capture the inherent
uncertainty associated with risk factors. In these formulations, different risk scenarios are
formulated, and a specific probability of occurrence is usually associated with each scenario.
For example, ref. [28] presented a formulation considering supplier local disruption risk,
while ref. [29] extended this approach to consider stochastic supplier local disruption and
capacity risks alongside deterministic quality risks. Lastly, ref. [30] incorporated stochastic
supplier costs and demand risks into their formulation.

2.2. Direct Lookahead Models in Multiperiod SSOA

Despite the vast potential of stochastic programming, two main limitations need to be
recognized when considering adopting this approach to solve a real-world multiperiod



Appl. Sci. 2024, 14, 4306 4 of 18

SSOA problem. First, stochastic programming models often assume a stationary distri-
bution for risks, which may not accurately reflect real-world dynamics. Risk factors can
indeed be subject to temporal variations and non-stationarity behaviors. Moreover, accord-
ing to [9], stochastic programming can be highly computationally expensive, especially
when involving integer variables in the problem formulation.

To address these limitations, researchers have proposed DLMs (i.e., approaches com-
bining predictive models with linear programming models) to account for dynamic risks
and reduce the computational effort required to solve the problem. Recent advancements in
the fields of ML and DL have significantly increased the accuracy reachable by forecasting
modules adopted as inputs in a DLM and have thus contributed to significantly improving
the quality of decisions that can result as outputs from these approaches.

Reference [12] can be considered one of the first works suggesting this approach to
solve the problem. In the study, the authors exploited ML models to forecast the capability
of suppliers to deliver future orders on time, and orders were assigned to those suppliers
who reported the highest probability of delivering components on time. Afterwards,
several studies, such as those provided by [13–15], have developed ML regression models
to punctually estimate demand risk to optimize order allocation over time. Moreover,
predictions about future cost risks were adopted to solve the problem in the study reported
by [17].

2.3. Research Gap and Novelties of the Proposed Approach

According to the literature, DLMs have only recently started to be investigated more
intensively. Indeed, compared to deterministic and stochastic programming models, DLMs
have received less attention, and only a few papers related to the topic can be found [12–17].

Moreover, the state of the art of the current proposed DLMs always assumes static
values for the forecast and thus does not consider the uncertainty related to changes that
newly acquired data can have on this forecast and subsequently on final decisions. As
stochastic programming models have been introduced to deal with uncertainty that is
not considered in deterministic ones, parametrized DLMs might be an under-investigated
potential alternative to cope with the limitations of simple DLMs. Indeed, parametrized
DLMs represent an extension of DLMs incorporating tunable parameters that can deal with
the uncertainty related to the variability and sensitivity of the system to different inputs
or conditions.

Considering the current literature and its gaps, the main novelty of this study is
represented by the introduction of a new approach to solve the multiperiod SSOA when
forecasts related to the risk of supplier non-punctual delivery are considered subject to
update. Indeed, according to Table 1, approaches based on a parametrized DLM have
never been adopted to solve this problem. In addition, the proposed approach, which
considers the uncertain benefits of newly acquired data on forecast accuracy and thus
on final decisions, optimizes the trade-off between data acquisition benefits and order
emission costs for the first time. Purchasing costs, non-punctual delivery risk-related costs,
and data acquisition benefits are thus balanced for the first time. Moreover, an empirical
investigation of the benefit of considering this new trade-off is reported.

Table 1. Literature summary.

Study Model
Type

Ordering
Cost

Purchasing
Cost

Shortage
Cost

Holding
Cost

Data
Acquisition

Benefit

[21] DP ✔ ✔ ✔

[22] DP ✔ ✔ ✔

[23] DP ✔ ✔ ✔ ✔

[24] DP ✔ ✔ ✔

[25] DP ✔ ✔

[26] DP ✔ ✔ ✔
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Table 1. Cont.

Study Model
Type

Ordering
Cost

Purchasing
Cost

Shortage
Cost

Holding
Cost

Data
Acquisition

Benefit

[27] DP ✔ ✔ ✔

[28] SP ✔ ✔ ✔ ✔

[29] SP ✔ ✔ ✔

[30] SP ✔ ✔ ✔

[12] DLM
[13] DLM ✔ ✔

[14] DLM ✔ ✔ ✔

[15] DLM ✔ ✔ ✔

[16] DLM ✔ ✔ ✔

[17] DLM ✔ ✔

This
study PDLM ✔ ✔ ✔ ✔ ✔

DP: deterministic programming, SP: stochastic programming, DLM: direct lookahead model, PDLM: parametrized
direct lookahead model.

3. Materials and Methods

In this section, we first provide an overview of the proposed approach. We then
delve into a detailed examination of the constituent components of the approach. Finally,
we outline the research methodology employed to empirically evaluate the proposed
approach’s performance compared to benchmarks.

3.1. Proposed Approach

Three modules have been integrated into the proposed approach to solve the multi-
period SSOA problem while considering the data acquisition and order emission trade-off:
a predictive module, a prescriptive module, and a continuous training module. An il-
lustration of how these modules are integrated is provided in Figure 1. Moreover, the
pseudocode of the proposed approach and of its main module is reported in Appendix A
in Figures A1–A4.
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According to Figure 1, past historical data on suppliers’ delivery punctuality are
provided as inputs to train the predictive module.
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Predictions related to the suppliers’ future delivery punctuality provided by the
predictive module will thus be adopted as inputs by the prescriptive module. Here,
decisions about which supplier to select and how to allocate orders to suppliers over
future periods are made. Moreover, considerations related to the advantages of data
acquisition over order allocation cost are modelled to solve the problem while considering
this trade-off.

Lastly, the continuous training module will adopt new collected supplier delivery
punctuality data to update the forecasts released from the predictive module over time.
Indeed, as time passes, order decisions translate into real purchasing orders and conse-
quently into new supplier deliveries whose punctuality can be recorded. Suppose orders
will be allocated to a specific supplier. In that case, the continuous training module will
update the predictive model related to the specific supplier with the new data, and new
forecasts related to the supplier’s future delivery performance will be provided as new
input to the prescriptive module. On the other hand, if no order is allocated to a specific
supplier, its forecast will not be updated.

3.1.1. Prescriptive Module

A parametrized DLM based on mixed-integer linear programming (MILP) is pro-
posed to build the prescriptive module. The model is constructed based on several key
assumptions, outlined as follows:

• The demand for the components allocated among suppliers is predetermined and
constant for the designated future period.

• The unit purchasing cost varies among suppliers, and the total purchasing cost esca-
lates linearly with the quantity ordered without any quantity discounts.

• The unit costs associated with untimely deliveries differ depending on whether the
delivery is early or late. These costs are contingent on the components and remain
consistent across suppliers. Additionally, the overall cost attributed to untimely
deliveries increases linearly with the quantity delivered late and the duration of
the delay.

• There is no relationship between the ordered quantity and the future value of the
supplier delivery performance until orders remain within the supplier capacity limits.

Following these assumptions, the principal sets, parameters, decision variables, con-
straints, and components constituting the objective function to be minimized are enumer-
ated below:

Sets

• I = {1, . . ., i, . . ., M}: set of suppliers
• P = {1, . . ., t, . . ., T}: set of time period

Parameters

• Cperiod
i : maximum period capacity of supplier i

• corder emission
i : unitary order emission cost of supplier i

• cpurchasing
i : unitary purchasing cost of supplier i

• cdelay: unitary cost related to late delivery of a component
• cadvance: unitary cost related to advance delivery of a component
• dt: demand of the component that needs to be ordered for day t

• f delay
it : number of days of delays predicted based on the predictive module for the

number of components ordered from supplier i for day t
• f advance

it : number of days of advance delivery predicted by the predictive module for
the number of components ordered from supplier i for day t

• θ
data benei f it
i : tunable parameters expressing the advantages of sending orders to sup-

plier i to acquire new data. This parameter models the data acquisition benefit for
supplier i
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• M: positive large number

Decision variables

• Yit: amount of quantity ordered from supplier i for day t
• Zit: binary variable equal to 1 if an order is sent to supplier i for day t, 0 otherwise

Objective function

Min ∑T
t=0 ∑M

i=1 Yit

(
cpurchasing

i + cdelay f delay
it + cadvance f advance

it

)
+ Zit

(
corder emission

i − θ
data benei f it
i

)
(1)

In Equation (1), the objective function is aimed at finding the optimal trade-off between
purchasing costs and costs related to non-punctual delivery by suppliers, with the order
emission cost on one side and the data acquisition benefits on the other.

Constraints

∑T
t=0 Yit ≤ C

period

i
∀i (2)

∑M
i=1 Yit = dt ∀t (3)

Yit ≤ M ∗ Zit ∀i, ∀t (4)

Yit ≥ 0, ∀i, ∀t (5)

Zit Binary ∀i, ∀t (6)

Equation (2) is devised to ensure that the maximum quantity ordered from each supplier
remains within acceptable limits. Equation (3) guarantees fulfilment of the daily demand for
the component. Equation (4) ensures that a certain quantity of a specific component can be
acquired from supplier i in period t only if an order is sent to supplier i in period t. Lastly,
Equations (5) and (6) mandate, respectively, that the orders dispatched to each supplier during
each period must exceed zero, and that the variable Zit has to be binary.

3.1.2. Predictive Module

A long short-term memory (LSTM) model is adopted to constitute the predictive
module. LSTM models are DL models designed to address the challenges of learning long-
term dependencies in sequential data by capturing temporal dependencies over extended
sequences. These features make them well-suited for tasks such as time series forecasting,
and several studies have proved their advantages over other models in solving predictive
tasks in the field of SCM [31–34].

One separate LSTM model for each supplier is proposed to be adopted in the predictive
module to estimate the future delivery punctuality of suppliers. The dependent variable (label)
predicted by each LSTM model is represented by the number of days of delay or advance
that a specific supplier will deliver the purchased components with respect to the planned
delivery dates. On the other hand, the historical record of supplier delivery punctuality has
been adopted as independent variables (features) to estimate the value of the label.

3.1.3. Continuous Training Module

A continuous training module is introduced in the proposed approach to ensure
a continuous update of the predictive module over time as new data become available.
Indeed, the continuous training paradigm has been identified as a fundamental pillar in
ML applications [35]. Introducing a continuous training module ensures that the predictive
module adapts dynamically to data distribution and environment changes. By continuously
adapting to changing data patterns and environments, models trained using a continuous
training approach can maintain a high performance and relevance over time, leading to
more effective decision-making and improved outcomes in dynamic real-world scenarios.

Each time a new order is delivered by a specific supplier, the continuous training module
adopts the newly recorded supplier delivery performance to trigger a full retraining of the
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LSTM model related to that supplier with the newly available data. After the retraining phase,
new predictions of supplier behavior are formulated, updating the old forecasted values.

3.2. Research Methodology

In this section, we outline the research methodology used to assess the effectiveness
of the proposed approach in contrast to benchmark methods. A case study was carefully
chosen to gather authentic data, and an experimental design was developed to evaluate
the performance of the approach. Section 3.2.1 provides insights into the chosen case
study and the pertinent data collected, while Section 3.2.2 elaborates on the design of the
experimental setup.

3.2.1. Case Study Data Collection

A real-life case study in the automotive sector was chosen to evaluate the effective-
ness of the proposed approach. This sector was selected due to its substantial economic
significance and widespread adoption of multiple sourcing as a risk management strategy.
This underscores the critical importance of making optimal decisions in multiperiod SSOA.
This study was focused on eight critical components of an important Italian automotive
company for which a dual-sourcing strategy was implemented between 1 January 2021 and
31 December 2023. Detailed summaries of the key data associated with the components,
the first supplier, and the second supplier under consideration are provided in Tables 2–4,
respectively. In Table 2, for each component, the unitary holding cost and the unitary
shortage cost are expressed as a percentage of the first supplier purchasing cost. Similarly,
Table 3 reports the supplier capacity as a percentage of the overall components’ demand.
Lastly, Table 4 reports the unitary purchasing cost for the second supplier as a percent-
age of the first supplier’s purchasing cost, while the second supplier’s overall capacity is
expressed as a percentage of the overall demand.

Table 2. Case study component data.

1 2 3 4 5 6 7 8

Mean demand [pieces] 1091 329 1049 342 937 1346 1275 1595
Demand standard deviation 10.8 13.5 8.7 12.6 8.3 10.1 10.8 12.1
Unitary holding cost [%] 51.1% 176.4% 87.4% 140.7% 173.0% 134.4% 29.5% 163.5%
Unitary shortage cost [%] 184.6% 84.8% 28.7% 196.2% 119.7% 144.3% 163.3% 93.9%

Table 3. Case study first supplier data.

1 2 3 4 5 6 7 8

Mean delay/advance [days] 9.8 −4.7 10.8 −31.4 −13.4 −38.7 −11.6 −22.5
Delay/advance standard deviation 22.7 21.2 22.2 22.3 23.5 27.9 47.3 28.9
Unitary purchasing cost [euro] 3079 4768 3271 2743 2872 2302 684 3928
Overall capacity [%] 95.9% 18.4% 85.8% 7.7% 85.9% 69.6% 67.6% 75.2%

Table 4. Case study second supplier data.

1 2 3 4 5 6 7 8

Mean delay/advance [days] 11.4 35.9 −9.0 1.8 21.3 −6.5 5.9 −11.0
Delay/advance standard deviation 19.6 31.4 19.9 31.9 12.5 31.9 41.2 22.3
Unitary purchasing cost [%] 80.9% 97.7% 91.6% 84.6% 103.0% 94.7% 97.7% 110.2%
Overall capacity [%] 41.3% 84.1% 26.2% 98.7% 24.7% 74.1% 76.2% 87.0%

3.2.2. Experimental Design

The data acquired from the case study outlined in Section 3.2.1 were adopted to set up
an experimental design to thoroughly evaluate the effectiveness of the proposed approach in
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contrast to benchmarks. Section Benchmarks delineates the benchmarks against which the
proposed approach was assessed. Subsequently, Section Evaluation Metrics enumerates the
metrics chosen for the comparative analysis. Finally, Section Experiment Setup elucidates
the experimental configurations employed for each evaluation.

Benchmarks

Three benchmarks were adopted to assess the performance of the approach: the Hora-
cle approach, the Zero Exploration approach, and the Continuous Exploration approach.

In the Horacle approach, the decision-maker is assumed to know the future values of
supplier delivery punctuality perfectly. The order allocation decisions resulting from the
Horacle approach thus represent the optimal decision, and the resulting cost obtained when
implementing this approach represents an ideal lower bound for the other approaches.
While the Horacle approach aims to provide a reference point to evaluate the efficiency of
the proposed approach in optimally solving the multiperiod SSOA problem, the two other
approaches aim to investigate the advantages of providing a new approach to balance the
trade-off between data acquisition benefits and order emission costs.

The Zero Exploration approach assumes that the value of parameter θ
data benei f it
i is

equal to zero for both suppliers. A decision-maker relying on this approach supposes that
no data acquisition benefits are present for either supplier. Sending orders for the same
period to both suppliers is not considered in this approach (exceptions are only dictated
by capacity constraints). The acquisition of new data points related to supplier delivery
punctuality is assumed not to affect the value of future forecasts; therefore, orders are
always allocated to the supplier reporting the best value in the initial estimates.

Contrariwise, in the Continuous Exploration approach, the value of parameter
θ

data benei f it
i is assumed to be large enough to generate at least one order emitted to both

suppliers in each period. A decision-maker relying on this approach assumes that send-
ing orders to both suppliers (even if in different quantities) is always an effective strat-
egy. Indeed, even if sending orders to only one of them can result in an immediate
lower cost, acquiring new data can affect forecast values and thus lead to revised order
allocation decisions.

Evaluation Metrics

Four economic metrics are considered to compare the cost when implementing order
allocation decisions according to the proposed approach with those resulting from the
benchmark approaches:

∆
PURCHASING COST
(proposed, benchmark) =

∑T
t′=0 ∑T

t′≥t>t′ ∑M
i=1

(
Yproposed

itt′ − Ybenchmark
itt′

)
cpurchasing

∑T
t′=0 ∑T

t′≥t>t′ ∑M
i=1 Ybenchmark

itt′ cpurchasing
(7)

∆
DELIVERY COST
(proposed,benchmark) =

∑T
t′=0 ∑T

t′≥t>t′ ∑M
i=1

(
Yproposed

itt′ − Ybenchmark
itt′

)(
cdelaytruedelay

it + cadvancetrueadvance
it

)
∑T

t′=0 ∑T
t′≥t>t′ ∑M

i=1 Ybenchmark
itt′

(
cdelaytruedelay

it + cadvancetrueadvance
it

) (8)

∆
ORDER EMISSION COST
(proposed,benchmark) =

∑T
t′=0 ∑T

t′≥t>t′ ∑M
i=1

(
Zproposed

itt′ − Zbenchmark
itt′

)
corder emission

i

∑T
t′=0 ∑T

t′≥t>t′ ∑M
i=1 Zbenchmark

itt′ corder emission
it

(9)

∆
OVERALL COST
(proposed,benchmark)

=
∑T

t′=0 ∑T
t′≥t>t′ ∑M

i=1

(
Yproposed

itt′ −Ybenchmark
itt′

)(
cpurchasing+c

delay
truedelay

it +cadvancetrueadvance
it

)
∑T

t′=0 ∑T
t′≥t>t′ ∑M

i=1 Ybenchmark
itt′

(
cpurchasing+cdelaytruedelay

it +cadvancetrueadvance
it

)
+Zbenchmark

itt′ corder emission
i

+

∑T
t′=0 ∑T

t′≥t>t′ ∑M
i=1

(
Zproposed

itt′ −Zbenchmark
itt′

)
corder emission

i

∑T
t′=0 ∑T

t′≥t>t′ ∑M
i=1 Ybenchmark

itt′
(

cpurchasing+cdelaytruedelay
it +cadvancetrueadvance

it

)
+Zbenchmark

itt′ corder emission
i

(10)
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Here, Yproposed
itt′ represents the optimal quantity to allocate to a specific supplier i for

a specific period t based on the forecast updated at day t′ according to the proposed
approach, while Zproposed

itt′ expresses whether an order is sent to supplier i in period t based
on forecasts updated at day t′ by the proposed approach. Contrarywise, Ybenchmark

itt′ and
Zbenchmark

itt′ represent the same optimal quantity identified when considering one of the
benchmark approaches reported in Section Benchmarks, respectively. The parameters
truedelay

it and trueadvance
it represent the true delivery punctuality reported by supplier i in

period t. These values can be higher or lower than the predicted values reported in the
parameters f delay

it and f advance
it .

According to their formulations, Equations (7)–(10) thus represent the difference
between the purchasing cost, the delivery cost, the order emission cost, and the overall
cost, respectively, following the decision suggested by the proposed approach and the
decisions made following one of the benchmark approaches. The difference is expressed as
a percentage of the cost reported by the benchmark approach. A positive value reported
in Equation (11), for example, thus represents that the proposed approach led to a higher
overall cost value than the benchmark.

Experiment Setup

The experimental setup remained consistent across all the eight components outlined
in Section 3.2.1. The historical data of the delivery performance reported by each supplier
for a specific component are divided into three consecutive subsets, as illustrated in Figure 2.
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Figure 2. Temporal splitting of historical data related to the delivery performance reported for each
supplier for a specific component.

The three subsets, referred to as the training set (comprising 60% of the historical data),
the validation set (comprising 20% of the historical data), and the test set (containing the
remaining data), were utilized to achieve distinct objectives.

The training set facilitated the initial learning phase of the models constituting the
predictive module. During this phase, the models learned the relationship between the
selected features and the label to predict. The hyperparameters used for the models
are detailed in Table 5 and have been obtained following a trial-and-error procedure.
Although other strategies could have been adopted for the hyperparameter tuning phase,
selecting a more basic tuning procedure was preferred, as the extensive optimization of the
hyperparameters was assumed not to be this study’s primary goal.

The validation set is instead adopted only when considering the proposed approach to
find the best value of parameter θ

data benei f it
i . A Bayesian optimization (BO) strategy [36] is

proposed to find the best value of the parameter θ
data benei f it
i within a prespecified research

space θ. A BO strategy is adopted, as it represents a valuable iterative optimization tech-
nique for finding the maximum or minimum of an objective function when it is expensive
to evaluate. This feature is particularly useful, considering that the optimal value of the
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tunable parameter θ
data benei f it
i needs to be found by looking for a value in research space θ

that minimizes the following result of Equation (11):

Min ∑T
t′=0 ∑T

t′+1≥t>t′ ∑M
i=1 Ŷitt′

(
cpurchasing

i + cdelaytruedelay
it + cadvance trueadvance

it

)
+

∑T
t′=0 ∑T

t′+1≥t>t′ ∑M
i=1 Ẑitt′

(
corder emission

i − θ̂
data benei f it
i

) (11)

In Equation (11), Ŷitt′ and Ẑitt′ represent the optimal decisions obtained from the
prescriptive module when considering a specific value, and θ̂

data benei f it
i indicates the data

acquisition benefit and forecast updated on day t′. Conversely, trueadvance
it and truedelay

it
represent the ex-post real amount of advance or delay of supplier deliveries. The computa-
tion of Equation (11) cannot be considered cheap. First, it requires solving the multiperiod
SSOA defined in Section 3.2.1 based on the forecast provided by the predictive module
described in Section 3.2.2 to find the optimal values of Ŷitt′ and Ẑitt′ . Afterwards, it requires
performing an ex-post evaluation of the decisions based on the true values of delivery
performance experienced by the selected suppliers in each considered period (trueadvance

it

and truedelay
it ).

Table 5. LSTM hyperparameters.

Hyperparameter Hyperparameter Value

Number of layers 1
Max number of epochs 100

Early stopping threshold (σ) 15 epochs with no improvements in the RMSE
of the validation dataset

Loss function MSE
Input chunk length 7

The predictive module is thus initially trained using the training set’s past historical
data. Then, a value of parameter θ

data benei f it
i is selected within search space θ following

the BO strategy, and the prescriptive module is executed considering these inputs. Order
allocation decisions are thus generated, new data points are acquired, and the predictive
models are updated in the validation set following the order allocation decisions. Once
all the periods in the validation set have been simulated, the value of Equation (11) is
computed ex-post, and the best value of parameter θ

data benei f it
i found so far is recorded.

This procedure is repeated K times. A random sampling strategy was adopted to select the
starting value for the BO, and five different scenarios involving different starting points
were considered for each component. The value of θ

data benei f it
i resulting in the lowest

value of Equation (11) is adopted in the test set by the proposed approach as the effective
value for parameter θ

data benei f it
i . The value of research space θ and the number of trials K

are reported in Table 6. The number K of trials to follow has been selected, recurring to
a heuristic elbow procedure. Indeed, the trials suggested that only small increments in
performance were achievable for a greater value of K. Furthermore, similar K values were
observed [37] when no more than 20 trials were reported.

Table 6. Bayesian optimization parameters.

Parameter Value

Search space (θ) 0–99,999
N trials 50

Finally, the test set is adopted to simulate and compare the decisions generated by
the proposed approach and the benchmarks. Initially, the predictive module is trained
on the historical data coming from both the training and the validation set, and the value
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adopted by the proposed approach of θ
data benei f it
i is the one identified in the validation

set. As time evolves discretely with the arrival of new, unevenly sampled deliveries, based
on the decisions resulting from the prescriptive module, new supplier performance data
are collected over the test set, and the continuous training module updates the predictive
ones with the newly acquired data. In conclusion, the values of the evaluation metrics
described in Section Evaluation Metrics are thus computed considering all the discrete
periods contained in the test set for both the proposed approach and the benchmarks.

4. Results

The results of the experimental comparison between the proposed approach and the
benchmark approaches described in Section Benchmarks based on the evaluation metrics
described in Section Evaluation Metrics are reported in this section. The boxplots in
Figures 3–5 report the distribution of the evaluation metrics computed by comparing the
proposed approach with the Horacle approach, the Zero Exploration approach, and the
Continuous Exploration approach, respectively, for the eight components investigated in
the case study described in Section 3.2.1. The boxes in a plot represent the interquartile
range, which spans from the first to the third quartile; a line inside the box represents the
median of the considered values; and a triangle indicates the mean value. The whiskers
extend from the edges of the box to the minimum and maximum values within 1.5 times
the interquartile range from the first and third quartiles, respectively.

According to Figure 3, the proposed approach resulted, on average, in an increase of
42% in the overall cost compared to a decision-maker with perfect knowledge of the future
(Horacle approach). However, this difference resulted in variance in the interquartile range
from a minimum increase of 7% to a maximum increase of 56% for half of the considered
components. The higher average differences between the evaluation metrics are observed
in the delivery and order emission costs.

Specifically, the delivery cost produced by the proposed approach was, on average,
45% higher than that of the Horacle approach. Instead, an average increase of 15% was
observed in the order emission cost. No significant differences in the purchasing cost were
observed between the two approaches.

Different results were obtained by comparing the proposed approach with the Zero
Exploration approach.

According to Figure 4, the proposed approach produced, on average, a decrease
of 20% in terms of the overall cost compared to an approach that optimizes the order
allocation decision without considering the benefit of sending orders to suppliers to acquire
new data (Zero Exploration approach). This difference was observed to potentially vary
between a minimum decrease of 6% to a maximum reduction of 31% for 50% of the
considered components. In addition, when comparing the proposed approach with the
Zero Exploration approach, the average increase of 10% in the order emission cost was
effectively counterbalanced by an improved capability of reducing the delivery cost (by
21% on average). Also, in this comparison, the two approaches exhibited no significant
difference in the purchasing cost.

Lastly, the results of the comparison between the proposed approach and the Continu-
ous Exploration approach are reported in Figure 5.

Similarly to the previous comparison, Figure 5 highlights an advantage of the proposed
approach over the Continuous Exploration approach in solving the multiperiod SSOA
problem, corresponding on average to a decrease of 21% in the overall cost. The average
decrease of 38% in order emission costs did not lead the proposed approach to produce
higher delivery costs. Indeed, the delivery cost reported by the proposed approach was 20%
lower on average than the one reported for the benchmark approach. Also, no significant
differences in purchasing cost were seen between the two approaches.
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programming models solved based on values provided by forecasting modules) have
started to be adopted to solve the problem due to the benefits that recent advancements
in ML and DL have brought to the predictive accuracy of forecasts. However, approaches
proposed in the literature often assume static forecast values over time and do not consider
that in the new AI era, where data are the fuel, allocating orders to suppliers can also be
seen as a way to acquire new data and thus obtain updated, more accurate forecasts.

Considering the current state of the literature, two main contributions are proposed
in this study. First, a new approach implementing a parametrized DLM to solve the
multiperiod SSOA problem is designed and proposed. For the first time, a parametrized
DLM is explicitly designed to consider the trade-off between data acquisition benefits and
order emission costs when forecasts about the future delivery performances of suppliers
are considered to vary as new data are acquired over time. Moreover, empirical results
describing the performances reached by the proposed approach and benchmarks in a real
automotive case study are reported. These results provide a starting point for understand-
ing the potential benefits of the proposed approach and, more generally, the advantages of
adequately balancing data acquisition benefits against order emission costs when solving
the multiperiod SSOA problem.

In particular, compared to a decision-maker with perfect knowledge of the future, the
proposed approach led to increased overall costs that spanned from a minimum increase of
7% to a maximum increase of 56%. The comparison with a decision-maker without perfect
knowledge of the future, assuming no benefit of data acquisition, indicated the advantages
of the proposed approach, which, on average, led to a 20% reduction in the overall cost.
Similar results were observed in the comparison between the proposed approach and one
simulating a decision-maker without perfect knowledge of the future, but assuming that it
is always positive to send orders to two suppliers to exploit the benefit that new data can
provide to the forecasting accuracy.

The empirical results obtained from the analysis of the case study thus led to two
main implications. First, the results proved that the proposed approach could lead to
good supplier selection and order allocation decisions, therefore supporting adopting a
parametrized DLM to solve the multiperiod SSOA problem. Secondly, they highlighted the
necessity to balance data acquisition benefits and order emission costs over time. Indeed,
according to the results, neither assuming zero data acquisition benefits nor assuming
that data acquisition benefits are always present resulted in the best choice. Acquiring
new data can allow forecast value updates; however, acquiring new supplier-related
data is expensive, and updating forecast values does not always lead to changes in order
allocation decisions.

The observed results are subject to limitations. First, a single case study was adopted
to investigate the performance of the proposed approach, thus limiting the generalizability
of the findings. Secondly, the MILP model integrated into the proposed approach relied on
the assumption that no relationship exists between the delivery performance of suppliers
and the ordered quantity. While this assumption can be true for certain components, it
cannot hold for others. Finally, a potential limitation of the proposed approach is that
supplier purchasing costs are assumed to be known, and no costs related to quality issues
have been considered.

Based on these limitations, potential future research directions can point to expanding
the empirical evaluation of the proposed approach to multiple case studies. Adapting the
proposed approach to cases where a linear or nonlinear dependency between the ordered
quantity and the variable to forecast can be seen as another interesting and practically rele-
vant research direction. Lastly, expanding the number of forecasted risks in the proposed
approach and investigating how data acquisition benefits differ between forecasts related
to these risks and how to balance the data acquisition benefits and order emission costs in
this case could be a further direction to improve the proposed approach.
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Figure A1. Pseudocode of the proposed approach. 

Main:  

Input 

 TrainingData: A dictionary reporting for each supplier its past delivery performance 

 TestData: A list reporting the future planned delivery dates 

 StaticParameters: A dictionary reporting all the static parameters required to solve the 

multiperiod SSOA 
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 CurrentDay: a variable storing the day in which the main is executed 

 PrescriptiveModel: A DLM model to solve the multiperiod SSOA problem 

Output 

 AllocatedQuantity: A dictionary containing for each (supplier, date) the future 

allocated quantity 

Procedure 

 ForecastedParameters = {} 

 For each supplier: 

  SupplierTrainingData = TrainingData[supplier] 

  SupplierForecastingModel = ForecastingModel[supplier] 

  ForecastedParameters[supplier] = PredictiveModule(SupplierTrainingData,  

  SupplierForecastingModel, TestData)  

 AllocatedQuantity, SelectedSupplier = PrescriptiveModule(ForecastedParameters,            

StaticParameters, DataAcquisitionBenefit, PrescriptiveModel)  

 For each supplier: 

  SupplierTrainingData = TrainingData[supplier] 

  TrainingData[supplier], ForecastingModel[supplier] = ContinuousTraining(supplier, 

SupplierTrainingData, SelectedSupplier, CurrentDay) 

 
Figure A1. Pseudocode of the proposed approach.
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