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Abstract: In recent times, transformer-based deep learning models have risen in prominence in the
field of machine learning for a variety of tasks such as computer vision and text generation. Given this
increased interest, a historical outlook at the development and rapid progression of transformer-based
models becomes imperative in order to gain an understanding of the rise of this key architecture.
This paper presents a survey of key works related to the early development and implementation
of transformer models in various domains such as generative deep learning and as backbones of
large language models. Previous works are classified based on their historical approaches, followed
by key works in the domain of text-based applications, image-based applications, and miscella-
neous applications. A quantitative and qualitative analysis of the various approaches is presented.
Additionally, recent directions of transformer-related research such as those in the biomedical and
timeseries domains are discussed. Finally, future research opportunities, especially regarding the
multi-modality and optimization of the transformer training process, are identified.

Keywords: transformers; deep learning; generative deep learning; large language models; GPT;
computer vision

1. Introduction

Ever since the introduction of the transformer model in June 2017 by Vaswani et al. [1],
the world of deep learning has seen a rapid adaptation of the model in pushing the state of
the art in a number of previously challenging tasks. Due to its prowess in sequence model-
ing and machine translation, the transformer architecture was initially widely implemented
and indeed emerged as the predominant deep learning model for natural language process-
ing (NLP) and generative deep-learning tasks [2]. Indeed, the introduction of transformers
has been a key factor in the development of large language models such as GPT3 and GPT4,
which are the basis of culturally significant tools such as ChatGPT [3]. However, inspired
by the revolutionary self-attention mechanism in transformers, the architecture has since
been implemented in various application domains such as that of images, audio, and time
series data [4]. Indeed, in recent times, transformers have been touted as being a potential
replacement for Convolutional Neural Networks (CNNs) for vision applications [5], with
the introduction of the Vision Transformer (ViT) opening a new realm of architectures
which build upon it. Considering the rapid increase in interest in transformer architecture,
it becomes pertinent to examine in detail the architecture of the transformer as well as its
historical progression from being introduced as an alternative to RNN-like architectures
for sequence-to-sequence mapping to being one of the most impactful architectures in
the current realm of deep learning. Finally, it may be beneficial to examine the various
prevalent transformer architectures applicable to the different data domains.

Prior to the introduction of transformers to the deep learning space, the established
state of the art in sequence modeling had long been Long Short-term Memory (LSTMs) [6]
and other forms of Recurrent Neural Networks (RNNs) [7]. These were especially prevalent
for transduction problems such as language modeling and machine translation due to their
recurrence which allows for recent information to be accounted for in order to maintain
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sequential information [1]. However, these established models had numerous drawbacks,
particularly that the sequential computation involved in the training process prevents
parallelization, therefore leading to slower training times [8] in cases of long sentences as
they would be processed word by word. Furthermore, RNNs were susceptible to encoder–
decoder bottlenecks particularly in sequence-to-sequence tasks because the encoder had to
read the entire sequence before developing a hidden state of fixed length which the decoder
then decoded [9]. Transformers emerged as an ideal solution to these drawbacks thanks
to the self-attention mechanism which disregards the distance between words or output
sequences when accounting for dependencies [10], which further allows for parallelization
and therefore faster training. The following sections conduct an in-depth outlook at the
initial architecture of early transformers. This gives insight into what makes transformers
as unique as they are and what features of this architecture contribute to the large success
seen by this kind of model.

1.1. Transformers

In order to take a deeper look and investigate the success seen by the transformer
model, it is imperative to examine, in detail, the architecture and workings of the solution
proposed by Vaswani et al. [1]. Unlike previously proposed sequence transduction models
like [11] and [12], transformers maintain the encoder–decoder structure, as seen in Figure 1,
but discard the recurrence and convolution aspects. This is made possible thanks to the
novel multi-head attention mechanism proposed in addition to the point-wise feedforward
networks ingrained in the transformer model. Figure 1 shows the overall transformer
architecture as proposed by Vaswani et al. [1]. The following sections describe the various
blocks contributing to this architecture in further detail.
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1.2. Self Attention

The first and most important component of transformer architecture is the self-
attention mechanism seen in Figure 2 which allows the model to learn the relationships
between the elements of a sequence [13]. In the context of an LLM such as BERT, this would
mean that in a sentence such as “The bank of the river is overflowing”, the model would
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use self-attention to conclude that the “bank” in this case refers to the side of a river as
opposed to a financial organization.
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In the encoder version of this layer, the inputs consist of queries and keys. The
attention function is then applied to these vectors as seen in (1).

Attention (Q, K, V) =

(
Q · K⊤
√

dk

)
· V (1)

where

- Q is the matrix of the queries;
- K is the matrix of the keys;
- V is the matrix of the values.

The equation is applied in a way that the dot product between the query and the key is
first computed to form the score S = Q · K⊤ These scores are important as they determine
how much attention is given to other words when encoding words at the current position.
These scores are then normalized in order to ensure the stability of the gradient to enhance
training, thereby giving the normalized score Sn = S√

dk
. The softmax function is then

applied to the normalized scores in order to translate them into probabilities P = (Sn) .
These probabilities can then be applied to the value matrix to obtain Z = V · P. This
would mean that vectors with larger probabilities would receive a greater focus from the
consequent layers [5]. In transformers, a multi-head attention system is used wherein the
original queries, keys, and values are projected into H different sets of learned projections.
For each projection, the attention equation from (1) is applied to formulate the output. The
output across the H projections is then concatenated to form the multi-head output. The
formulation for this process can be found in (2).

MultiHeadAttn (Q, K, V) = ( head 1, · · · , head H)WO

where
headi = Attention

(
QWQ

i , KWK
i , VWV

i

) (2)

This process improves upon the performance seen by a single attention layer as
it allows the model to focus on multiple equally important words based on different
criterion instead of simply attributing a single word per input. This allows for multiple
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complex relationships among different elements in a sequence to effectively be captured
by the model [13] and therefore enhances the diversity of the subspace. The original
transformer model proposed uses eight different heads; however, consequential works
have experimented with optimizing the heads to retain the ones which provide the most
important information [14].

1.3. Feedforward Networks

Another important component in the functioning of transformers is the feedforward
network which is applied after the self-attention layers in the encoder and decoder. This
network consists of two linear transformations and a non-linear ReLU activation function
which is applied to each position separately and identically. This allows the model to
ensure the same treatment across all positions in the input, meaning the token is processed
in isolation. This allows the model to learn the complex transformations of the data at
each position. Going back to the example mentioned in the previous section, the feedfor-
ward network in BERT would fine-tune the embeddings by adding additional layers of
abstraction and complexity. So, if there was an example sentence like “The bank of the river
is slippery”, the self-attention would help give context and recognize it is not a financial
organization as discussed previously while the feedforward network would capture the
nuance about the bank being slippery due to it being close to water. The formulation for
this network can be seen in Equation (3).

FFN(x) = max(0, xW1 + b1) ·W2 + b2 (3)

1.4. Residual Connections

The transformer also implements residual connections [15] around each module
followed by layer normalization [16] which applies normalization layer by layer. This
helps mitigate the vanishing gradient problem by allowing gradients to flow directly,
bypassing several layers. We can therefore represent each transformer block using the
formulation seen in Equation (4).

H′ = (Sel f Attention (X) + X) · H =
(

FFN
(

H′)+ H′) (4)

This residual connection boosts the flow of data by relaying the information forward
and therefore serves to enhance the model’s performance. The ‘+’ operator in this equation
refers to element-wise addition which helps combat the vanishing gradient problem. In the
context of the example discussed, these residual connections would make sure essential
characteristics of the word “bank” are not lost in the depth of the model’s layers.

1.5. Position Encodings

As the self-attention process of the transformer discards with the sequential way in
which RNNs or LSTMs handle input embeddings and instead treats all inputs simultane-
ously and identically, it means that the self-attention layer is not able to account for the
position of words in a sentence. However, since the words are sequential, a mechanism
is needed which maintains the positions of the words within the encoded information
and, therefore, the transformer model makes use of position encodings which are added
to the input embedding. In the context of the example, this would mean the position
encoding helps maintain the sequential context that the word “bank” is related to “river”
and “slippery”. The formulation for the added embeddings is seen in Equation (5).

PE(pos, 2i) = sinsin

(
pos

10000
2i

dmodel

)

PE(pos, 2i + 1) = cos

(
pos

10000
2i

dmodel

) (5)
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Wherein pos is the position of a word within a sentence, dmodel is the dimension and i is
the current dimension of the position encoding. Using this, each element of the positional
encoding corresponds to a sinusoid, thereby allowing the transformer model to learn to
pay attention based on relative positions as well, consequently allowing it to extrapolate
to longer sequences. These encodings have indeed been a focal point of the consequent
research aiming to optimize the learning process. Indeed numerous works have proposed
modifications such as a learning process for the encodings [17,18] or a relative form of
position encoding [19].

Having discussed the importance and the working of transformer architecture, and
given the rapid advances in the field of deep learning brought forth due to this model, it
might be noteworthy to examine the historical progression since its introduction in 2017
leading up to transformers taking over many of the state-of-the-art techniques. While there
exist surveys on the various types of transformer architectures that have been proposed,
there seems to be a gap in the analysis from a historical viewpoint. Therefore, the rest
of the paper examines a historical perspective on the progression of notable transformer
architectures in addition to discussing the state-of-the-art techniques and architectures for
data of different types.

2. Survey Methodology

The search for sources for this work was done following the PRISMA checklist [20].
The following subsections illustrate the points focused on for the survey’s methodology.

2.1. Information Sources

Impactful works to be added to the survey were identified by searching online
databases and scanning through the list of references within the main papers. The search
was applied mainly to google scholar, OpenAI, Papers with Code, and arxiv as it was found
that majority of the works on transformers were published through Arxiv. As the survey is
based on the history of transformers, the search was not limited by year, but it was found
that works were present only from the year 2017 to the present. The last search for sources
was done on the 29 September 2023.

2.2. Search

The following search terms were used through all the above-mentioned databases:
Transformers, State-of-The-Art Transformers, Key Transformer Architectures, Transformer
Deep Learning, Transformer Vision, Transformer NLP, BERT.

2.3. Study Selection

The works were first shortlisted by their impact factor and number of citations. They
were then further filtered based on their usefulness to the subject of this survey.

2.4. Data Collection and Data Items

A data extraction Excel spreadsheet was created that consisted of the following
columns: Name of paper, Author, Date, Proposed Model, Datasets, Models Benchmarked
Against, Results, and Key notes. This Excel spreadsheet was connected via a paper serial
number to a word document that consisted of further key points summarized from the
papers.

3. Survey Results
3.1. Early Transformer Implementations
3.1.1. Introductory Works

Since the introduction of the aforementioned transformer model in 2017, a vast array of
works have aimed to build upon its novel architecture in order to optimize its performance
for a variety of domains. Indeed, the work proposing the transformer model has been cited
more than 90,500 times as of 29 September 2023, according to Google Scholar [21]. Among
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the thousands of consequential works, a few emerge as notable models which have conse-
quently contributed to pushing the overall state-of-the-art techniques and have established
themselves as standards in their fields. Figure 3 displays a timeline of these notable works
arranged chronologically and coded according to the domain of implementation.
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In order to benchmark these works, a number of datasets have been utilized by the
various works. A few of the commonly used datasets are BookCorpus [48], WMT 2014 [49],
Wikipedia [50], C4 [22], ImageNet [51], and COCO [52].

An early work building upon the transformer model was that of Shaw et al. [19],
which simply involved extending the self-attention mechanism of transformers to efficiently
consider representations of the relative positions or distances between sequence elements.
This is done by modeling the input as a labeled, fully connected graph with the edges
between input elements xi and xj represented by vectors aV

ij , aK
ij ∈ Rda . A modification is

then made to the transformer equation wherein edge information is then propagated to the
sublayer output as seen in Equation (6).

zi =
n

∑
j=1

αij

(
xjWV + aV

ij

)
(6)

Using these improved embeddings, the authors were able to report improvements in
both the EN-DE and EN-FR tasks over the vanilla transformer architecture.

Another early and majorly consequential work was that of Radford et al. [23] who
proposed the famous Generative Pre-Training (GPT) model. The base model used for the
work was the transformer architecture as it allowed the authors to capture long-range
linguistic structures. The idea proposed by the authors was one where the model can
perform more optimally for small amounts of labeled text data when it is generatively
trained in an unsupervised manner on a large unlabeled text corpus consisting of diverse
samples and then discriminatively fine-tuned on the specific task at hand. They do this
by utilizing a multi-layer transformer-decoder [53] architecture which applies a multi-
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headed self-attention operation over the input context tokens followed by position-wise
feedforward layers to produce an output distribution over the target tokens. These trained
weights can then be used with an auxiliary objective for classification tasks. The architecture
used by the model can be seen in Figure 4.
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A similar approach to that of GPT was seen by the Bidirectional Encoder Representa-
tions from Transformers (BERT) model proposed by Devlin et al. [17], where unlabeled data
is used to pre-train the transformer model in an unsupervised fashion before the model is
fine-tuned using representative samples from the problem at hand. The major improvement
proposed by the authors is the use of bidirectional encoder representations unlike previous
solutions, which involved unidirectional models being used in the learning process such
as GPT using a left-to-right architecture where each token in the self-attention layer was
only able to attend to previous tokens. The BERT model achieves bidirectional learning by
using a masked language model (MLM) pre-training objective which the authors adapted
from the Cloze task [54]. This model randomly masks some of the tokens from the input
with the objective of predicting the original vocabulary ID of the masked work based
on the context. This allows the representation to join the left and right context, thereby
allowing a bidirectional training process. To further the MLM objective, the authors also
implement a next-sentence prediction task which jointly pre-trains text-pair representations.
Thereby, the authors outline two distinct processes in training the model, the pre-training
and the fine-tuning. During the pre-training, the model is given various tasks when training
on unlabeled data, whereas for fine-tuning, the model is initialized with the parameters
from the pre-training and all of the parameters are fine-tuned using labeled data from
the downstream tasks. Each of these tasks has a separate fine-tuned model; however, in
general, there is no architectural difference between the pre-training and the fine-tuning
process except for the output layers. Figure 5, adapted from [17], shows the pre-training
and fine-tuning procedures.
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Using this relatively simple conceptual approach, the BERT model was able to ob-
tain state-of-the-art results on eleven natural language processing (NLP) tasks, thereby
establishing it as a notable work which numerous consequent models have been built upon.

It was soon after that, in the beginning of 2019, that Radford et al. followed up their
proposed GPT model with a model they called GPT-2 which followed a similar philosophy
of multi-task learning which they based on a framework proposed by Caruana [53]. In their
work, Radford et al. aimed to unify the two dominant approaches, namely, pre-training
followed by supervised fine-tuning as well as a technique with unsupervised approaches
towards specific tasks such as commonsense reasoning [55] and sentiment analysis [24].
They achieve this by performing language modeling where, in addition to conditioning
a model on the input, it is also conditioned on the task. They train their model in an
unsupervised manner on a dataset consisting of millions of web pages, called WebText,
producing GPT-2, which is an enormous 1.5 billion parameter model which achieved state-
of-the-art results on seven language modeling tasks in a zero-shot system. The authors
hypnotized that a large enough model would learn tasks embedded within language and
would not require explicit, supervised training, which was proven by their results.

Meanwhile, Wang et al. [25], in 2019, proposed a direct improvement upon the trans-
former model itself by formulating a deep transformer model which they claimed would
bypass the prevalent big transformer counterpart. They achieved this using a dual ap-
proach where, firstly, they implemented the proper use of layer normalization in addition
to introducing a novel way to pass the combinations of previous layers to the next ones.
Furthermore, they trained a 30-layer encoder, which they claim was the deepest at the time.
Using this approach, the authors were able to outperform the results of both the shallow
and the big transformers on the WMT’16 EN-DE, the NIST OpenMT’12 Chinese-English,
and the WMT’18 Chinese-English tasks.

Liu et al.’s proposed Robustly Optimized BERT Pre-training Approach (RoBERTa)
model [26] was introduced with the idea of improving the limitations of the BERT model
which were caused by significant undertraining. The authors achieved this by training the
model over a larger dataset, which consisted of CC-News and OpenWebText in addition to
the two datasets used to train the original BERT model, and training on longer sequences.
The performance was further improved by making the following changes on the original
model: dynamically changing the masking pattern that was applied to the training data and
removing the Next Sentence Prediction (NSP) objective. Unlike in the BERT model, where
the mask was generated only once during the data preprocessing stage, for the RoBERTa,
the authors generate a masking pattern every time a sequence is fed into the model.
The authors came to the conclusion that removing NSP matched or slightly improved
the downstream task performance after comparing the training of their model with and
without NSP. Throughout their experimentation, for a more accurate comparison, the
original optimization hyperparameters of the BERT model were initially maintained. The
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model was able to achieve state-of-the-art results on GLUE [56], RACE [57] and the Stanford
Question-Answering Dataset (SQuAD) [58], which are notable NLP tasks.

Another notable proposed modification of the transformer model is that outlined by
Sukhbaatar et al. [27], which suggests removing the feedforward layer from the transformer
architecture and solely using the attention layers. This is done by augmenting the attention
layers with persistent memory vectors which serve the same purpose as the feedforward
layers. On the first level, they first show that a feedforward sublayer can be viewed as
an attention layer. This argument can then be used to merge them into a single layer
which performs both functions by applying the attention mechanism simultaneously on the
sequence of input vectors, as in the attention layer, as well as a set of vectors not conditioned
on the input. Using this approach, they report outperforming models of similar sizes on
the enwik8 and WikiText-103 datasets.

An interesting work published in late 2019 that explored the NLP landscape is that
of Raffel et al.’s T5 model [22]; the researchers followed a transfer learning approach in
introducing a unified framework which converted all text-based language problems into
a text-to-text format. They experiment with a variety of pre-training objectives, architec-
tures, datasets and transfer approaches in addition to developing a new dataset they call
the Colossal Clean Crawled Corpus. Using this pre-training regime, they report having
achieved state-of-the-art results on a number of prevalent challenges in summarization,
question answering, and text classification.

3.1.2. Further Progression

In early 2020, Shazeer [28] proposed an improvement to the transformer model, which
involved variants of Gated Linear Units (GLUs) [59] being applied to the feedforward
sublayers of the transformer model. These variations were implemented using different
linear and non-linear activation functions in place of sigmoids, and the authors report
an improvement in performance over the generally used ReLU activation function when
evaluating on the SQuAD, GLUE, and SuperGlue [60] tasks.

It was in April of 2020 that a key architecture in the form of the Lite Transformer was
introduced by Wu et al. [29]. The reasoning behind the introduction of this architecture was
that the authors argued that transformers require an enormous amount of computation in
order to achieve high performance and, therefore, they would not be suitable for mobile
applications that are constrained by hardware and battery resources. Therefore, they pro-
posed the Lite Transformer specifically to be deployed to perform NLP on mobile devices.
They introduce Long-Short Range Attention (LSRA), where one group of heads specialize
in local context modeling using convolution while the other specializes in long-distance
relationship modeling using attention. They report that this approach shows improvement
over the vanilla transformer in three established language tasks, namely, machine transla-
tion, abstractive summarization, and language modeling. The Lite Transformer block can
be seen in Figure 6.

Using this approach, the proposed model reduces the computation of the transformer
base model by 2.5× with only a 0.3 BLEU score degradation. Furthermore, the authors
report implementing pruning and quantization processes to compress the model size by
18.2×.

Carion et al. [30] propose a ground-breaking object detecting transformer named
DETR that views object detection as a direct set prediction problem. The main components
of the model are a set-based loss that forces predictions via a bipartite matching and a
transformer encoder and decoder. The overall architecture of the model is illustrated in the
following Figure 7.
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The CNN is used to extract a compact feature representation of the input image by
generating a low-resolution activation map. The transformer’s encoder and decoder follow
the model architecture of Vaswani et al. [1]. The decoder output encodings are decoded
into box coordinates and class labels by the feedforward network. The object detection set
prediction loss produces a bipartite matching between the predicted and the ground truth
objects and then optimizes the object-specific losses. This model is on par with state-of-
the-art Faster R-CNN baseline on the famous COCO object detection dataset. The Faster
R-CNN was a model proposed by Ren et al. which used a Region Proposal Network to
generated region proposals which were then used by a Fast R-CNN for detection [61].

Around mid-2020, Brown et al. [31] proposed a work which improved on the state-of-
the-art NLP transformer model by proposing their improved GPT-3 model. The authors
scale-up the model by training it with 175 billion parameters which results in a model
which can perform a variety of tasks without requiring task-specific gradient updates or
fine-tuning, unlike the previous generations of the model. The other variation from the
architecture of GPT-2 is that of the use of alternating dense and locally banded sparse
attention patterns in the layers of the transformer. The model is able to perform well and
even achieve SOTA results on famous NLP dataset tasks with few-shot demonstrations
which are specified purely via text interactions with the model.
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Dosovitskiy et al. [32] introduced the Vision Transformer (ViT) in late 2020, which
caused a shift in the research field. In order to adapt the transformer for image tasks,
the authors applied a standard transformer to images by splitting an image into patches
and providing the sequence of the linear embeddings of the patches as the input to the
transformer. The overview of the ViT model can be seen in Figure 8.
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The image is first broken down into patches which are passed through a trainable
linear projection resulting in a D-dimension latent vector where D is the latent vector size
used by the transformer in its layers. An additional embedding at position 0 is added,
which serves as a class label. A classification head consisting of simple, dense layers is
added with a hidden layer during pre-training and a single linear layer while fine-tuning.
The authors report improvements on the state-of-the-art results achieved by CNN-based
models for a range of benchmark datasets such as ImageNet [51], CIFAR10, CIFAR100 [62]
and Oxford-IIIT Pets [63].

An interesting implementation using transformer architecture was that created by
Zheng et al. [33], who proposed a segmentation model named the Segmentation Trans-
former (SETR). They implement a solution wherein semantic segmentation is treated as a
sequence-to-sequence prediction task with a transformer being deployed to encode an im-
age as a sequence of patches. They combine the encoder with a single decoder by modeling
the global context in each layer of the transformer. Figure 9 shows the architecture of their
proposed system.
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In the system, the image is first split into fixed patches which are linearly embedded
with position encodings added. The resulting sequence of vectors is then fed into a
standard transformer encoder. They propose two different decoder designs for pixel-
wise segmentation, as can be seen in parts (b) and (c) of Figure 9. They then put these
features together through a multi-level feature aggregation system as seen in part (c) in
Figure 9. Using this methodology, they were able to achieve state-of-the-art results on the
ADE20K [64] and Pascal Context [65] challenges.

To study the low-level vision tasks like denoising, super-resolution, and deraining,
Chen et al. [34] worked on developing a new pre-trained model using transformer archi-
tecture, called the image processing transformer (IPT). The entire network is composed
of multiple pairs of heads and tails corresponding to different tasks and a single shared
body, so the pre-trained model becomes more compatible with different image processing
tasks. Multiple corrupted counterparts were generated for each image in the famous bench-
mark ImageNet dataset using several carefully designed operations. The model was then
trained on the dataset’s original images in addition to the newly generated images, and it
outperformed the current state-of-the-art methods on several low-level benchmarks.

Touvron et al. [35] proposed a major non-convolutional transformer model, called the
DeiT, that has fewer parameters than the ResNet model, which makes it trainable on a
single computer in less than 3 days. Furthermore, a teacher–student strategy which relies
on a distillation token procedure was used to ensure that the student learns from the teacher
through attention. Using the distillation technique enables image transformers to learn
more from a convent than from another comparably performing transformer. Therefore, a
combination of those techniques results in a top accuracy of 85.2% on ImageNet with no
external data. Consequently, transferring these models to a different downstream task, such
as a fine-grained classification on popular benchmark datasets like CIFAR-10, Oxford-102
flowers, and Stanford Cars, achieved competitive results.

3.1.3. Recent Advancements

Fedus et al. [36], in early 2021, found that the widespread adoption of the mixture of
experts (MoE) model has been obstructed by the complexity, communication costs, and
training instability of the model. As a result, they introduced the switch transformer to
simplify the MoE routing algorithm and reduce the communication and computational
costs. This is done by distilling the sparse pre-trained and specialized fine-tuned models
into small, dense models while preserving 30% of the quality grains. To increase the scale
of the neural language model, data, model, and expert parallelism was combined to build
models with a trillion parameters which improved the pre-training speed four times for a
strongly tuned T5-XXL baseline model.

Radford et al. [37], meanwhile, aimed to leverage a much broader source of supervision
by utilizing the raw text about the images to train a model instead of training it on a fixed
set of predetermined object categories. They have shown that learning a SOTA image
representation from scratch can be efficiently done by pre-training a model to match
the captions with the corresponding images. Following the pre-training phase, natural
language is used to reference the learned visual concepts or express new ones, which, in
turn, enables the zero-shot transfer of the models to downstream tasks. This approach was
tested on 30 different existing computer vision datasets and has proven its competitivity
with the fully supervised baseline models without the need for any dataset specific training.

In a recent implementation, Zhai et al. [38] aim on scaling-up the original ViT model
to achieve better results, generating a model that they named ViT-G. Through the improve-
ments made, the authors were able to train their model using data parallelism alone and
were able to fit the entire model on a single TPUv3 core. The model was scaled-up with two
billion parameters. The authors removed the class token to save memory and additionally
equated the number of multi-head attention-pooling heads to the number of attention
heads in the model. Finally, they removed the final nonlinear projection before the final
prediction layer, which was present in the original ViT model. The authors also scaled-up
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the data by using a larger version of the JFT-300M dataset, namely, the JFT-3B dataset.
Using this model, the authors were able to achieve a new state-of-the-art result on the
ImageNet dataset with a top accuracy of 90.45%. They also proved that they achieved a
decent accuracy of 84.86% with few-shot learning, limiting to only 10 examples per class
from the ImageNet dataset for fine-tuning.

To make large-scaled language models more accessible, less complex and resources less
expensive, Zhang et al. [39] propose a suite of eight decoder-only pre-trained transformers
that consist of 125 million to 175 billion parameters, namely, Open Pre-trained Transformers
(OPTs). Their model is comparable to the state-of-the-art GPT-3 model with only 1/7th of
the carbon footprint. The model is directly developed from the GPT-3 model with a change
in the number of layers and attention heads to vary the parameter size. The smallest model,
consisting of 125M parameters, consists of 12 layers and 12 attention heads, while the
biggest model, consisting of 175B parameters, consists of 96 layers with 96 attention heads.
The batch size is varied from the original model to increase computational efficiency. While
training the OPT-175B model, the authors faced an issue of loss divergence, which they
fixed by lowering the learning rate and restarting the training from an earlier checkpoint.
The authors noticed a correlation between the loss divergence, the dynamic loss scalar
crashing to zero, and the l2-norm of the activations of the final layer spiking. From this,
the authors derived a conclusion to pick restart points where the dynamic scalar loss was
still in the healthy state, which is greater than 1. The models were also additionally trained
with a larger set of data, including datasets that were used to train the RoBERTa, The Pile
dataset, and the PushShift.io Reddit dataset. The models were evaluated across 14 NLP
tasks, and it was seen that for zero-shot, the average performance follows the trend of
GPT-3 for 10 tests.

3.2. Text-Based Applications

Transformers have revolutionized the realm of text-based applications and natural lan-
guage processing (NLP) through providing solutions to a variety of problems such as text
classification, question answering, text summarization, machine translation, and text gen-
eration [66]. The first prevalent model in text-based applications is one already analyzed
previously—the BERT model proposed in 2018 by Devlin et al. [17]. Despite being a number
of years old, this architecture is still relevant to this day due to how groundbreaking it was
when it was proposed. Indeed, the BERT model’s NLP transformer has been the base for
various other prevalent models such as the RoBERTa [26] in 2019, which achieved excellent
results by proposing a variation of the BERT model, ETC [67], in 2020, which reported high
performance when building upon the BERT model and using the weights provided by the
RoBERTa as well as Big Bird [68] in 2021, which was proposed as a variation of the BERT
model for longer sequences. Another notable implementation of transformers for the text
domain is that of TENER [69], proposed in 2019 as a solution to using transformers for the
named entity recognition task—which is the task of finding the start and end of an entity in a
sentence and assigning a class for this entity. This is especially useful in applications such as
question generation [70], relation extraction [71], and coreference resolution [72]. This model
adapts the transformer encoder to model character-level features and word-level features.

3.3. Image-Based Applications

In the realm of image-based applications, an early implementation was that of the
Image Transformer proposed by Parmar et al. in 2018 [73]. This model restricted the
transformer’s self-attention to attend to local neighborhoods. However, in the domain of
images, one model reigns supreme, which is that of the Vision Transformer introduced
by Dosovitsky et al. in 2020 [32], which was discussed earlier in this work. Numerous
consequential works have been derived from this proposed model. A work based on ViTs,
which outperformed it, was that of Touvron et al. [35], which has also been previously
described in this paper. An alternative framework based on ViTs is that of the Feature
Fusion Vision Transformer (FFVT) proposed by Wang et al. [74] in 2021, which adopts
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the patch generation process employed by ViTs but modifies it to avoid overlap. An
extremely recent solution making use of transformers in the field of vision is that of the
Unsupervised Semantic Segmentation Transformer (STEGO), proposed in March 2022
by Hamilton et al. [75]. This model makes use of transformers to localize semantically
meaningful categories within image corpora without any form of annotation. This is done
by using a novel loss function that encourages features to form compact clusters while
preserving their relationships across the corpora.

3.4. Miscellaneous Applications

In addition to the previously identified domains, a couple of miscellaneous approaches
are discussed. The first of them is that of audio classification, for which a number of audio
transformers have been proposed over the years. The first of these was proposed by Dong
et al. in 2018 [76] with the idea of applying a two-dimensional attention block in the
proposed audio transformer model. A consequential model for audio captioning was that
of the Audio Captioning Transformer (TRACKE) proposed by Koizumi et al. [77] in 2020.
The TRACKE estimates keywords, which comprise a word set corresponding to audio
events/scenes in the input audio, and generates the caption while referring to the estimated
keywords to reduce word-selection indeterminacy. Following this, in 2021, the Audio
Spectrogram Transformer was proposed by Gong et al. [78] as a convolution-free, purely
attention-based model for audio classification.

The second miscellaneous set of approaches are those of time series modeling, first
introduced through the work proposed by Liu et al. in 2021 [79]. This is done by adding
gating to the vanilla transformer in an approach they call Gated Transformer Networks.
Another model proposed in 2021 was for time series forecasting, by Zhou et al., which they
call the Frequency Enhanced Decomposed Transformer (FEDformer) [80]. An interesting
time-series-based implementation using transformers is that of the TranAD proposed
by Tuli et al. in 2022 for anomaly detection in time series data [81]. The TranAD uses
focused score-based self-conditioning to enable robust multi-modal feature extraction and
adversarial training to gain stability. The results obtained by these models are highlighted
in the next section.

3.5. Recent Directions

The recent increase in the relevance of transformers and the work being conducted in
exploring the uses of these versatile models has resulted in transformers becoming more
accessible for implementation in various real-world applications. Indeed, one of the appli-
cations which has greatly seen the use of transformers is that of medical image analysis [82].
While numerous works have previously aimed at applying a variety of artificial intelligence
algorithms towards solving key issues within the realm of medicine, such as COVID-19
detection [83] and the extraction and detection of a fetal electrocardiogram [84,85], with
the introduction of transformers for vision, a large number of techniques such as image
synthesis/reconstruction, registration, segmentation, detection, and diagnosis have been
unlocked. Indeed, as Li et al. [86] discuss, the ability of transformers to capture long-range
dependencies as well as the scalability of self-attention enables their diverse usage within
the medical field. In addition to the capabilities of transformers to be used within medical
imaging, Shamshad et al. [87] discuss their implementations in various other medical
applications such as leveraging their text generation ability to generate medical reports as
well as using it for regression tasks such as survival outcome prediction.

With the increase in the general depth and complexity of transformers, a number of
researchers have chosen to focus on the stability of extremely deep transformers. One such
approach relying on scaling is that of the DeepNet proposed by Wang et al. [40], which
introduces a new normalization function to modify the residual connections in transformers
along with having a theoretically derived initialization process. Using this technique, they
report being able to successfully scale transformers up to 1000 layers.
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Furthermore, with the rise in the adaptation and use of transformers, an increase in
the focus on developing a lighter version of transformers has been noted. This is because,
while transformers have produced revolutionary results, it has been at a huge computation
cost, thereby preventing the models from being as easily adapted as earlier deep-learning
techniques such as CNNs [88]. To this end, numerous researchers have proposed works
aiming to scale or slim the weights of a traditional transformer. A notable attempt is
that of the EfficientFormer and EfficientFormerV2 proposed by Li et al. [41,42]. These
models make use of a process called latency-driven slimming to reduce the time taken for
inferencing using the trained transformers. The EfficientFormerV2 work further introduces
a fine-grained joint-search strategy that can find efficient architectures by optimizing the
latency and the number of parameters simultaneously. A similar work aiming to achieve
efficient image recognition was that of the AdaViT proposed by Meng et al. [43], which
serves as a computational framework learning to derive policies on which patches, self-
attention heads, and transformer blocks to use throughout the backbone on a per-input
basis. This is done by attaching a lightweight decision network to the backbone to produce
on-the-fly decisions. A similar thought process was seen in the case of the A-ViT method
proposed by Yin et al. [44] that adaptively adjusts the inference cost for images of different
complexities. This is done by reducing the number of tokens in the ViT as the inference
proceeds. Using the proposed method requires no extra parameters or sub-networks,
unlike the AdaViT, as the learning of the adaptive halting is based on the original network
parameters. A recent work aiming to improve the efficiency of transformer inference is
that of Pope et al. [45], who develop an analytical model for inference efficiency to select
the best multi-dimensional partitioning techniques. These are combined with low-level
optimizations to achieve a Pareto frontier on latency and FLOPS utilization tradeoffs.

Another key work was that of Zhang et al. in the introduction of the MiniViT
model [46], which applies weight multiplexing to reduce the complexity of the traditionally
immense vision transformer. This is done by multiplexing the weights of consecutive trans-
former blocks, wherein weights are shared across layers, while imposing a transformation
on the weights to increase diversity. Furthermore, the weight distillation over self-attention
is also applied to transfer knowledge from the large ViT models to the weight-multiplexed
compact models.

Yu and Wu [47] proposed a pruning framework to be applied to ViTs in order to simplify
all components in a transformer without altering the structure. This framework, called the UP-
ViT, estimates the importance score of each filter in a pre-trained ViT model before removing
redundant channels. Furthermore, they propose a progressive block-pruning method that
removes the least important block and proposes new hybrid blocks for ViTs.

An interesting area of recent work has been in making the training of transformers
a more data-efficient process. An early work in this space was that of the previously
discussed DeiT model proposed by Touvron et al. [35], who proposed using what they
called a distillation token to effectively learn from a teacher in a teacher–student method
employed to train transformers. This distillation token is learned through backpropagation,
through the interaction with the class and patch tokens through self-attention layers. A
more recent approach towards achieving data-efficient training is proposed by Wang
et al. [89], who aim to achieve this by claiming that the sparse feature sampling from local
image areas is key and, therefore, they propose a procedure where they alternate how
key and value sequences are constructed in the cross-attention layer. Furthermore, they
also introduce a label augmentation method which provides richer supervision, in turn,
achieving greater data efficiency.

4. Discussion
4.1. Historical Insight

Table 1 summarizes the historical works discussed in the previous section. The works
are color-coded in the timeline, wherein the works targeted towards text and NLP tasks are
color-coded in blue and the works targeted at image-related tasks are color-coded in orange.
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Table 1. A summary of the history of transformer studies.

Name of Paper Author Date Proposed
Model Datasets Models Benchmarked

Against Results No. of
Citations

Attention Is All You
Need [1]

Vaswani
et al. Jun 2017 Transformer

WMT 2014
English-to-German

translation task, WMT
2014 English-to-French

translation task

ByteNet, Deep-Att +
PosUnk, GNMT + RL,

ConvS2S, MoE,
Deep-Att + PosUnk

Ensemble, GNMT + RL
Ensemble, ConvS2S

Ensemble

28.4 BLEU for EN-DE
and 41.8 BLEU for

EN-FR with Transformer
(Big)

90,568

BERT: Pre-training of
Deep Bidirectional
Transformers for

Language
Understanding [17]

Devlin
et al. Oct 2018 NLP

Transformer
BooksCorpus, English

Wikipedia
GLUE, SQuAD v1.1,

SQuAD v2.0

BERT Large average
score of 82.1 on GLUE

testing
78,786

Self-Attention with
Relative Position

Representations [19]

Shaw
et al. Mar 2018

Translation
NLP

Transformer

WMT 2014
English–German, 2014
WMT English–French

Original transformer

English-to-German
improved over the

baseline by 0.3 and 1.3
BLEU for the base and

big configurations,
respectively, and

English-to-French
improved by 0.5 and 0.3
BLEU for the base and

big configurations,
respectively

1882

Improving Language
Understanding by

Generative
Pre-Training [23]

Radford
et al. Jun 2018 GPT

Unsupervised
training—BooksCorpus

fine-tuning based on
task-natural language

inference, question
answering, semantic
similarity, and text

classification, all present
in GLUE

NLI-ESIM + ELMo,
CAFE, Stochastic
Answer Network,

GenSen, Multi-task
BiLSTM + Attn

QA-val-LS-skip, Hidden
Coherence Model,

Dynamic Fusion Net,
BiAttention MRU

SS, Classification-sparse
byte mLSTM, TF-KLD,

ECNU, Single-task
BiLSTM + ELMo + Attn,

Multi-task BiLSTM +
ELMo + Attn

Best results:
NLI-SNLI-89.9 QA-Story

Cloze-86.5
SS-STSB-82.0

Classification-CoLA-
45.4

GLUE-72.8

6642

RoBERTa: A Robustly
Optimized BERT

Pre-training
Approach [26]

Liu et al. Jul 2019 Variant of
BERT

BooksCorpus, English
Wikipedia, CC-News,
OpenWebText, Stories

BERT Large, XLNet
Large

Enseambles-ALICE,
MT-DNN, XLNet

Best results: SQUAD
1.1-F1-94.6

Race-Middle-86.5
GLUE-SST-96.4

8926

Language Models are
Unsupervised

Multitask Learners
[90]

Radford
et al. Feb 2019 (GPT2) GPT

variation
Created own dataset

called WebText
Baseline models, in

general

55 F1 on CoQa, matches
or exceeds 3 of 4

baselines, has
state-of-the-art results

on 7/8 datasets

6954

Learning Deep
Transformer Models

for Machine
Translation [25]

Wang
et al. Jun 2019

Translation
NLP

Transformer

WMT’16
English–German

(En-De) and NIST’12
Chinese–English

(Zh-En-Small)

Original transformer

Avg. BLEU scores [%]
on NIST’12

Chinese-English
translation: 52.11

BLEU scores [%] on
WMT’18

Chinese-English
translation:

newtest17-26.9,
newstest18-27.4

548

Augmenting
Self-attention with
Persistent Memory

[27]

Sukhbaatar
et al. Jul 2019

Introduction
of new

Layer for
transformer

Character level
modeling—enwik8,

text8
Word level modeling—

wikiText-103

Character-LN
HM-LSTM, Recurrent

highway networks,
Large mLSTM, T12,

Transformer+adaptive
span

Word-LSTM, TCN,
GCNN-8,

LASTM+nEURAL
CACHE, 4-LAYER

QRNN,
LSTM+Hebbian+Cache,

Transformer XL
Standard

enwik8-1.01
text8-1.11
wiki-18.3

94
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Table 1. Cont.

Name of Paper Author Date Proposed
Model Datasets Models Benchmarked

Against Results No. of
Citations

GLU Variants
Improve Transformer

[28]
Shazeer N Feb 2020

Variation of
original and

T5 by
adding GLU

layers

C4 T5
GLUE best average

score of
84.67-FFNReGLU

141

Exploring the Limits
of Transfer Learning

with a Unified
Text-to-Text

Transformer [22]

Raffel
et al. Jan 2020 NLP

Transformer
C4, fine-tuning using

GLUE and SuperGLUE
Self-trained Baseline
experimental setup

GLUE-85.97
CNNDM-20.90
SQuAD-85.44
SGLUE-75.64
EnDe-28.37
EnFr-41.37
EnRo-28.98

10,117

Lite Transformer With
Long-Short Range

Attention [29]
Wu et al. Apr 2020

Lightweight
translation
transform-

ers to deploy
on end
devices

IWSLT’14
German–English, WMT

English to German,
WMT English to
Franch (En-Fr)

Original Transformer,
adaptive inputs (Baevski

and Auli)

CNN-DailyMail-F1-
Rouge-R-1:41.3, R-2:18.8,

R-L:38.3 (did not beat
original but lighter)

WIKITEXT-103-Valid
ppl.-21.4, Test ppl.-22.2

234

End-to-End Object
Detection with

Transformers [30]

Carion
et al. May 2020

Object
detection

Transformer
COCO 2017

Different variations of
Faster RCNN for

detection
Panoptic FNN, UPSnet

for panoptic
segmentation

Panoptic Quality-45.1
Able to classify classes

in general without being
biased to the training

images

7829

Language Models are
Few-Shot Learners

[31]

Brown
et al. May 2020 GPT-3

Common Crawl,
WebText, Books1,

Books2, Wikipedia

QA-RAG, T5-11B (2
variants)

QA-Beats SOTA IN
TriviaQA-71.2,

GPT-3-FewShot
LAMBADA-FEW

SHOT-86.4 (BEATS
SOTA)

PIQA-few-shot-82.8

14,698

An Image is Worth 16
× 16 Words:

Transformers for
Image Recognition at

Scale [32]

Dosovitsky
et al. Oct 2020

Vision
Transformer

(ViT)

Trained on
ILSVRC-2012,

ImageNet-21k, JFT
Transfered on ReaL
labels, Cifar10/100,

Oxford-IIT Pets, Oxford
Flowers-102

BiT-L (ResNet152x4),
Noisy Student

(EfficientNet-L2)

ImageNet-88.55-ViT-H
ReaL-90.72-ViT-H

CIFAR-10-99.50-ViT-H
CIFAR-100-94.55-ViT-H
Oxford-IIIT-Pets-97.56-

ViT-H
Oxford

Flowers-99.74-ViT-L
VTAB (19

tasks)-77.63-ViT-H

21,833

Pre-Trained Image
Processing

Transformer [34]

Chen
et al. Dec 2020

Image
Processing

Transformer
(IPT)

ImageNet

Super-resolution-VDSR,
EDSR, RCAN, RDN,

OISR-RK3, RNAN, SAN,
HAN, IGNN image
denoising-CBM3D,

TNRD, DnCNN,
MemNet, IRCNN,

FFDNet, SADNet, RDN
image deraining-DSC,

GMM, JCAS, Clear,
DDN, RESCAN,

PReNet, JORDER.E,
SPANet, SSIR, RCDNet

Super resolution:
set5-38.37, set14-34.43,

B100-32.48,
Urban100-33.76

image denoising:
BSD68-30-30.75,

50-28.39, Urban100
30-32.00, 50-29.71

deraining:
Rain100L-PSNR-41.62,

SSIM-0.9880

1129

Training data-efficient
image transformers

and distillation
through attention [35]

Touvron
et al. Dec 2020 based on

ViT (DeiT) ImageNet
ResNet, RegNetY,

EfficientNet, KDforAA,
ViT (all versions)

DeiT-B 384/1000 epochs
outperforms ViT and
EffecientNet-85.2 acc

4021

Rethinking Semantic
Segmentation from a

Sequence-to-
Sequence Perspective

with Transformers
[33]

Zheng
et al. Dec 2020

Semantic
Segmenta-

tion
Transformer

(SETR)

CityScapes, ADE20K,
Pascal Context, all
trained separately

SCN, Semantic FPN
ADE20K Dataset-FCN,
CCNet, Strip pooling,

DANet, OCRNet,
UperNet, Deeplab V3+
Pascal Context-DANet,

EMANet, SVCNet, Strip
pooling, GFFNet,

APCNet
Cityscapes

validation-FCN, PSPNet,
DeepLab-V3, NonLocal,

CCNet, GCNet,
Axial-DeepLab-XL,
Axial-DeepLab-L

ADE20K-mIoU = 50.28
Pascal = 55.83

Cityscapes = 82.15
2030
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Table 1. Cont.

Name of Paper Author Date Proposed
Model Datasets Models Benchmarked

Against Results No. of
Citations

Switch Transformers:
Scaling To Trillion
Parameter Models
With Simple And

Efficient Sparsity [36]

Fedus
et al. Jan 2021 Transformer Colossal Clean Crawled

Corpus (C4) MoE, T5

Negative Log Perplexity
(quality threshold)

-1.534
Best average score on
SQuAD with score of

88.6 vs. T5

894

Learning Transferable
Visual Models From
Natural Language
Supervision [37]

Radford
et al. Feb 2021

Text-to-
Image

transformer

Created own dataset
called WIT

(WebImageText)—has
the similar wordcount to

WebText

Visual N-Grams for
comparison on zero-shot

transfer

aYahoo-98.4
ImageNet-76.2 SUN-58.5 8121

Scaling Vision
Transformers [38] Zhai et al. Jun 2021 Scaled-up

ViT (ViT-G) JFT-3B NS, MPL, CLIP, ALIGN,
BiT-L (ResNet), ViT-H

ImageNet-90.45 INet
V2-88.33 VTAB

(light)-78.29
573

OPT: Open
Pre-trained
Transformer

Language Models [39]

Zhang
et al. May 2022

Pre-trained
NLP trans-

formers,
architecture

followed
GPT-3

BookCorpus, Stories,
CCNews v2,

CommonCrawl, DM
Mathematics, Project

Gutenberg,
HackerNews,
OpenSubtitles,

OpenWebText2, USPTO,
Wikipedia, dataset
Baumgartner et al.

Dialogue
Evaluations—Reddit

2.7B, BlenderBot1, R2C2
BlenderBot

Hate Speech
detection—Davinci
CrowS-Pairs-GPT-3

SteroSet-Davinci
Dialogue Responsible

AI Evaluations—Reddit
2.7B, BlenderBot1, R2C2

BlenderBot

Outperforms Davinci in
hate speech detection,

best is few-shot
(multiclass) with
F1-score of 0.812,

CroS-Pairs—better than
GPT-3 only in two

categories, Religion and
Disability, with an

accuracy of 68.6% and
76.7%, respectively,

StereoSet—Almost same
as Davinci

719

The table above summarizes key information from the history of the studies discussed
in the previous section. In addition to the name of the study, the author and the date,
the table also outlines the approach presented as well as the datasets evaluated upon, the
models benchmarked against, and the obtained results. Finally, the number of citations
attained by the paper as of the writing of this paper are also listed in order to emphasize
the importance of some of the presented studies.

In general, it can be seen that a number of works have chosen to add or modify layers
of the base transformer models, which has overall been seen to achieve good performance.
Indeed, such an approach is seen in works such as those of Shaw et al. [19], Wang et al. [25],
Sukhbaatar et al. [27], and Shazeer [28].

Another common approach for NLP tasks which has been shown to work really well
is to increase the size of the model to a very large number of parameters and to pre-train
it in an unsupervised fashion on a large corpus of data. This has been seen in numerous
state-of-the-art models such as the GPT [23], BERT [17], GPT-2 [90], RoBERTa [26], T5 [22],
and the GPT-3 [31] models, in the work of Radford et al. [37], and in the OPT model [39].

Yet another form of approaches involves the addition or modification of the loss
functions associated with the transformer model. Such an approach was seen in the case of
the work performed by Carion et al. [30].

When it comes to images, the general procedure followed by the previous studies was
to split images into patches and apply position embeddings on these patches, much like
what is done for texts. This was indeed the process followed by the Vision Transformer
(ViT) [32]. Other vision models implemented varied decoders such as the work proposed
by Zheng et al. [33]. Similarly, studies such as that by Chen et al. [34] make use of multiple
pairs of heads and tails corresponding to different low-level vision tasks. The ViT-G model
proposed by Zhai et al. [38] followed a procedure where the class token was removed and
the non-linear projection before the final layer was removed.

4.2. Application-Based Implementations
4.2.1. Text-Based Applications

As can be seen from the types of models used for these applications, an important
aspect in the implementation of text-based transformers is the encoder and the encoding
of the input. Indeed, the model achieving the most widespread usage has been the BERT
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model [17], which involves modifying the input encodings to make them bidirectional.
The RoBERTa [26] builds upon this by adding an optimized pre-training process. Indeed,
most of the other NLP-solving approaches have involved modifications to input encodings
such as the TENER [69], ETC [67], and the Big Bird [68] models, thereby demonstrating the
importance of encodings to the NLP process. Table 2 below displays a summary of notable
transformer studies in the domain of NLP.

Table 2. A summary of the transformer studies in the domain of NLP.

Name of Paper Author Date Proposed
Model Datasets

Models
Benchmarked

Against
Results

BERT:
Pre-training of

Deep
Bidirectional

Transformers for
Language

Understanding
[17]

Devlin et al. 2018 NLP
Transformer

BooksCorpus, English
Wikipedia

GLUE, SQuAD v1.1,
SQuAD v2.0

BERT Large average
score of 82.1 on GLUE

testing

RoBERTa: A
Robustly

Optimized BERT
Pre-training

Approach [26]

Liu et al. 2019 Variant of
BERT

BooksCorpus, English
Wikipedia, CC-News,
OpenWebText, Stories

BERT Large, XLNet
Large

Enseambles-ALICE,
MT-DNN, XLNet

Best results:
SQUAD 1.1-F1-94.6
Race-Middle-86.5
GLUE-SST-96.4

TENER:
Adapting

Transformer
Encoder for

Named Entity
Recognition [69]

Yan et al. 2019

Sequence
labeling
(NER)

transformer

English
NER-CoNLL2003,

OntoNotes 5.0
Chinese NER-Chinese
part of OntoNotes 4.0,

MSRA, Weibo NER,
Resume NER

Chinese
NER-BiLSTM,

1D-CNN, CAN-NER,
Transformer english
NER-BiLSTM-CRF,
CNN-BiLSTM-CRF,
BiLSTM-BiLSTM-

CRF,
CNN-BiLSTM-CRF,

1D-CNN,
LM-LSTM-CRF, CRF +

HSCRF, BiLSTM-
BiLSTM-CRF, LS +

BiLSTM-CRF, CNˆ3,
GRN

F1-scores
Chinese

NER-Weibo-58.17,
Resume-95.00,

OntoNotes4.0-72.43,
MSRA-92.74

English
NER-ontoNotes

5.0-88.43,
model+CNN-char get
91.45 for CoNLL 2003

ETC: Encoding
Long and

Structured Inputs
in Transformers

[67]

Ainslie et al. 2020

Variation of
BERT-lifted

weights from
RoBERTa

BooksCorpus, English
Wikipedia BERT, RoBERTa

Leaderboard results
SOTA (1ST) NQ long

answer-77.78
HOTPOT QA
SUP.F1-89.09

WikiHop-82.25
OpenKP-42.05

Big Bird:
Transformers for
Longer Sequences

[68]

Zaheer et al. 2021 Variation of
BERT MLM

HGN, GSAN,
ReflectionNet,

RikiNet-v2,
Fusion-in-decoder,

SpanBERT,
MRC-GCN,
MultiHop,

Longformer

Answering QA
task-Best results (F1

SCORE)
HotpotQA-Sup-89.1
NaturalIQ-LA-77.8
TriviaQA-Verified-

92.4
WikiHop-82.3

(accuracy)

4.2.2. Image-Based Applications

Table 3 below successfully illustrates that the vision domain of transformers is very
extensive and is used for many different kinds of applications such as image classification
and segmentation. To date, the greatest model is the ViT [32], and many other significant
models are based on improving its performance by tweaking its architecture, such as the
study by Wang et al. [74] where they just modify the patch generation by avoiding overlap.
The recent introduction of the work by Hamilton et al. [75] opens the door to unsupervised
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segmentation, proven through their decent results of an accuracy of 76.1%. This solution
would solve a lot of real-world-based problem applications, as those datasets are often
unbalanced or have less amounts of labeled data. A concrete quantitative analysis across
the previous studies is difficult to achieve due to the fact that all the authors report results
on different datasets and also report different evaluation metrics.

Table 3. A summary of the transformer-related works in the domain of computer vision.

Name of Paper Author Date Proposed
Model Datasets

Models
Benchmarked

Against
Results

Image Transformer
[73] Parmar et al. 2018 Attention

Transformer Cifar10

Generative Image
Modeling-Pixel CNN,

Row Pixel RNN,
Gated Pixel CNN,

Pixel CNN+,
PixelSNAIL

Further
Inference-ResNet,
srez GAN, Pixel

Recursive

GIM-4.06 bits/dim
CIFAR10-VAlidation,

second best with 3.77 on
ImageNet, very close to

Pixel RNN with 3.86

An Image is Worth 16
× 16 Words:

Transformers for
Image Recognition at

Scale [32]

Dosovitsky
et al. 2020

Vision
Transformer

(ViT)

Trained on
ILSVRC-2012,
ImageNet-21k,

JFT
Transfered on
ReaL labels,
Cifar10/100,

Oxford-IIT Pets,
Oxford

Flowers-102

BiT-L (ResNet152x4),
Noisy Student

(EfficientNet-L2)

ImageNet-88.55-ViT-H
ReaL-90.72-ViT-H

CIFAR-10-99.50-ViT-H
CIFAR-100-94.55-ViT-H
Oxford-IIIT-Pets-97.56-

ViT-H
Oxford

Flowers-99.74-ViT-L
VTAB

(19 tasks)-77.63-ViT-H

Training data-efficient
image transformers

and distillation
through attention [35]

Touvron et al. 2020 Based on ViT ImageNet

ResNet, RegNetY,
EfficientNet,

KDforAA, ViT (all
versions)

DeiT-B 384/1000 epochs
outperforms ViT and
EffecientNet-85.2 acc

Feature Fusion Vision
Transformer for

Fine-Grained Visual
Categorization [74]

Wang et al. 2021

Introduction
of MAWS
(mutual
attention
weight

selection)

CUB-200-2011,
Stanford Dogs

and
iNaturalist2017

CUB-200-2011-
ResNet-50, RA-CNN,

GP-256, MaxExt,
DFL-CNN, NTS-Net,
Cross-X, DCL, CIN,

DBTNet, ASNet, S3N,
FDL, PMG, API-Net,

StackedLSTM,
MMAL-Net, ViT,
TransFG & PSM
INaturalist2017-
Resnet152, SSN,

Huang et al.,
IncResNetv2, TASN,
ViT, TransFG&PSM

Standford
Dogs-MaxEnt, FDL,

RA-CNN, SEF,
Cross-X, API-Net, ViT,

TransFG & PSM

CUB-91.3% accuracy
iNaturalist2017-68.5%
Standford Dogs-92.4%

Unsupervised
Semantic

Segmentation By
Distilling Feature

Correspondences [75]

Hamilton
et al. 2022

Unsupervised
Semantic Seg-

mentation
Transformer

(STEGO)

27 class
COCOStuff, 27

classes of
Cityscapes

ResNet50, MoCoV2,
DINO, Deep Cluster,
SIFT, Doersch et al.,

Isola et al. AC,
InMARS, IIC, MDC,

PiCIE, PiCIE + H

Unsupervised
Accuracy-56.9, mIoU-28.2

Linear Probe
Accuracy-76.1, mIoU-41.0

4.2.3. Miscellaneous Applications

Through Table 4 below it is well illustrated that the contributions towards transformer
models are not just limited to the domain of NLP and images, but they have also been
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recently used in audio and time series domains. Here, too, it is difficult to do a concrete
quantitative analysis as the specific application domains of the works summarized above
are all different. An interesting work to note is that of Koizumi et al. [77], which merges
NLP analysis within the audio domain and is quite successful in outperforming the results
of the traditional LSTM model that is usually used for such an application, with a best
score of 52.1 for the BLUE-1 dataset. Dong et al. [76] achieve a WER score of 10.9 on the
eval92 subset of the Wall Street Journal dataset, and Gong et al. [78] achieve their best
results on the Speech commands v2 dataset with an accuracy of 98.11% without adding
additional audio data while training. The second half of the table demonstrates different
areas in the domain of time series using transformers. The domains illustrated are those of
the Time Series Classification by Liu et al. [79], who were able to beat the state-of-the-art
results on 7 out of 13 competitive datasets, those of the Time Series forecasting proposed by
Zhou et al. [80], who achieved SOTA results in all 6 datasets, and the Time Series Anomaly
Detection proposed by Tuli et al. [81], who also beat the SOTA results in their domain on 7
out of 10 competitive datasets.

Table 4. A summary of the transformer-related works in the audio and time series domains.

Name of Paper Author Date Proposed
Model Datasets

Models
Benchmarked

Against
Results

Speech-Transformer:
A No-Recurrence

Sequence-To-
Sequence Model For
Speech Recognition

[76]

Dong et al. 2018 Audio
Transformer

Wall Street
Journal dataset

CTC, seq2seq, seq2seq
+ deep convolutional,
seq2seq + Unigram LS

WER 10.9 on eval92

A Transformer-based
Audio-Captioning

Model with Keyword
Estimation [77]

Koizumi et al. 2020

Audio-
Captioning
Transformer
(TRACKE)

Cllotho dataset
Baseline LSTM,

Transformer from
same challenge

Beats in BLUE-1 with 52.1,
BLUE-2-30.9, BLUE-3-18.8,
BLUE-4-10.8, CIDEr-25.8,

METEOR-14.9,
ROGUE-L-34.5, SPICE-9.7

SPIDEr-17.7

AST: Audio
Spectrogram

Transformer [78]
Gong et al. 2021 Audio

Transformer

Converted
pre-trained ViT to

AST, used DeiT
weights

AudioSet
dataset-Baseline,

PANN, PSLA single,
PSLA Ensemble-S,
PSLA Ensemble-M

ESC-50, speech
comands V2-SOTA-S
(without additional
audio data) SOTA-P

(with additional
audio data)

AudioSet-AST
(Ensamble-M) -> Balanced

mAP-0.378, full
mAP-0.485

ESC-50-AST-P (trained
using additional audio

data)-95.6% Speech
Commands V2-AST-S

(trained without
additional audio

data)-98.11%

Gated Transformer
Networks for

Multivariate Time
Series Classification

[79]

Liu et al. 2021
Time series

classification
transformer

AUSLAN,
ArabicDigits,
CMUsubject1,

CharacterTrajec-
tories, ECG,

JapeneseVowels,
KickvsPunch,

Libras, NetFlow,
UWave, Wafer,

WalkvsRun,
PEMS

MLP, FCN, ResNet,
Encoder, MCNN,

t-LeNet, MCDCNN,
Time-CNN, TWIESN

Best SOTA results in 7/13
datasets, with best scores
of 100% for CMUsubject1,
NetFlow and WalkvsRun

TranAD: Deep
Transformer
Networks for

Anomaly Detection in
Multivariate Time

Series Data [81]

Tuli et al. 2022

Anomaly
Detection

Time Series
Transformer

NAB, UCR, MBA,
SMAP, MSL,
SWaT, WADI,
SMD, MSDS

MERLIN, LSTM-NDT,
DAGMM,

OmniAnomaly,
MSCRED,

MAD-GAN, USAD,
MTAD-GAT, CAE-M,

GDN

Beats the SOTA results in
7/10 datasets for both

f1score and AUC
best score is AUC of

0.9994 and F1 of 0.9694 for
the UCR dataset
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5. Gaps and Future Work

As the above discussion illustrates, the realm of transformer architectures is one that
has exploded with the new and existing works being rapidly proposed ever since Vaswani
et al.’s revolutionary publication [1]. Figure 10 is presented to highlight the progression in
the architecture and the complexity of transformer models ever since, with the architecture
of notable transformer implementations visualized in order to give the reader a perspective
of the rapid rise.
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However, despite this rapid progression, certain gaps in the field remain. One ma-
jor gap seen in contemporary research is that transformers generally have a quadratic
computation and memory complexity due to their being required to model arbitrary long
dependencies [91]. This has presented a major issue in the accessibility of the use of trans-
formers and has led to a promising avenue of research aimed at simplifying the training
process of transformer models [92]. Indeed, the Lite Transformer [29] discussed earlier was
introduced with the intention of addressing this very issue, as were implementations such
as the Longformer [93], Reformer [94], Linformer [95], Performer [96], and the OPT [39].
However, these models are a start to what is a vast potential research space in optimizing
transformer-training procedures. This is a pressing issue, as many of the state-of-the-art
models aim to simply increase a model’s size (GPT-4, for instance) [97], and, therefore,
make it impractical for that model to be used in many real-world applications.

Another interesting research issue is the problem of integrating all modalities without
changing the architecture towards a single modality. Early implementations of this have
been seen in models such as the Perceiver [98], which accepts all kinds of input but can only
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generate fixed outputs such as class probabilities, and the Perceiver IO, which has flexible
inputs and outputs but still relies on the specifics of the modalities, such as augmentation
or position encoding, to properly learn [99]. This research area is ripe for expansion, as a
model that is truly adaptable to anything would lead to massive progress in the field of
deep learning and would broaden the scope of the real-world applications that could be
improved with artificial intelligence.

A final research area which can be worked upon is that, generally, large amounts of
data are needed to train a good transformer. This is less than ideal as many real-world
applications do not contain adequate amounts of labeled data and therefore would not be
able to leverage this powerful model. Promising research towards achieving this is that
of the ViT-G [38], which reports having achieved few-shot learning by training with just
10 examples per class in the ImageNet dataset. More work needs to be done in this realm to
truly make transformers accessible for wide implementations. A possible avenue to achieve
this could be exploring ways to train transformers in a semi-supervised fashion [100]. With
the successful exploration of these avenues of research, it might be possible to leverage the
great power and achievements attained by transformers in real work applications which
would affect our daily lives.
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