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Abstract: In the field of integrated sensing and communication, there is a growing need for advanced
environmental perception. The terahertz (THz) frequency band, significant for ultra-high-speed
data connections, shows promise in environmental sensing, particularly in detecting surface textures
crucial for autonomous systems’ decision-making. However, traditional numerical methods for
parameter estimation in these environments struggle with accuracy, speed, and stability, especially in
high-speed scenarios like vehicle-to-everything communications. This study introduces a deep learn-
ing approach for identifying surface roughness using a 140-GHz setup tailored for such conditions. A
high-speed data acquisition system was developed to mimic real-world scenarios, and a diverse set of
rough surface samples was prepared for realistic high-speed datasets to train the models. The model
was trained and validated in three challenging scenarios: random occlusions, sparse data, and narrow-
angle observations. The results demonstrate the method’s effectiveness in high-speed conditions,
suggesting terahertz frequencies’ potential in future sensing and communication applications.

Keywords: terahertz (THz); surface property recognition; high-speed scenario; diffuse scattering;
deep learning

1. Introduction

As the integration of sensing and communication technologies rapidly advances, the
terahertz (THz) frequency band (0.1–10 THz) has emerged as a pivotal frontier for both
domains, presents opportunities in achieving high-data-rate communication and precise
environmental sensing [1,2]. These features promise a significant advancement in capa-
bilities for 6G integrated sensing and communication (ISAC) technology [3], autonomous
vehicles [4], and vehicular communication networks (VCN) [5]. In such integrated systems,
the role of environmental sensing becomes important increasingly. They require swift and
precise perception of the environment to adapt in real-time environmental variations and
enhance communication and/or control system stability [6,7]. In these scenarios, accurate
recognition of surface roughness emerges as a critical environmental parameter, as shown
in Figure 1. The scattering characteristics of wireless channels, for example, are profoundly
influenced by the texture of surrounding surfaces [8], and then the control system of au-
tonomous vehicles must adapt to the roughness of the terrain [9]. Terahertz frequencies
are inherently sensitive to surface granularity, offering a potent advantage in addressing
these challenges [10]. In other words, they can decode intricate details of surrounding
surfaces, yielding distinct signatures within their scattering spectra [11,12]. This makes
them invaluable for non-invasive surface texture assessments.

There have been diverse strategies, such as Kirchhoff theory [13], Rayleigh roughness
theory [14], the time-of-flight method [15], etc., developed for surface texture modeling
and recognition, relying on numerical scattering models [16,17]. These methods require
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complicated modeling trajectories and are anchored in approximate and idealized pos-
tulates, which often fail to accurately capture real-world complexities. Other techniques
harness the richness of THz imaging features, predominantly integrating deep learning
frameworks [9,18,19]. While all these approaches are adept in low-speed scenarios, they
are not well suited for high-speed conditions, where numerical computations become
impractical and radar imagery becomes prohibitively resource intensive.

Figure 1. A schematic of high-speed scenarios, including handheld, vehicle-mounted, and unmanned
aerial vehicle (UAV) scenarios.

In high-speed scenarios, static equipment positioning is unfeasible, and sampling
must transpire dynamically. This introduces tailing effect, which means the data captured
at a specific time and angle include traces from previous conditions. The magnitude of the
tailing effect increases with speed, leading to directional spectral biases and attenuation of
spectral details. In addition, high-speed sampling introduces additional challenges, such
as random occlusions, high-speed sparse data, and narrow-angle window observations,
which render conventional methodologies inadequate [20]. To overcome these challenges,
we propose a deep learning-driven paradigm for surface texture recognition in high-
speed scenarios in this work, which has already been demonstrated as its prowess in
pragmatic terahertz applications such as imaging [21], synthetic aperture radar (SAR) [22],
and hyperspectral modalities [23]. This paradigm necessitates an authentic, diverse, and
concise dataset for model training, ensuring its alignment with real-world scenarios, robust
generalization capabilities, and stability in complex environments. Thus, we designed a
data recording platform that emulates real-world dynamics. We also fabricated several
kinds of rough surface samples, characterized them by high-fidelity 3D scanning, and
acquired a large amount of high-speed scattering data. To strengthen data heterogeneity,
we focused on localized sample regions and further enriched them with diverse data
processing and augmentation strategies to sculpt the dataset.

The remainder of this article is laid out as follows: Section 2 gives a thorough de-
scription on the data collection platform, which includes how we set up our experiments
and the system we used to control them. Section 3 provides a detailed depiction of how
we created and assessed the rough surfaces that we used as samples. Section 4 explains
how we recorded the data needed to train our algorithms. Section 5 describes how we
designed the algorithm that our network employed. Section 6 discusses the experiments
we conducted using deep learning and delves into what the results mean. Finally, Section 7
concludes the entire work. We think that this work presents a significant advancement
in the field of surface texture recognition with terahertz frequencies, enabling robust and
reliable operation in high-speed scenarios. We also think that it opens up new possibilities
for a wide range of applications, including autonomous driving, environmental monitoring,
and industrial inspection.

2. Data Sampling Platforms

To meet the demands of real-world applications, we fabricated a high-speed sampling
platform, depicted in Figure 2a. This platform is designed to fulfill the dual criteria of rapid
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rotation and high precision, achieved through a fully automated programming-driven
sampling system. Its core is a high-precision electrical control rotational stage powered by
a 57-step stepper motor and governed by a worm gear structure. The motor, with a step
angle of 1.8◦ and a mechanical transmission ratio of 1:180, confirms the rotational stage
with a minimum rotation angle of 0.01◦. This makes its precision and alignment under the
measurement requirements.

Figure 2. (a) An image of the data sampling platforms, including an electric rotational stage that drives
Rx in a circular motion. The blue arrows indicate the range of motion for Rx, which includes variable
speed regions of 20◦ each in the front and rear as well as a uniform speed region of 100◦ in the middle.
(b) Surface samples created using a combination of metal materials, tools, and shapes, specifically
employing brass, bronze, and aluminum to facilitate different degrees of surface roughness.

The experimental setup involved affixing the receiver (Rx) onto the rotational stage via
an extended rail, placing the rough surface sample at the rotational stage’s epicenter, and
situating the transmitter (Tx) at a 45 incident angle. We designed such a setup to emulate
scenarios of collaborative perception to avoid the self-interference faced in independent
perception [24,25] such as a base station emitting perception signals that are reflected by
sensed targets and received by terminals. The spatial arrangement had the transmitter and
receiver positioned 36 cm and 38 cm away from the sample’s geometric center, respectively.
The transmission assembly comprised a signal generator (Ceyear 1465D), a frequency
multiplier module (Ceyear 82406B), and a horn antenna. The signal generator (Ceyear 1465)
has the capability to generate signals up to 20 GHz, which were then up-converted to
the 110–170 GHz range using the Ceyear 82406D. The receiver employs an identical horn
antenna to capture signals and forwards them to a power sensor (Ceyear 71718) for sig-
nal detection with a single sampling time of 50 ms. This setup allows us to analyze the
variations in signal strength and pattern as influenced by different levels of surface rough-
ness [26], enabling the correlation between the received power data and the physical texture
characteristics of the surfaces. To enhance focusing, a lens with a 10cm focal length was
strategically positioned in front of Tx, aligning with the focal point. Throughout the sam-
pling process, while Tx and the surface sample remained stationary, Rx embarked on a
circular trajectory around the sample, instigating variations in reflection angles. Both Tx
and Rx are fixed within a horizontal plane, which is not fully representative of practical
situations where an elevation angle may be often present [26,27]. However, for environ-
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mental sensing in the real world, we think that a near-zero elevation angle can be sufficient
in most cases.

The electrical control rotational stage was exercised through a serial port protocol,
ensuring continuous motion data monitoring. Concurrently, LAN and SCPI protocols
were deployed as interface protocols connecting the terahertz signal generator and power
meter. Through the utilization of these protocols to transmit our predefined commands,
control over both devices is facilitated. The amalgamation of these components was
seamlessly orchestrated using Python 3.9, which facilitated interface calls, ensured time
synchronization, governed sampling control, and oversaw data storage operations. This
sophisticated platform guarantees an automatic and highly efficient data acquisition process
with a communication latency less than 10 ms.

3. Surface Sample Preparation

Data are paramount in the realm of neural networks. Aiming for effective performance
on real-world surfaces with unknown roughness, it is important to improve the generaliza-
tion capabilities of limited set of surface samples with different levels of roughness. This
requires our samples to embody typical characteristic properties. Due to the difficulties
in obtaining enough data for our investigation, we chose metal surfaces for our primary
samples, due to their excellent reflective properties and a diverse range of hardness. We
applied different processes to forge surfaces with different levels of roughness, as shown in
Figure 2b.

To create smoother surfaces resembling scratches and minor textural variations on
office desks or brushed finishes, we used small-diameter rectangular and cylindrical chisels
on harder brass materials to create two distinct surfaces. Surface-1 features scratches and
minor abrasions, while Surface-2 predominantly features scratches with shallow grooves.
To create rougher surfaces with inherent natural textures, such as wood grain and genuine
leather patterns, we used conical and medium-diameter rectangular chisels on materials
of moderate hardness, specifically copper. Surface-3 is composed of dense conical pits,
emulating certain grid-like textures. Surface-4, derived from Surface-3, incorporates deeper
grooves to mimic deep leather textures. Given that rougher surfaces often exhibit more
pronounced relief structures, we used larger-diameter conical and rectangular chisels on
softer aluminum sheets to produce three additional surfaces. Surface-5 is an enhanced ver-
sion of Surface-4. Surfaces-6 and -7, in contrast to the previous methods of vertical carving,
employ lateral force application to create substantial depressions and peaks in the structure.
All these surface samples possess a large size, measuring 100 mm × 100 mm. Within this
area, the central region of 80 mm × 80 mm exhibited the roughness characteristics. We
used a grid counting method to ensure maximum uniformity in the local roughness within
this region. Such a large surface area endows the dataset with a richer diversity of data
featuring similar numerical roughness but varied structures.

For accurate characterization of the surface samples, we conducted a comprehensive
three-dimensional (3D) laser scanning (SCANTECH IREAL2E) using high-precision tech-
niques to reconstruct all the surfaces. We utilized an industrial-grade handheld 3D laser
scanner with a scanning precision of 0.02 mm and a volumetric accuracy of 0.03 mm/m.
Each metal surface underwent scanning to produce cloud with at least two million points,
effectively representing the roughness of various local areas on the surface. We used the
standard deviation of the surface height variation (RMS) as a quantitative measure of
surface roughness [28]. The ensuing results, detailed in Figure A1 of the Appendix A,
reveal that our samples of rough surfaces manifest several characteristic traits: (1) Min-
imal overlap of roughness between different surfaces, which is essential for subsequent
classification tasks, yielding classification results that can be uniquely mapped back to a
specific range of roughness. (2) Variability in roughness across different areas within a
single surface. This enriches the dataset and enhances the model’s ability to generalize.
(3) Existence of regions with comparable levels of roughness yet differing in shapes and
quantities. This further contributes to the overall data richness.
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4. Dataset Acquisition and Composition

The data acquisition was conducted by employing the platform and surfaces as in
Figure 2. In low-speed scenarios, scatter sampling is typically performed at one angle
per pause (of the rotational stage), ensuring precision and stability. However, high-speed
scenarios require continuous sampling, which introduces a trailing effect, as we mentioned
in Section 1. To emulate real-world high-speed conditions, we continuously sampled while
the Rx rotated without pausing. We set the sampling speed to match the rotational stage’s
safety speed limit while maintaining a minimum angular distance of 15° between the Rx
and Tx. We also included acceleration and deceleration zones (20°) at the beginning and end
of the motion. The sampling strategy was meticulously designed to ensure comprehensive
data coverage across all surface types. Each rotation cycle was programmed to capture
data systematically around the entire circumference of the sample, ensuring no angular
sector was underrepresented. This systematic collection was essential to construct a dataset
that accurately represents the variability inherent in real-world surface textures.

In order to improve the robustness and generalization ability of our model, we need
a diverse dataset from a limited number of rough surface samples. We achieved this by
methodically moving an incident beam across the surface to gather sufficient data for
model training. Considering the illumination area (by the channel beam) with a diameter
of 3 cm on the surface, we moved the beam in both horizontal and vertical dimensions in
5 mm increments. With each movement, we collected a set of scattering data, referred to
as a sampling sequence. Additionally, to mitigate the peak displacement resulting from
the tailing effect, we rotated our receiver (RX) in both clockwise and counterclockwise
directions at each sampling location. By doing so, we acquired 72 sampling sequences for
each surface. In total, this process yielded 504 unique sampling sequences across seven
different surfaces.

To demonstrate the effect of the rotation speed of the stage and sampling parameters
(average number and query interval), we conducted a comprehensive analysis using a range
of speed and parameter settings, as summarized in Table 1. Rotation speed refers to the
speed at which the motorized rotation stage moves during the uniform motion phase. The
average number represents the numerical configurations for the built-in averaging feature
of the sampling apparatus. It has been confirmed that its variation within a numerical
range has a negligible impact on the final classification F1 score. Query frequency indicates
how often the Python main control program retrieves data from the sampling device. It
can be seen that rotation speed and query interval (frequency) can affect the cumulative
length of the acquired sequences, including data from the acceleration and uniform motion
zones near the Tx side.

Table 1. Original Data.

Idx. Rotational Average # Query Interval Cumulative CountsSpeed (◦/s) (s) Length

1 20 4 0.1 55 504
2 20 4 0.05 85 504
3 20 1 0.05 85 504
4 10 4 0.1 110 504
5 10 1 0.05 170 504

5. Scenario and Network Analysis

We described the actual collaborative perception scenario that our experimental setup
aims to emulate, as shown in Figure 3. The target surface reflects signals launched by a base
station to a terminal (terahertz sensor) on a moving vehicle. The vertical distance between
the surface and the vehicle’s trajectory is assumed to be 10 m. To avoid the challenges of
excessive distances, we focused on a detection range where the incident angle does not
exceed 60◦. This corresponds to a horizontal span of 17.3 m. With a turntable rotating at
an angular speed of 10◦/s, it takes 6 s to traverse a range of 60◦. This corresponds to a



Appl. Sci. 2024, 14, 4321 6 of 12

vehicular speed of approximately 10 km/h, which is similar to the pace of a pedestrian.
For a rotational speed of 20◦/s, the emulated vehicular speed increases to around 20 km/h,
which is similar to the speed of a vehicle in low-speed cruising.

Figure 3. Illustration of the (a) high-speed platform scanning scenario and (b) vehicle scanning
scenario. The vehicle can be replaced with handheld walking or aerial drone flight as the speed
changes. The data in the scenario represent only approximate proportions.

Using the raw dataset we collected, we have performed a classification task to distin-
guish between different rough surfaces. The model takes scattering sequence data (X) from
a specific position on a surface as input. Each sequence comprises scattering data captured
at different angles, represented as X = [x0, x1, . . . , xN ], where N is the number of sampling
points in one sequence. Due to the complexities of real-world high-speed scenarios, it
is impractical to assume that the data points adhere to a specific angle-related sequence.
Therefore, it is necessary to combine the numerical representations of the sampling points
and scattering angles, resulting in the representation xt = [θt, Vt]. The model’s output is a
probability distribution over different surface categories, expressed as Y = [y0, y1, . . . , yM],
where M is the total number of surface categories.

To enhance the execution of sequence tasks, addressing the inherent variability in
sequence lengths is crucial; we use a highly stable LSTM model [29], which is a type
of recurrent neural network (RNN). LSTM models have unique gated structures that
effectively filter and process information, mitigating redundancy in memory storage. This
architecture is particularly well-suited for tasks involving lengthy sequences and it also
solves the vanishing gradient problem that is prevalent in traditional RNNs. The LSTM
architecture has a memory cell (mt) as well as three key gate mechanisms: the input gate
(it), the output gate (io), and the forget gate (i f ). At each time step, the model updates the
states of these gates based on the current input and output from the previous time step.
This process determines which pieces of information should be retained, discarded, or
produced as output. The variable gt represents the input information.

it = σ(Wixt + Uiht−1 + bi) (1)

ft = σ(W f xt + U f ht−1 + b f ) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

gt = ϕ(Wgxt + Ught−1 + bt) (4)

with σ(.) representing a logistic sigmoid function and ϕ(.) representing a hyperbolic tangent
function (tanh). Next, the memory cell, mt, is updated based on the input and forget gates.
The learnable parameters in these expressions are represented by W, U, and b.

mt = ft ⊙ mt−1 + it ⊙ gt (5)

Here, ⊙ denotes element-wise product operation. Finally, the model determines what to
output based on the memory and output gates.

ht = ot ⊙ ϕ(mt) (6)
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We implemented a multi-layered LSTM network with dropout layers [30] to mitigate
overfitting, the overall architecture of our model is depicted in the Figure 4. The LSTM
layers are followed by a multi-layer perceptron (MLP) classification head, which performs
the final classification task. We used cross-entropy as the loss function and trained the
model using the Adam optimizer [31] with a learning rate that was gradually reduced over
the training epochs.

Figure 4. Network architecture diagram.

6. Experimental Validation

We conducted a series of classification experiments using the previously described
dataset. We used the F1 score as the primary evaluation metric, as suggested by Taha
et al. [32]. The F1 score is a harmonic mean of precision and recall, calculated as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2 · Precision · Recall
Precision + Recall

(9)

where FP, FN, TP, and TN stand for true positives, false positives, false negatives, and
true negatives, respectively. We designed our experiments to demonstrate the effectiveness
of our method in high-speed environments. We considered three different conditions
as follows:

Random occlusions are common in real-world scenarios, such as vehicle scanning, where
objects such as streetlamps or pedestrians can obstruct the scanning process. We assumed
that these occlusions are relatively small in size, and our model needs to be robust to local
data loss. Our data sequences include combined scattering angles for each sampling point,
which provides our model with the information it needs to locate occluded regions. We
used random subsampling ranging from 5% to 10%, to emulate occlusion scenarios. This
procedure increased the size of our dataset by more than a factor of 10. The data were then
split into training, validation, and test sets at a 7:3:1 ratio. Our model achieved an F1 score
of over 95%. While this score is commendable, it is important to note that our dataset is not
very large. A score in this range indicates that the model is capable of performing the task
with high fidelity, but higher scores may indicate overfitting.

High-speed sparse data. As discussed previously, data collected at a turntable speed
of 10◦/s correspond to a speed of approximately 10 km/h. A turntable speed of 20◦/s
corresponds to approximately 20 km/h, which is similar to the speed of slow-moving
vehicles. While these speeds may seem moderate, they represent the upper safe limit
under the load conditions of our turntable. To explore higher-speed scenarios, we used
approximation techniques. High-speed data are very rare, so using low-speed data to
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train a recognition model can improve data quantity and quality while simplifying data
acquisition challenges. To validate our method, we conducted experiments using our
acquired and constructed datasets. We referred to data at 10◦/s as “low-speed data” and
data at 20◦/s as “high-speed data”. We designed a zero-shot experiment in which a
model trained on low-speed data was tested directly on high-speed data. Specifically, we
subsampled the low-speed data to emulate high-speed conditions, trained a model on
this modified data, and evaluated its performance on the original high-speed data. This
is a zero-shot experiment because the model was not exposed to high-speed data during
training. The results, shown in Table 2, reveal that the model retained some effectiveness
even in this challenging scenario.

Table 2. Emulated high speed from low-speed data.

Train Data Test Data F1 (%) Note

Low speed High speed 91 Zero shot
High speed High speed 96 Control group

We then increased the speeds in our emulated scenarios, as shown in Table 3, and
adjusted the sequence length accordingly. We explored speeds of 40 km/h, 60 km/h,
and 80 km/h, which correspond to typical urban vehicle cruising speeds, maximum
urban vehicle speeds, and UAV (unmanned aerial vehicles) flight speeds [33], respectively.
Remarkably, even under challenging conditions, such as the UAV scenario with only
10 scattering data points per surface, our method maintained an F1 score above 70%. This
demonstrates the effectiveness of our method in recognizing surface properties at various
speeds, particularly at typical urban cruising speeds.

Table 3. Emulated higher-speed scenarios.

Equivalent Speed Resampling F1 (%) Note(km/h) Length

≈40 30 91 Vehicular cruising speed
≈60 20 84 Urban speed limit
≈80 10 71 UAV flight speed

Narrow-angle window observation. We considered scenarios where collecting scattering
data across a wide angular range is not feasible. In real-world settings, this may occur when
building-obstructed wall surfaces are only accessible through a narrow angular window. It
is important to evaluate the performance of our model under these angular constraints. We
investigated a 60◦ angular window, striving to achieve effective recognition with a limited
range of angles, as shown in Figure 5. We also tried offsetting the angular window relative
to the direction of specular reflection (with an offset angle ∆). The results are shown in
Table 4. We enforced a constraint of 20 scattering data points within each angle, which
aligns with urban vehicle cruising speeds.

Table 4. Narrow-angle window observations.

Idx. Offset Angle ∆ (°) Sequence Length F1 (%)

1 +15 20 83
2 +5 20 85
3 −5 20 89
4 −15 20 90
5 −25 20 89
6 −35 20 85
7 −45 20 78
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Figure 5. Window positions we attempted under angle-restricted conditions. Each window covers
a 60◦ sector, with two red arrows representing the incident and outgoing waves. Each red serial
number corresponds to the Idx. index number.

It should be noted that the best classification F1 scores were achieved when the
angular window enveloped the angles of mirror reflection and was slightly shifted towards
the direction of richer features along the normal. Nevertheless, our method consistently
achieved F1 scores around 80%, even in the most angularly restrictive scenarios. This
experiment demonstrates that our method can maintain high recognition accuracy at low
angles, even under medium to low urban scanning speeds, further attesting to the validity
of this approach.

7. Conclusions

In the field of integrated sensing and communication, environmental sensing is becom-
ing as crucial as data transfer. This work proposes an approach in enhancing high-speed
scanning capabilities for surface roughness recognition using terahertz frequency. Combin-
ing a deep learning framework, this method employs authentic high-speed sampling data
to build an automated platform capable of capturing high-fidelity data in scenarios that
closely emulate real-world dynamics. The manufacturing and 3D laser characterization
of a spectrum of surfaces have facilitated the creation of a rich dataset, important for the
training of our specialized neural network. We have aligned our emulated environments
with actual laboratory and urban conditions, customizing our model to overcome three typ-
ical high-speed challenges: random occlusion, high-speed sparse data, and narrow-angle
window observations.

Our experimental results have confirmed the effectiveness of this method, by achieving
an F1 score of over 95% in scenarios with random occlusion. This indicates exceptionally high
accuracy within our current dataset, especially in relatively slower situations. Additionally,
our approach consistently maintains F1 scores above 90%, 80%, and 70% at emulated
vehicular cruising speeds (40 km/h), urban vehicle speed limits (60 km/h), and drone
flight speeds (80 km/h), respectively. Notably, we have achieved a 71% F1 score within
a 120◦ range using only 10 randomly positioned scattering data points, highlighting the
success of our method in challenging conditions. Moreover, we have identified window
positions within a 60◦ angular range that consistently maintain high speeds, resulting in
F1 scores above 90% with 20 randomly positioned scattering data points. This approach
demonstrates exceptional accuracy, especially in medium- to low-speed scenarios and
constrained angular windows. Even under extreme conditions, such as very high speeds
(e.g., 80 km/h), it maintains a significant degree of reliability. This method may not only
prompt the application of terahertz frequency band in surface recognition, but also enriches
the broader context of sensing-communication integration, contributing to the evolution of
intelligent, high-speed recognition systems.
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For future works, we have two primary objectives: 1. We intend to deploy the methods
presented in this paper onto actual vehicles, conducting real-world field experiments to
validate and refine our approach. Our ultimate aim is to implement practical and effective
scanning technologies with real-world applicability. 2. We plan to explore scenarios
involving more complex scattering angles, such as surfaces with inclined incidence, Rx and
Tx operating in different planes, to support applications in diverse and complex real-world
environments.
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Appendix A. Surface Sample Characteristics

We characterized the surface roughness features based on high-precision point cloud
data of the entire surface by the 3D laser scanning technique. Uniform sampling was
performed and the calculation range was determined based on the illumination area. The
RMS value was calculated based on the surface features within the calculation region.
Figure A1a–g display the RMS distributions of all seven surfaces. The horizontal and
vertical axes represent the offset relative to the central point, and the heatmap values
represent RMS values in millimeters (mm). Figure A1h illustrates the effects of all seven
surfaces simultaneously in a 3D schematic.

Figure A1. The heatmaps for RMS values of each surface and the combined display of all seven
surfaces in a 3D schematic.
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