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Featured Application: In the realm of Intelligent Transportation Systems, accurate prediction
of traffic flow is paramount for optimizing traffic management and enhancing road safety. Our
research addresses the critical challenge of capturing and modeling the complex spatial–temporal
correlations inherent in traffic data. While recent advancements have seen the deployment of
Spatial–Temporal Graph Neural Networks (STGNNs) and transformer models to tackle this issue,
our study identifies and overcomes significant limitations in existing methodologies.

Abstract: In the realm of Intelligent Transportation Systems (ITSs), traffic flow prediction is cru-
cial for multiple applications. The primary challenge in traffic flow prediction lies in the handling
and modeling of the intricate spatial–temporal correlations inherent in transport data. In recent
years, many studies have focused on developing various Spatial–Temporal Graph Neural Networks
(STGNNs), and researchers have also begun to explore the application of transformers to capture
spatial–temporal correlations in traffic data. However, GNN-based methods mainly focus on mod-
eling spatial correlations statically, which significantly limits their capacity to discover dynamic
and long-range spatial patterns. Transformer-based methods have not sufficiently extracted the
comprehensive representation of traffic data features. To explore dynamic spatial dependencies and
comprehensively characterize traffic data, the Spatial–Temporal Fusion Embedding Transformer
(STFEformer) is proposed for traffic flow prediction. Specifically, we propose a fusion embedding
layer to capture and fuse both native information and spatial–temporal features, aiming to achieve a
comprehensive representation of traffic data characteristics. Then, we introduce a spatial self-attention
module designed to enhance detection of dynamic and long-range spatial correlations by focusing on
interactions between similar nodes. Extensive experiments conducted on three real-world datasets
demonstrate that STFEformer significantly outperforms various baseline models, notably achieving
up to a 5.6% reduction in Mean Absolute Error (MAE) on the PeMS08 dataset compared to the
next-best model. Furthermore, the results of ablation experiments and visualizations are employed to
clarify and highlight our model’s performance. STFEformer represents a meaningful advancement in
traffic flow prediction, potentially influencing future research and applications in ITSs by providing a
more robust framework for managing and analyzing traffic data.

Keywords: transformer; traffic flow prediction; mask matrix; multi-head self-attention; embedding

1. Introduction

In the contemporary era of rapid urbanization, the limitations of current urban traffic
management systems are becoming glaringly evident. Issues such as frequent traffic
jams, ineffective congestion management, and delayed emergency response times not
only hinder daily commutes but also pose significant challenges to sustainable urban
development. Intelligent Transportation Systems (ITSs), as indivisible components of
today’s smart urban environments [1], are instrumental in analyzing, managing, and
improving traffic conditions. Within the realm of ITSs, the domain of traffic flow prediction,
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recognized as a pivotal technology [2], has garnered extensive research attention. This
research is primarily directed towards the development of predictive models that predict
future traffic flow by leveraging historical data. The precise predictions generated by these
models find application in a diverse array of traffic-related domains [3], encompassing
route optimization, vehicular scheduling strategies, and effective congestion alleviation
measures. Accurate traffic flow predictions not only improve traffic management but also
contribute to broader societal benefits, such as reduced environmental pollution, significant
economic savings by decreasing time spent in traffic, and enhanced quality of life through
less stressful commuting experiences. Therefore, we propose a novel traffic flow prediction
model designed to comprehensively explore the spatial–temporal characteristics of traffic
data and achieve accurate traffic flow prediction.

Predicting traffic flow represents a quintessential challenge in the realm of spatial–
temporal data forecasting. Traffic data are captured at predetermined intervals and at dis-
tinct locations within a continuous spatial framework. Evidently, observations at neighbor-
ing locations and sequential time intervals are not isolated but dynamically interconnected.
The principal challenge is effectively capturing and modeling the intricate spatial–temporal
dependencies inherent in traffic data [4]. A multitude of studies have endeavored to de-
velop diverse deep-learning models to tackle this task. Initially, several studies employed
convolutional neural networks (CNNs) to analyze traffic data based on grid structures to
capture spatial correlations [5,6]. Subsequently, graph neural networks (GNNs) demon-
strated their suitability to model underlying graph structures [7,8]; thus, the methods based
on GNNs have been extensively investigated for traffic flow prediction [9–24]. Considering
the handling of temporal correlations, these GNN models primarily fall into two categories:
RNN-based and CNN-based models. RNN-based methods, utilizing RNNs and their vari-
ants, such as GRUs, capture the temporal correlations in traffic data. Approaches utilizing
convolutional neural networks (CNNs) capture the temporal dependencies either through
a temporal convolutional network (TCN) or a standard CNN. Details are shown in Table 1.
However, RNNs face challenges in effectively learning long-term temporal dependencies,
often failing to provide accurate predictions for extended time series. Similarly, CNNs are
constrained by their limited receptive fields and local biases, which prevent them from
capturing long-term temporal correlations. Additionally, the modeling of spatial correla-
tions using existing GNN methods tends to be static, whereas in traffic systems, spatial
dependencies between locations are highly dynamic and change over time due to diverse
travel patterns and unforeseen events. Furthermore, these GNN models also suffer from
over-smoothing as the network depth increases, which limits their ability to learn spatial
correlations from a long-range perspective.

Table 1. Summary of GNN studies for traffic flow prediction.

Study Spatial Component Temporal Component

[9] GNN GRU
[10] GNN GRU
[11] GNN GRU
[12] GNN GRU
[13] GNN GRU
[14] GNN GRU
[15] GNN CNN
[16] GNN CNN
[17] GNN CNN
[18] GNN TCN
[19] GNN CNN
[20] GNN TCN
[21] GNN GRU
[22] GNN TCN
[23] GNN CNN
[24] GNN TCN
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Moreover, several studies have utilized embedding structures to discover both tempo-
ral and spatial features with the goal of efficiently capturing spatial–temporal dependencies.
Adaptive Graph Convolutional Recurrent Networks (AGCRNs) [9] are known to constitute
a pioneering approach that designs embeddings for each node, thus creating an adaptive
graph as opposed to a predefined one, establishing spatial connections and capturing
spatial correlations. Both MTGNNs [15] and GMANs [25] utilize spatial embeddings to
explore spatial dependencies, and GMANs additionally construct temporal embeddings
through one-hot encoding, integrating them with an encoder–decoder architecture. The
Adaptive Graph Spatial–Temporal Transformer Network (ASTTN) [26] also obtains tempo-
ral embeddings using one-hot encoding and obtains Laplacian positional encoding through
the eigenvalue decomposition of the input graph. In addition, other models [27–37] also
demonstrate commendable performance in traffic flow prediction. Details are shown in
Table 2. However, there is a lack of comprehensiveness in feature representation when
constructing embedding structures. For example, the extraction of native information from
traffic data is frequently neglected. The sole utilization of one-hot encoding for representing
the day of the week and the time of day of each time step for the purpose of obtaining
temporary embeddings falls short of effectively capturing the short-term correlations in
traffic data.

Table 2. Summary of the embedding structures for traffic flow prediction.

Study Spatial Embedding Temporal Embedding Native Embedding
Short-Term Periodic Native Feature Positional Encoding

[27]
√ √

[28]
√ √

[29]
√

[30]
√ √

[31]
√ √

[32]
√ √

[33]
√ √ √

[34]
√ √

[35]
√ √

[36]
√

[37]
√ √

To effectively explore dynamic spatial–temporal patterns and comprehensively charac-
terize traffic data, this paper introduces a spatial–temporal fusion embedding transformer
model, namely, STFEformer. As a pivotal technical contribution, we have developed a novel
embedding layer aimed at processing traffic data from multiple perspectives to explore
native and spatial–temporal features. Furthermore, we propose a spatial self-attention
module based on the graph-masking method, designed to highlight interactions between
similar nodes and capture dynamic, long-range spatial dependencies. We also employ a
temporal self-attention module to discover the dynamic temporal dependencies in traffic
data. In conclusion, the main contributions of this research can be summarized as follows:

1. We propose STFEformer, a novel transformer-based architecture designed for precise
traffic flow prediction, integrating a fusion embedding layer with spatial–temporal
self-attention layers. The fusion embedding layer effectively captures native, temporal
(both short-term and periodic), and spatial characteristics of traffic data. Subsequently,
we utilize a spatial self-attention module based on graph masking to enhance fo-
cus on relevant nodes and capture dynamic, long-range spatial correlations. This is
complemented by a temporal self-attention module that facilitates the parallel pro-
cessing of spatial–temporal dependencies, addressing the comprehensive, dynamic,
and long-range challenges of traffic data.

2. Comprehensive experiments were carried out on three real-world public traffic
datasets: PEMS04, PEMS07, and PEMS08. The results of these experiments clearly
indicate that our model significantly surpasses all baseline models in terms of perfor-
mance. In addition, we conducted ablation experiments to systematically evaluate the
impact of the different components of our model on its overall efficacy.
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2. Materials and Methods
2.1. Preliminaries

Definition 1 (Traffic network). The traffic network is defined as a graph, G = {V, E, A},
where V = {v1, v2, . . . , vn}represents nodes with |V|= N , N is the number of nodes, E ⊆
V × Vrepresents edges illustrating the connections between node pairs, and A ∈ RN×Nis the
adjacency matrix of the traffic network, where Aij = 1 denotes a connection between node i and
node j, otherwise Aij = 0. According to the typical stability of traffic network, G is assumed to be
constant in this research.

Definition 2 (Traffic flow tensor). In the traffic network, the traffic flow of N nodes at time t is
defined as Xt ∈ RN×F, where F represents the dimension of traffic flow features. The traffic flow
tensor at all time slices, T, of all nodes is defined as X = (X1, X2, X3, · · · , XT) ∈ RT×N×F.

The task of traffic flow prediction is to forecast future traffic flow given historical
observations. Formally, given the observed traffic flow tensor, our aim is to find a function
that predicts the following T′ time steps’ traffic flow from the previous T time steps’
historical observations as follows:

[Xt−T+1, Xt−T+2, · · · , Xt; G]
f→ [Xt+1, Xt+2, · · · , Xt+T′ ] (1)

2.2. The Architecture of STFEformer

STFEformer is a novel transformer-based architecture designed to predict traffic flow
by effectively leveraging spatial–temporal traffic data dependencies. This model aims to
enhance Intelligent Transportation Systems by providing accurate traffic flow predictions.
Figure 1 illustrates the framework of our proposed STFEformer. STFEformer is composed
of a fusion embedding layer, a series of L spatial–temporal attention (STA) layers, and an
output layer. The T time steps’ traffic flow tensor is input into the fusion embedding layer,
where it undergoes transformation to obtain a combined embedding feature representation
and an adaptive similarity matrix, effectively extracting both native and spatial–temporal
features in traffic data. Following this, the embedding result is then fed into the STA layers,
further exploring dynamic and long-range spatial–temporal dependencies. Finally, traffic
flow prediction results of the next T′ time steps are directly obtained from the output layer
through skip connections.
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2.3. Fusion Embedding Layer

The fusion embedding layer is a cornerstone of STFEformer, designed to integrate
native information with spatial–temporal features comprehensively. This layer processes
the traffic data to create a multi-faceted representation. Upon undergoing processing
within the fusion embedding layer, the input T time steps’ traffic flow tensor is embedded
into a high-dimensional representation, enhancing the model’s ability to capture complex
features in traffic data. Specifically, we employ a spatial–temporal embedding mechanism
which includes adaptive spatial embedding for extracting the spatial dependency and
temporal embedding to capture both short-term and periodic temporal features in traffic
data. Additionally, we utilize a fully connected layer and temporal positional encoding to
obtain native information from raw data.

2.3.1. Adaptive Spatial Embedding

Generally, the traffic condition of a region is influenced by its surrounding areas. To
adaptively mine the spatial feature of all nodes without employing predefined distance
matrices or adjacency matrices, we first introduce an adaptive spatial embedding, Esp ∈
RN×dsp , where dsp represents the dimensions of the embedding. Esp is randomly initialized,
with each row uniquely representing the spatial embedding of each node shared across all
time slices. Then, the spatial correlations among all nodes can be expressed by multiplying
Esp with its transpose, ET

sp. Consequently, we can define the adaptive similarity matrix
as follows:

Msp = so f tmax
(

PReLU
(

EspET
sp

))
(2)

The PReLU function can adaptively adjust the slope for negative inputs, unlike the
fixed slope in LeakyReLU, and, compared to ReLU, it allows a slight activation of negative
inputs to prevent neuron death, thus offering greater flexibility. The softmax function is
employed to standardize the adaptive similarity matrix. Each row represents the similarity
between the current node and all other nodes. This matrix helps in identifying and em-
phasizing the relationships between nodes that exhibit similar traffic patterns, improving
the model’s ability to predict under varying conditions. Subsequently, the matrix will
be further integrated with spatial self-attention as a mask matrix, enabling the model to
dynamically explore spatial dependencies.

2.3.2. Temporal Embedding

Due to temporary occurrences (such as traffic accidents and road maintenance) or
instantaneous conditions (such as weather changes), traffic flow undergoes significant short-
term perturbations and oscillations, manifesting substantial and immediate impacts. To
capture the short-term temporal features of traffic flow, we employ a standard convolutional
layer that merges the information in the neighboring time slices as follows:

Est = ReLU(Conv1(X )) (3)

where Est ∈ RT×N×dst represents the short-term embedding, dst indicates the dimension of
the short-term feature, Conv1 represents a standard convolutional layer, and ReLU is the
activation function.

Additionally, traffic flow, influenced by the daily routines and commuting patterns of
people, exhibits a clear periodicity, such as peak hours in the morning and evening, as well
as disparities between weekdays and weekends. Therefore, we utilize two embeddings to
effectively capture the daily and weekly periodicity of traffic flow, denoted as e fd(t) and
e fw(t) ∈ Rdpt , respectively. Here, dpt is the dimension of the periodicity feature and fd and
fw serve as functions that convert the time t into a minute index within a day (ranging from
1 to 1440) and a day index within a week (spanning from 1 to 7). Specifically, we normalize
the hour, minute, and second information from traffic data to a range between 0 and 1, thus
obtaining the minute index. The day index is obtained by applying one-hot encoding. We
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concatenate the embeddings e fd(t) and e fw(t) of all T time slices to obtain temporal periodic
embeddings, Ed, Ew ∈ RT×dpt .

In this paper, we set the dimension dst = dpt = dt. We obtain the temporal embedding
Et ∈ RT×dt by simply summing Est, Ed, and Ew, thereby integrating both the short-term
and periodic temporal features in traffic data given as follows:

Et = Est + Ed + Ew (4)

2.3.3. Native Feature Embedding

To preserve the native information contained within the raw data, a fully connected
layer is employed to obtain token embedding, Etok ∈ RT×N×dtok , as follows:

Etok = FC(X ) (5)

where dtok is the token embedding’s dimension and FC(·) represents a fully connected layer.
Inspired by the positional encoding mechanism in the original transformer model [38],

we designed a temporal positional encoding method to introduce essential positional
information of input traffic time sequences, denoted as Etpe ∈ RT×dtpe . Here, dtpe is the
dimension of the temporal positional encoding. We utilize sine and cosine functions of
different frequencies as follows: TPE(pos,2i) = sin

(
pos/100002i/dtpe

)
TPE(pos,2i+1) = sin

(
pos/10000(2i+1)/dtpe

) (6)

where pos is the time position, i is the dimension, and 10,000 is the hyperparameter derived
from the transformer [38].

In this work, we set the dimension dtok = dtpe = d f . The native feature embedding,
E f ∈ RT×N×d f , can be obtained by summing Etok and Etpe as follows:

E f= Etok+Etpe (7)

2.3.4. Embedding Fusion

By concatenating the aforementioned embeddings, we can obtain the outcome of the
fusion embedding layer given as follows:

Xemb = Esp∥Et∥E f (8)

Subsequently, Xemb ∈ RT×N×(d=dsp+dt+d f ) will be input into the spatial–temporal
attention layers, and X is used to denote Xemb for convenience.

2.4. Spatial–Temporal Attention Layer

Based on the multi-head self-attention mechanism, we developed a spatial–temporal
attention layer to capture both dynamic and long-range spatial–temporal correlations.
The attention layer is comprised of two key modules. The first, a spatial self-attention
module, incorporates an adaptive similarity matrix that dynamically identifies and em-
phasizes the interactions between a node and others that exhibit similar traffic patterns,
enhancing the model’s capacity to capture spatial dynamics. Concurrently, the temporal
self-attention module is engineered to discover long-range and dynamic temporal de-
pendencies, ensuring that important temporal information is preserved and integrated
throughout the predictive process. By maintaining a continuous flow of essential spatial
and temporal features, these modules collectively improve the accuracy and reliability of
traffic flow predictions.
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To precisely describe the operations of multi-head self-attention, we employ the
following slicing symbol. In the context of an embedding, X ∈ RT×N×d, the slicing
operation along the T-axis yields the matrix Xt:: ∈ RN×d, and slicing along the N-axis
produces the matrix X:n: ∈ RT×d.

2.4.1. Spatial Self-Attention

In the spatial dimension, the traffic conditions at various locations interact with each
other in a highly dynamic manner. To capture this dynamic spatial dependency in traffic
data, we designed a spatial self-attention module.

We first calculate the query, key, and value (QKV) matrices at time t via the self-
attention operation as follows:

QS
t = Xt::WS

Q, KS
t = Xt::WS

K, VS
t = Xt::WS

V (9)

where WS
Q, WS

K, and WS
V ∈ Rd×d′ denote learnable parameter matrices and d′ represents

the dimension of the query, key and value (QKV) matrices. Then, we apply the spatial
self-attention operation to explore the interactions among all nodes and obtain spatial
correlations (attention scores) between each pair of nodes at time t as follows:

AS
t =

QS
t ×

(
KS

t
)T

√
d′

(10)

It is evident that the spatial correlations, AS
t ∈ RN×N , between nodes vary across

different time slices, and this operation takes into account the connections between all nodes.
Therefore, the spatial self-attention module is able to capture long-range and dynamic
spatial dependencies. Finally, by normalizing the attention scores and multiplying them
with the value matrix, we obtain the output of the spatial self-attention (SSA) module given
as follows:

SSA
(

QS
t , KS

t , VS
t

)
= so f tmax(AS

t )V
S
t (11)

As mentioned above, each node is involved in interactions with every other node
that are equivalent considering the spatial structure in the form of a fully connected graph.
However, only the interaction between a few nodes sharing similar functions is crucial. By
identifying and focusing attention more on these similar nodes, the model becomes more
efficient and accurate. Therefore, we transform the adaptive similarity matrix obtained
from the fusion embedding layer into a graph mask matrix, integrating it with the SSA
module. Specifically, we choose the top K nodes that exhibit the greatest similarity for
each individual node based on the adaptive similarity matrix. By establishing the weight
assigned to the edges connecting the current node with its K similar nodes as 1 and that
assigned to the others as 0, we construct a binary mask matrix. Furthermore, we evolve the
original SSA into MaskSSA, which can be denoted as follows:

MaskSSA(QS
t , KS

t , VS
t ) = so f tmax(AS

t ⊙ Mmask)VS
t (12)

where ⊙ denotes the Hadamard product. The spatial self-attention module can focus more
on the dynamic interactions between similar nodes in this way.

Finally, we expand MaskSSA into a multi-head spatial self-attention mechanism to gain
a more comprehensive understanding of the dynamic and long-range spatial dependencies,
thereby enhancing the model’s generalization capabilities. The result of the spatial self-
attention module can be obtained as follows:

ZMaskSSA = MaskSSA1 ∥ MaskSSA2 ∥ . . . ∥ MaskSSAhssa (13)

where hssa is the number of attention heads of the spatial self-attention module.
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2.4.2. Temporal Self-Attention

In the temporal dimension, dependencies between traffic conditions across various
time slices are evident, such as periodicity and trends that fluctuate in different scenarios. To
adaptively capture dynamic temporal correlations, a temporal self-attention (TSA) module
is utilized. Specifically, we initially calculate the query, key, and value (QKV) matrices for
node n as follows:

QT
n = X:n:WT

Q, KT
n = X:n:WT

K , VT
n = X:n:WT

V (14)

where WT
Q, WT

K , and WT
V ∈ Rd×d′ represent learnable parameter matrices and d′ denotes the

dimension of these learnable matrices. Then, the temporal correlations (attention scores)
between all time slices for node n can be obtained via the self-attention operation as follows:

AT
n =

QT
n ×

(
KT

n
)T

√
d′

(15)

It is evident that the temporal self-attention module is capable of effectively exploring
the temporal dynamic dependencies for diverse nodes. Furthermore, the temporal self-
attention module possesses an expansive global receptive field feature, enabling it to
capture long-range temporal dependencies. Then, the output of the temporal self-attention
module can be obtained as follows:

TSA
(

QT
n , KT

n , VT
n

)
= so f tmax(AT

n )V
T
n (16)

Finally, we expand TSA into multi-head temporal self-attention. The output can be
obtained as follows:

ZTSA = TSA1 ∥ TSA2 ∥ . . . ∥ TSAhtsa (17)

where htsa is the number of attention heads of the temporal self-attention module.

2.4.3. Spatial–Temporal Attention Fusion

In order to diminish the computational complexity of the model, the heterogeneous
spatial–temporal self-attention outcomes are combined after defining two types of attention
modules. We concatenate the outcomes of these attention modules and then project them
to yield the outputs, enabling the model to simultaneously incorporate information from
spatial and temporal dimensions. Formally, the output can be obtained as follows:

STA = (ZMaskSSA ∥ ZTSA)W f (18)

where W f ∈ Rd×d represents a learnable projection matrix and d′ = d/(hssa + htsa) is set in
this paper.

Additionally, we further apply a position-wise fully connected feed-forward network.
This enables the model to delve deeper into the extraction of complex and abstract charac-
teristics in traffic data by applying two linear transformations. Formally, this network can
be defined as follows:

XFFN = GELU((STA)W1 + b1)W2 + b2 (19)

where XFFN ∈ RT×N×d is the output of the network; W1, b1, W2, and b2 represent learnable
parameters; and GeLU is the activation function. We also introduce residual connection
and layer normalization here, as in the original transformer [38].
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2.5. Output Layer

To enhance the propagation of features and gradients throughout our model and
to counteract potential problems of gradient vanishing or explosion, we implement skip
connections using a standard convolution layer with an 1 × 1-sized kernel. These skip con-
nections play a crucial role in preserving vital information from earlier layers by bypassing
intermediate layers directly to later ones. This method not only facilitates a smoother and
more stable training process by ensuring that gradients flow freely through the network but
also helps in retaining critical information necessary for accurate prediction over long-range
dependencies. By integrating these connections, our model is better equipped to produce
precise and reliable traffic flow predictions, leveraging both deep and surface-level features
effectively. It transforms the output, XFFN , into Xskip ∈ RT×N×dskip , where dskip is the skip
dimension. Then, the output of each skip connection layer is summed to obtain the final
hidden state, X f s ∈ RT×N×dskip . It can flexibly adjust the representational dimensions
of features, ensuring their efficient propagation in the deeper layers of the network and
preserving temporal and spatial features simultaneously.

To achieve multi-step traffic flow prediction, the output layer is directly employed to
obtain the prediction result as follows:

XPred = Conv3(Conv2(X f s)) (20)

where XPred ∈ RT′×N×F represents the T′ time steps’ prediction result and Conv2 and
Conv3 are two standard convolution layers, each characterized by a kernel size of 1 × 1.
The convolution layers are used to transform the time steps and the skip dimension of X f s,
respectively. Considering cumulative errors and computational efficiency, we use a direct
way instead of adopting a recursive manner to obtain prediction values.

STFEformer sets a new benchmark for the prediction of spatial and temporal traffic
data in Intelligent Transportation Systems. The modular and adaptable design of STFE-
former serves as a foundation for future predictive models in the field. By demonstrating
how dynamic and long-range spatial–temporal correlations patterns can be effectively
captured and integrated, STFEformer offers a blueprint for future developments in traffic
management, urban planning, and beyond. Researchers and engineers can build upon this
architecture to create more nuanced models that accommodate the increasing complexity of
traffic datasets and drive advancements in real-time, adaptive traffic management systems.

3. Experiments
3.1. Datasets

The performance of STFEformer was corroborated by experimental validation on three
real-world public datasets, namely, PeMS04, PeMS07, and PeMS08 [23]:

PeMS04: The traffic data were gathered by the California Transportation Agency’s
(CalTrans) Performance Measurement System (PeMS) from 1 January to 28 February 2018,
utilizing 307 sensors. This dataset encompasses traffic flow information, which is consoli-
dated into intervals of every 5 min.

PeMS07: This dataset encompasses data spanning four months, acquired through
883 sensors from 1 May to 31 August 2017. It includes traffic flow information aggregated
at 5 min intervals.

PeMS08: This dataset encompasses data spanning two months acquired through
170 sensors from 1 July to 31 August 2016. It includes traffic flow information aggregated
at 5 min intervals.
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Details are presented in Table 3. We use the past hour’s (12 time steps) data to predict
the following hour’s (12 time steps) traffic flow. The dataset is partitioned into three
segments: 60% allocated for training, 20% for validation, and the remaining 20% for testing.

Table 3. Dataset description.

Dataset No. of Nodes No. of Edges No. of Time Steps Time Interval Time Range

PeMS04 307 340 16,992 5 min 1 January–28 February 2018
PeMS07 883 866 28,224 5 min 1 May–31 August 2017
PeMS08 170 295 17,856 5 min 1 July–31 August 2016

3.2. Experimental Setups

All experiments were conducted on a machine with an NVIDIA GeForce RTX 4090
GPU and 24 GB of memory, utilizing Python 3.9.7. The embedding dimensions were set as
dsp = 24, dt = 24, and d f = 24. The depth of the spatial–temporal attention layers, L, was 6.
Both the input and output time steps corresponded to 1 h, i.e., T = T′ = 12. The number of
heads for both the spatial and temporal self-attention modules was 4. The learning rate
was 0.001, and the batch size was 16. Adam was chosen as the optimizer. Based on the
performance on the validation set, the optimal model was determined. If the validation loss
converged over a span of 20 continuous steps, an early-stop mechanism was implemented.

We utilized three metrics to evaluate the predictive accuracy of the model during the
experiments: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean
Absolute Percentage Error (MAPE). We also excluded missing values when calculating
these metrics.

MAE is defined as follows:

MAE =
1
N

N

∑
i=1

|yi − ŷi| (21)

RMSE is defined as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (22)

MAPE is defined as follows:

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (23)

where yi is the true value and ŷi is the prediction result.

3.3. Baselines

We compared STFEformer with 12 baseline models. Descriptions of these baseline
methods are provided as follows:

VAR [39]: Vector Auto-Regression (VAR) is a statistical model utilized for time-series
data analysis. It captures the dynamic relationships between variables. In this model, each
variable is represented as a linear function influenced by its own historical values as well
as those of other variables, thus facilitating the simultaneous analysis of several time series.

SVR [40]: Support Vector Regression (SVR) is a regression method derived from the
principles of the Support Vector Machine (SVM). The core idea of SVR is to determine a
decision boundary, namely, a regression hyperplane, that maximizes the margin to the
nearest training sample points.
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DCRNN [7]: The Diffusion Convolutional Recurrent Neural Network (DCRNN)
models traffic flow as a diffusion process in directed graphs. It introduces bidirectional
random walks in the graphs to explore spatial features and utilizes an encoder–decoder
architecture with Gated Recurrent Units (GRUs) to learn temporal correlations.

ASTGCN [41]: The Attention-Based Spatial–Temporal Graph Convolutional Network
(ASTGCN) uses approximate expansion of Chebyshev polynomials to explore spatial
dependencies and a standard convolution layer to model temporal features. Addition-
ally, a spatial–temporal attention mechanism is employed to capture the dynamic spatial–
temporal correlations in traffic data.

STSGCN [23]: The Spatial–Temporal Synchronous Graph Convolutional Network
(STSGCN) introduces a novel spatial–temporal graph convolutional module that synchro-
nizes the capture of local spatial–temporal dependencies. Additionally, a multiple-module
layer was designed to explore heterogeneity in spatial–temporal graphs. It deploys multi-
ple modules in each time period, allowing each module to concentrate on extracting the
spatial–temporal dependencies from localized spatial–temporal graphs.

AGCRN [9]: The Adaptive Graph Convolutional Recurrent Network (AGCRN) de-
signs a node adaptive parameter learning module to explore spatial features for each node.
It also introduces a data adaptive graph generation module to automatically capture the
intercorrelations between various tensors. Moreover, the two modules are combined with
Gated Recurrent Units (GRUs) to learn temporal dependencies.

GMAN [25]: The Graph Multi-Attention Network (GMAN) proposes a spatial–temporal
attention mechanism to explore dynamic spatial and non-linear temporal correlations. To
adaptively fuse the outputs derived from spatial–temporal attention, gated fusion was also
designed. Furthermore, it employs a transform attention mechanism to obtain prediction
representations from historical features.

Z-GCNETs [42]: Time-Aware Zigzags at Graph Convolutional Networks (Z-GCNETs)
is a pioneering approach that merges time-conditioned DL with time-aware persistent
homology data representations. A zigzag topological layer designed specifically for time-
aware graph convolutional networks was developed and integrated with Gated Recurrent
Units (GRUs). This model is able not only to capture the topological attributes of data but
also to comprehend how these characteristics evolve over time.

STFGNN [22]: The Spatial–Temporal Fusion Graph Neural Network (STFGNN) de-
signs a novel adjacency matrix via row data and is capable of extracting features that spatial
graphs may not reflect. Additionally, by integrating a dilated CNN module with a gated
mechanism and a spatial–temporal fusion graph module, it can explore long-range and
long-term spatial–temporal correlations through layer stacking.

STGODE [20]: The Spatial–Temporal Graph ODE Network (STGODE) proposes a
novel ordinary differential equation based on tensor form to capture spatial–temporal
dynamics. A semantical adjacency matrix was designed to comprehensively consider
spatial correlations. Moreover, it also utilizes a temporal dilatated convolution structure to
explore long-range temporal correlations.

DSTAGNN [21]: The Dynamic Spatial–Temporal-Aware Graph Neural Network
(DSTAGNN) constructs a graph that captures dynamic attributes related to nodes by
mining historical observations. Based on multi-order Chebyshev polynomials in GCNs, a
novel spatial–temporal attention module was designed to explore dynamic spatial depen-
dencies, and an enhanced gated convolution module was designed to enhance the model’s
capacity to capture dynamic temporal correlations.

ASTGCNs [43]: Adaptive Spatial–Temporal Graph Convolution Networks (ASTGCNs)
utilize an adaptive graph convolution along with an attention mechanism to effectively
address bias present in clearly defined graph structures and explore local spatial–temporal
dependency in data. It also utilizes a temporal convolution network and an ordinary
differential equation module to learn global spatial–temporal dependencies.
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4. Experimental Results and Discussion
4.1. Performance Comparison

Table 4 presents the performance results of various models tested on three real-world
datasets. These experimental results showcase the superiority of our model in comparison
to all other baseline models across the entirety of the datasets.

Compared to the other baseline models, VAR and SVR exhibited inferior performance,
primarily due to their sole focus on the temporal dimension while neglecting the spatial
correlations inherent in traffic flow. This underscores the critical importance of considering
temporal and spatial correlations simultaneously when modeling traffic flow.

In contrast, spatial–temporal deep-learning models generally demonstrated superior
performance. DCRNN, ASTGCN, and STSGCN are three models that concurrently process
information across both temporal and spatial dimensions. DCRNN, which is based on
the RNN in the temporal dimension, encounters a limit in capturing long-range temporal
correlations. ASTGCN employs a standard convolution layer to aggregate information
only from neighboring time slices, which makes it difficult to gain a promising ability
to model temporal dependency. In the spatial dimension, both DCRNN and ASTGCN
utilize predefined adjacency matrices to learn spatial dependency. In comparison, STSGCN
employs a temporal embedding matrix and a spatial embedding matrix, both of which are
learnable. It also utilizes spatial–temporal convolution modules to extract features, thus
enhancing performance. However, it only captures local spatial–temporal correlations,
limiting its ability to discover global information in traffic flow.

Table 4. Performance comparison of STFEformer and other baseline models.

PeMS04 PeMS07 PeMS08
Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

VAR 25.54 38.61 18.24% 99.20 131.14 38.69% 22.31 33.63 14.57%
SVR 28.56 43.29 19.03% 31.87 49.15 14.43% 23.15 35.25 14.69%

DCRNN 24.60 38.02 17.11% 25.20 38.55 11.64% 17.83 27.78 11.48%
ASTGCN 22.84 35.28 16.38% 27.05 40.57 12.82% 18.21 28.06 12.88%
STSGCN 21.19 33.65 13.90% 24.26 39.03 10.21% 17.13 26.80 10.96%
AGCRN 19.83 32.26 12.97% 22.17 36.12 9.17% 15.95 25.22 10.09%

Z-GCNETs 19.50 31.61 12.78% 21.73 35.07 9.25% 15.76 25.11 10.01%
STFGNN 19.83 31.88 13.02% 22.07 35.80 9.21% 16.64 26.22 10.60%
STGODE 20.84 32.82 13.77% 22.99 37.54 10.14% 16.81 25.97 10.62%

DSTAGNN 19.30 31.46 12.70% 21.42 34.51 9.01% 15.67 24.77 9.94%
ASTGCNs 20.14 31.60 13.87% 21.90 34.52 9.82% 15.99 24.90 10.21%

STFEformer 18.98 30.94 12.65% 20.50 33.87 8.75% 14.80 24.22 9.85%

Both AGCRN and Z-GCNETs utilize GRUs to learn temporal patterns, yet they fall
short of efficiently capturing dynamic and long-range temporal correlations. In terms of
spatial dependency learning, AGCRN and Z-GCNETs adopt distinct approaches. AGCRN
learns unique parameters for each node based on matrix factorization and accordingly
constructs an adaptive graph generation module capable of autonomously inferring depen-
dencies among different traffic series. On the other hand, Z-GCNETs design time-aware
graph convolutions to capture topological attributes in traffic data.

In the spatial dimension, GMAN develops a spatial embedding which is similar to
AGCRN but employs a spatial attention mechanism instead of graph convolution. In the
temporal dimension, it develops temporal embedding and a temporal attention mechanism.
However, the embeddings are not comprehensive enough. Moreover, an encoder–decoder
architecture is utilized to explore spatial–temporal correlations.
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Both STFGNN and DSTAGNN rely on mining historical data to construct data-driven
graph structures as opposed to using predefined graphs, thereby enhancing the explo-
ration of previously unexposed spatial correlations. Moreover, DSTAGNN leverages an
attention mechanism and a gated convolution module, augmenting its capability to cap-
ture dynamic spatial correlations. In the temporal dimension, STFGNN employs a gated
dilated convolution module with extensive dilation to broaden its receptive field in time
series, capturing temporal correlations. DSTAGNN introduces a multi-scale gated tanh
unit to explore temporal information. Both methods lack the ability to capture dynamic
temporal correlations.

Both STGODE and ASTGCN enhance performance in traffic flow prediction by in-
tegrating the structure of Ordinary Differential Equations (ODEs). Specifically, STGODE
constructs a semantic adjacency matrix to capture the semantic associations between nodes
via Dynamic Time Warping (DWT). It also designs a spatial–temporal graph convolution
based on an ODE structure to simultaneously handle spatial and temporal information.
ASTGCN, based on node-adaptive parameters, constructs an adaptive graph and further
combines it with an attention mechanism to explore local spatial–temporal features. More-
over, STGODE employs two TCN blocks to extract long-range temporal correlations, while
ASTGCNs adopt both TCNs and ODEs to further explore global spatial–temporal features.

Our model, STFEformer, exhibited superior prediction performance on all three real-
world datasets. Specifically, on the PeMS04 dataset, STFEformer’s MAE was 18.98, sur-
passing the second-best model, DSTAGNN, which had an MAE of 19.30. Additionally,
STFEformer presented a lower RMSE of 30.94 compared to DSTAGNN’s RMSE of 31.46,
and a lower MAPE of 12.65% compared to DSTAGNN’s MAPE of 12.70%. Similarly, on the
PeMS07 dataset, STFEformer achieved an MAE of 20.50, an RMSE of 33.87, and an MAPE
of 8.75%, while DSTAGNN obtained an MAE of 21.42, an RMSE of 34.51, and an MAPE of
9.01%. On the PeMS08 dataset, STFEformer achieved an MAE of 14.80, an RMSE of 24.22,
and an MAPE of 9.85%, while DSTAGNN exhibited an MAE of 15.67, an RMSE of 24.77,
and an MAPE of 9.94%.

These improvements are attributed to the combination of short-term features and
periodic features in the temporal dimension, the use of data-driven adaptive spatial em-
beddings without predefined graphs, and native feature extraction from raw data. Then,
our model utilizes a spatial self-attention module which integrates an adaptive similarity
matrix, thereby highlighting interactions between similar nodes and capturing dynamic
and long-range spatial correlations. To explore dynamic temporal dependencies, a tempo-
ral self-attention module is also employed. In conclusion, our model effectively captures
complex features in traffic data.

4.2. Ablation Study Results

To assess the efficacy of each component in STFEformer, ablation experiments with
five variants of our model were conducted:

• w/o MaskSSA. This removes the mask spatial self-attention.
• w/o mask. This removes the binary mask matrix.
• w/o Esp. This removes the adaptive spatial embedding, Esp.
• w/o E f . This removes the native feature embedding, E f .
• w/o Et. This removes the temporal embedding, Et.

The experiments were carried out on the PeMS04, PeMS07, and PeMS08 datasets.
The results are as shown in Tables 5–8 and Figures 2–7 illustrating the visualization of the
experimental results. The outcomes of the ablation experiments provide a comprehensive
perspective on the performance of STFEformer following the removal of different com-
ponents. Overall, considering 12-time-step prediction, STFEformer performed the best,
while w/o Et ranked the lowest. Compared to the STFEformer model, the performance
sequentially decreased for w/o mask, w/o E f , w/o MaskSSA, and w/o Esp.
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Table 5. The overall 12-time-step prediction results of the ablation study.

PeMS04 PeMS07 PeMS08
Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

w/o MaskSSA 20.76 33.57 13.45% 22.25 36.66 9.17% 15.55 25.43 10.32%
w/o mask 19.31 31.38 12.98% 20.75 34.37 8.93% 15.09 24.68 9.97%
w/o Esp 21.65 34.63 13.64% 22.94 37.34 9.32% 15.70 26.25 10.38%
w/o E f 20.13 35.53 13.12% 21.56 35.73 9.09% 15.39 25.11 10.22%
w/o Et 21.88 35.02 13.76% 23.12 37.82 9.45% 15.95 26.58 10.45%

STFEformer 18.98 30.94 12.65% 20.50 33.87 8.75% 14.80 24.22 9.85%

Table 6. The next 3-, 6-, 9-, and 12-time-step prediction results of the ablation study on PeMS04.

3 6 9 12
Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

w/o MaskSSA 19.82 31.62 12.64% 20.66 33.13 13.31% 21.42 34.33 13.89% 22.40 35.71 14.54%
w/o mask 18.28 29.55 12.20% 19.27 31.08 12.89% 19.97 32.33 13.41% 20.96 33.60 14.04%
w/o Esp 19.33 31.06 12.78% 21.28 33.76 13.51% 22.15 36.25 14.84% 24.28 38.44 15.97%
w/o E f 19.17 30.83 12.47% 20.03 32.36 13.05% 21.07 33.69 13.68% 21.41 34.32 14.26%
w/o Et 19.92 31.85 12.71% 21.48 34.18 13.66% 22.64 36.81 15.18% 24.72 38.67 16.15%

STFEformer 18.00 29.30 11.95% 18.98 30.96 12.63% 19.62 32.02 13.07% 20.61 33.36 13.69%

Table 7. The next 3-, 6-, 9-, and 12-time-step prediction results of the ablation study on PeMS07.

3 6 9 12
Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

w/o MaskSSA 21.02 33.39 8.62% 22.17 35.71 9.09% 23.14 37.41 9.54% 24.34 39.18 10.16%
w/o mask 19.55 31.37 8.42% 20.68 33.66 8.85% 21.58 35.28 9.23% 22.89 37.15 9.95%
w/o Esp 20.39 33.06 8.80% 22.61 36.04 9.28% 25.18 39.96 10.03% 27.47 42.47 11.00%
w/o E f 20.16 32.42 8.61% 21.46 35.47 8.95% 22.27 36.49 9.29% 23.54 38.16 10.00%
w/o Et 21.00 33.74 8.75% 22.66 37.12 9.33% 25.49 40.86 10.24% 27.76 43.36 11.13%

STFEformer 19.29 30.98 8.21% 20.40 33.17 8.63% 21.37 34.85 9.08% 22.67 36.68 9.84%

Table 8. The next 3-, 6-, 9-, and 12-time-step prediction results of the ablation study on PeMS08.

3 6 9 12
Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

w/o MaskSSA 14.72 23.79 9.70% 15.48 25.37 10.23% 16.34 26.53 10.77% 17.08 27.95 11.62%
w/o mask 14.17 22.93 9.20% 15.02 24.56 9.92% 15.64 25.88 10.38% 16.53 26.83 11.10%
w/o Esp 14.82 23.17 9.65% 15.57 25.96 10.16% 17.05 27.56 11.16% 17.97 28.09 12.20%
w/o E f 14.42 22.97 9.38% 15.28 25.02 9.99% 15.78 26.29 10.66% 16.79 27.11 11.24%
w/o Et 14.91 23.99 9.70% 15.71 26.38 10.25% 17.31 28.06 11.34% 18.82 29.00 12.31%

STFEformer 13.88 22.43 9.13% 14.83 24.36 9.82% 15.34 25.38 10.24% 16.27 26.60 10.87%

Compared to w/o Et, STFEformer demonstrated a significant improvement in next
overall 12-time-step prediction and showed enhancements in MAE, RMSE, and MAPE.
For example, STFEformer improved by 13.2%, 11.6%, and 8.0% on the PeMS04 dataset; on
the PeMS07 dataset, the improvements were 11.3%, 10.4%, and 7.4%; and on the PeMS08
dataset, the improvements were 7.2%, 8.8%, and 5.7%.
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In predicting the next overall 12 time steps, STFEformer achieved enhancements
in MAE, RMSE, and MAPE when contrasted with w/o Esp. On the PeMS04 dataset,
STFEformer demonstrated enhancements of 12.3% in MAE, 10.6% in RMSE, and 7.2% in
MAPE. Similarly, on the PeMS07 dataset, the enhancements were 10.6%, 9.2%, and 6.1% in
MAE, RMSE, and MAPE, respectively. On the PEMS08 dataset, the enhancements were
5.7%, 7.7%, and 5.1% in MAE, RMSE, and MAPE.

Moreover, in the prediction of the next overall 12 time steps, STFEformer exhibited
enhancements on different datasets when contrasted with w/o E f . For instance, the
improvements were 5.7%, 4.8%, and 3.5% in MAE, RMSE, and MAPE on the PeMS04
dataset; on the PEMS07 dataset, the improvements were 4.9%, 5.2%, and 3.7; and the
improvements were 3.8%, 3.5%, and 3.6% on the PEMS08 dataset, respectively.

Furthermore, compared to w/o mask, STFEformer showed an improvement in next
overall 12-time-step prediction. Specifically, on the PeMS04 dataset, STFEformer improved
by 1.7%, 1.4%, and 2.5% in MAE, RMSE, and MAPE, respectively. The enhancements were
1.9%, 1.8%, and 1.2% on the PeMS07 dataset, while STFEformer improved by 1.2%, 1.4%,
and 2.0% on the PeMS08 dataset.

Finally, compared to w/o MaskSSA, STFEformer showed great improvements. For
instance, on the PeMS04 dataset, STFEformer improved by 8.5%, 7.8%, and 5.9%; on the
PeMS07 dataset, the improvements were 7.8%, 7.6%, and 4.6%; and on the PeMS08 dataset,
STFEformer improved by 4.8%, 4.7%, and 4.5%.

In predictions of the next 15, 30, 45, and 60 min, STFEformer also outperformed all the
models post-ablation.

The ablation experiments provide crucial evidence regarding the effectiveness of each
component proposed in our research. Through the fusion embedding layer, we successfully
achieve comprehensive feature extraction and fusion, significantly enhancing the model’s
accuracy for traffic flow prediction tasks. The design of the fusion embedding layer enables
the model to extract native information and spatial–temporal characteristics from traffic
data more effectively, leading to more accurate prediction. Furthermore, the ablation study
underscores the importance of combining an adaptive similarity matrix with spatial self-
attention. This method allows the model to concentrate more on the interactions between
the similar node pairs during the spatial feature learning process. By accounting for these
dynamic and long-range spatial correlations, our model can understand and predict more
precisely. Especially when dealing with complex interactions between nodes in urban
traffic networks, this mask spatial self-attention mechanism proves particularly crucial.

4.3. Visualization Results

To further validate the effectiveness of STFEformer, we visualized the prediction results
for the three datasets and made a comparison between the predicted and target values.
The results are shown in Figure 8. It is evident that traffic flow exhibits periodicity, and
the prediction results are the same as the target values, demonstrating the model’s success
in accurately predicting overall traffic flow trends and capturing these characteristics.
Additionally, traffic flow displays distinct short-term features (such as during extreme
weather, holidays, or unexpected events) in a certain period of time, and our model also
successfully fits these features. Even during periods of dramatic traffic fluctuations, our
model accurately captures these changes and closely aligns with actual values. Achieving
consistent high performance across different datasets further substantiates the robustness
and reliability of our model.



Appl. Sci. 2024, 14, 4325 19 of 23
Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 24 
 

 
Figure 8. The visualization results for prediction. (a) PeMS04. (b) PeMS07. (c) PeMS08. 

Figure 9 displays the partially adaptive similarity matrices obtained from training on 
three datasets. In the heat maps of the adaptive similarity matrices, the strength of the 
similarities between node pairs is markedly evident. Through iteratively training the ma-
trices obtained from the fusion embedding layer across three datasets, similarity matrices 
that represent the spatial correlations between nodes can be obtained. Figure 9 illustrates 
the similarity matrices obtained through training for all datasets, revealing a clear aggre-
gation pattern among node pairs with stronger similarities. This observation underscores 

 
  

Figure 8. The visualization results for prediction. (a) PeMS04. (b) PeMS07. (c) PeMS08.

Figure 9 displays the partially adaptive similarity matrices obtained from training
on three datasets. In the heat maps of the adaptive similarity matrices, the strength of
the similarities between node pairs is markedly evident. Through iteratively training
the matrices obtained from the fusion embedding layer across three datasets, similarity
matrices that represent the spatial correlations between nodes can be obtained. Figure 9
illustrates the similarity matrices obtained through training for all datasets, revealing a
clear aggregation pattern among node pairs with stronger similarities. This observation
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underscores that STFEformer can effectively symbolize the spatial relationships between
different node pairs via the similarity matrices. Therefore, it reiterates the efficacy of the
fusion embedding layer in capturing spatial characteristics.
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5. Conclusions

In this research, we introduce an STFEformer model designed to improve the under-
standing of complex traffic data characteristics for traffic flow prediction. Specifically, we
introduce a uniquely designed fusion embedding layer to efficiently extract and fuse multi-
perspective features, including spatial, temporal (short-term and periodic), and native
features in traffic data in order to obtain a more comprehensive representation of traffic
data features and lay a solid foundation for accurate traffic flow prediction. We designed a
novel spatial self-attention module that leverages a mask matrix method to enhance the
detection of dynamic, long-range spatial correlations. To further explore dynamic temporal
correlations, a temporal self-attention module is also employed. We conducted extensive
experiments to evaluate our model on three real-world public datasets, in which it outper-
formed twelve baseline models. The ablation experiments, in particular, provide crucial
insights into the effectiveness of each component, affirming the significant contribution
of our novel mechanisms to the model’s overall performance. Finally, we visualized the
prediction results and the learned adaptive similarity matrices, significantly enhancing the
interpretability and transparency of our model. These visualizations not only confirm the
accuracy of our predictions but also provide intuitive insights into the model’s decision-
making process. In the future, we intend to integrate STFEformer with other computational
methods such as deep-learning algorithms for real-time data analysis and apply our model
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to diverse contexts, such as smart city planning and autonomous vehicle navigation, in
order to delve deeper into the hidden information in spatial–temporal data and discover the
impact of spatial–temporal dimensions on prediction accuracy. By pursuing this way, our
objective is to further improve the predictive performance of STFEformer and discover its
potential applications in different tasks. Moreover, we will further investigate mechanisms
that can dynamically update traffic networks to reflect real-time changes in traffic patterns.
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