Influence of Exogenous Abscisic Acid on Germination and Physiological Traits of Sophora viciifolia Seedlings under Drought Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Material
2.2. Experimental Design
2.3. Index Measurement
2.3.1. Seed Germination Index Measurement
2.3.2. Physiological Index Measurement
2.3.3. Comprehensive Evaluation of ABA Application
2.4. Data Analysis
3. Results
3.1. Effect of Exogenous ABA on Sophora viciifolia Seed Germination under Drought Stress Induced by PEG
3.2. Effect of Exogenous ABA on the Antioxidant Enzyme Activities in Sophora viciifolia under Drought Stress
3.3. Effect of Exogenous ABA on Malondialdehyde and Proline Levels in Sophora viciifolia Seedlings under Drought Stress
3.4. Comprehensive Evaluation of Drought Resistance
3.4.1. Correlation Analysis of Different Indices
3.4.2. Comprehensive Evaluation of Seed Germination and Physiological Indices in Sophora viciifolia Treated with Exogenous ABA
4. Discussion
4.1. Impact of Drought Stress on Seed Germination and Physiological Characteristics of Sophora viciifolia
4.2. Impact of Exogenous Abscisic Acid on Seed Germination and Physiological Traits of Sophora viciifolia under Drought Stress
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.B.; Wang, S.J.; Rong, L. Problems of Karst rocky desertification in southwest China. Yangtze Basin Res. Environ. 2003, 12, 593–598. [Google Scholar]
- Chen, H.; Li, D.; Xiao, K.; Wang, K. Soil microbial processes and resource limitation in karst and non-karst forests. Funct. Ecol. 2018, 32, 1400–1409. [Google Scholar] [CrossRef]
- Guo, Z.M.; Zhang, X.Y.; Dungait, J.A.J.; Green, S.M.; Wen, X.F.; Quine, T.A. Contribution of soil microbial necromass to SOC stocks during vegetation recovery in a subtropical karst ecosystem. Sci. Total Environ. 2021, 761, 143945. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Chen, D.M.; Liu, Q.F.; Zang, L.P.; Zhang, G.Q.; Sui, M.Z.; Dai, Y.; Zhou, C.J.; Li, Y.J.; Yang, Y.S.; et al. Dominant influence of plants on soil microbial carbon cycling functions during natural restoration of degraded karst vegetation. J. Environ. Manag. 2023, 345, 118845. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ren, H.D.; Yao, X.H. Responses of soil moisture to bare rocks in Karst rock desertification region of Southwest China during dry season. Chin. J. Ecol. 2012, 31, 3174–3178. [Google Scholar]
- Liu, P.; Ding, S.; Liu, N.; Mo, Y.; Liang, Y.; Ma, J. Soil Microbial Community in Relation to Soil Organic Carbon and Labile Soil Organic Carbon Fractions under Detritus Treatments in a Subtropical Karst Region during the Rainy and Dry Seasons. Forests 2023, 14, 2291. [Google Scholar] [CrossRef]
- Ding, L.L.; Wang, P.C. Afforestation suppresses soil nitrogen availability and soil multifunctionality in a subtropical grassland. Sci. Total Environ. 2021, 761, 143663. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.C.; Xie, W.H.; Ding, L.L.; Zhuo, Y.P.; Gao, Y.; Zhao, L.L. Effects of maize–crop rotation on soil physicochemical properties, enzyme activities, microbial biomass and microbial community structure in southwest China. Microorganisms 2023, 11, 2621. [Google Scholar] [CrossRef]
- Wang, P.C.; Ding, L.L.; Zou, C.; Zhang, Y.J.; Wang, M.Y. Herbivore camping reshapes the taxonomy, function and network of pasture soil microbial communities. Peer J. 2022, 10, e14314. [Google Scholar] [CrossRef]
- Ding, L.L.; Tian, L.L.; Li, J.Y.; Zhang, Y.J.; Wang, M.Y.; Wang, P.C. Grazing lowers soil multifunctionality but boosts soil microbial network complexity and stability in a subtropical grassland of China. Front. Microbiol. 2023, 13, 1027097. [Google Scholar] [CrossRef]
- Wang, P.C.; Mo, B.T.; Long, Z.F.; Fan, S.Q.; Wang, H.H.; Wang, L.B. Factors affecting seed germination and emergence of Sophora davidii. Ind. Crop. Prod. 2016, 87, 261–265. [Google Scholar] [CrossRef]
- Ma, Y.R.; Zhou, T.X.; Zhao, P.; Choi, H.Y.; Hao, J.; Huang, H.Q.; Wu, C.Q.; Yang, X.Z.; Pang, K.J. New flavonoids from the roots of Sophora davidii (Franch.) Skeels and their glucose transporter 4 translocation activities. Bioorg. Chem. 2021, 106, 104500. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, L.J.; Sun, X.F.; Zhao, L.L.; Wang, P.C. Transcriptomic and metabolomic analyses reveal key metabolites, pathways and candidate genes in Sophora davidii (Franch.) Skeels seedlings under drought stress. Front. Plant. Sci. 2022, 13, 785702. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Tang, M.; Chen, H.; Zhang, Q.M.; Feng, X.X. Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New For. 2013, 44, 399–408. [Google Scholar] [CrossRef]
- Wu, F.Z.; Bao, W.K.; Li, F.L.; Wu, N. Effects of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of Sophora davidii seedlings. Photosynthetica 2008, 46, 40–48. [Google Scholar] [CrossRef]
- Wu, J.H.; Xie, C.P.; Tian, C.E.; Zhou, Y.P. Molecular mechanism of abscisic acid regulation during seed dormancy and germination. Chin. Bull. Bot. 2018, 53, 542–555. [Google Scholar] [CrossRef]
- Sirichandra, C.; Wasilewska, A.; Vlad, F.; Valon, C.; Leung, J. The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J. Exp. Bot. 2009, 60, 1439–1463. [Google Scholar] [CrossRef]
- Wang, Y.L.; Ma, F.W.; Li, M.J.; Liang, D.; Zou, J. Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regul. 2011, 64, 63–74. [Google Scholar] [CrossRef]
- Parent, B.; Hachez, C.; Redondo, E.; Simonneau, T.; Chaumont, F.; Tardieu, F. Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: A trans-scale approach. Plant Physiol. 2009, 149, 2000–2012. [Google Scholar] [CrossRef]
- Chen, G.J.; Zheng, D.F.; Feng, N.J.; Zhou, H.; Mu, D.W.; Liu, L.; Zhao, L.M.; Shen, X.F.; Rao, G.S.; Li, T.Z. Effects of exogenous salicylic acid and abscisic acid on growth, photosynthesis and antioxidant system of rice. Chin. J. Agric. Res. 2022, 82, 21–32. [Google Scholar] [CrossRef]
- Cai, L.J.; Feng, Y.Y. Effects of exogenous ABA on the physiological characteristics and chlorophyll fluorescence of Gynura cusimbua seedlings under drought stress. IOP Conf. Ser. Earth Environ. Sci. 2020, 615, 012089. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, X.F.; Zhao, L.L.; Wang, P.C.; Huang, L.J. Morphological, transcriptomic and metabolomic analyses Sophora davidii mutants for plant height. BMC Plant Biol. 2022, 22, 144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Shang, Y.S.; Wang, P.C.; Ding, L.L.; Zhang, W.; Zou, C. Effects of super absorbent polymers on growth and physiological characteristics of Sophora davidii vs. Panjiang seedling under drought stress. Acta Prataculturae Sin. 2020, 29, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Long, S.S.; Xie, W.H.; Zhao, W.W.; Liu, D.Y.; Wang, P.C.; Zhao, L.L. Effects of acid and aluminum stress on seed germination and physiological characteristics of seedling growth in Sophora davidii. Plant Signal. Behav. 2024, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Garnczarska, M.; Bednarski, W.; Jancelewicz, M. Ability of lupine seeds to germinate and to tolerate desiccation as related to changes in free radical level and antioxidants in freshly harvested seeds. Plant Physiol. Biochem. 2009, 47, 56–62. [Google Scholar] [CrossRef]
- Shao, H.B.; Liang, Z.S.; Shao, M.A.; Wang, B.C. Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling stage. Colloid Surf. B 2005, 42, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Qi Zhou, Q.; Yongping Li, Y.P.; Xiaojing Wang, X.J.; Chao Yan, C.; Ma, C.M.; Liu, J.; Dong, S.K. Effects of different drought degrees on physiological characteristics and endogenous hormones of soybean. Plants 2022, 11, 2282. [Google Scholar] [CrossRef] [PubMed]
- Civello, P.M.; Martinez, G.A.; Chaves, A.R.; Anon, M.C. Peroxidase from strawberry fruit (Fragaria ananassa Duch.): Partial purification and determination of some properties. J. Agric. Food Chem. 1995, 43, 2596–2601. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Liu, J.Y.; Du, J.C.; Wang, Z.L.; Cui, L.L.; Zhao, Y.H. Response of Medicago sativa L. and M. falcata L. to PEG drought stress in seed germination period. Chin. J. Grassl. 2018, 40, 27–34, 61. [Google Scholar]
- Han, Z.S.; Zheng, M.N.; Liang, X.Z.; Kang, J.H.; Chen, Y.N. Effects of drought stress on morphological and physiological characteristics of different alfalfa cultivars. Chin. J. Grassl. 2020, 42, 37–43. [Google Scholar]
- Wu, X.; Zhang, G.; Guo, H.; Zhang, Y.N.; Zhou, P.C.; Fu, C.B. Effects of drought stress on morphology, physiological and biochemical indexes in different parts of Nepeta multifida L. seedlings. J. Shanxi Agric. Sci. 2022, 50, 161–169. [Google Scholar]
- Ding, F.; Yang, F.; Du, T.Z. Effects of drought stress on activities of antioxidant enzymes in Broussonetia papyrifera L. Acta Agric. Univ. Jiangxiensis 2018, 30, 680–683. [Google Scholar]
- Zhang, C.L.; Cao, S.; Man, L.L.; Xiang, D.J.; Liu, P. Analysis of PEG stress on drought tolerance and related response genes expression in soybean seedlings of two varieties. Mol. Plant Breed. 2019, 17, 5891–5898. [Google Scholar]
- Li, Y.; Yu, X.J.; Zhao, Y.S.; Wang, L.; Peng, Z.; Fan, L.H.; Wang, Y.X.; Ma, X.D. Effects of seed soaking with salicylic acid and abscisic acid on seed germination and seedling growth of Medicago ruthenica at low temperature. Acta Agrestia Sin. 2021, 29, 174–181. [Google Scholar]
- Peng, H.; Song, W.L.; Wang, X.Q. Effects on seed germination and seedling growth of maize under salt stress with salicy acid and abscisic acid. J. Maize Sci. 2016, 24, 75–78, 87. [Google Scholar]
- Yang, Y.Y.; Chen, X.; Chen, Q.Z.; Lu, F.; Xu, C.; Yang, H.T.; Su, P.P.; Liu, X.L. Priming effects of abscisic acid on high temperature stress tolerance in rice at seed germination stage. Acta Agric. Boreali-Sin. 2021, 36, 185–194. [Google Scholar]
- Hayat, Q.; Hayat, S.; Alyemeni, M.N.; Ahmad, A. Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicer arietinum L. Plant Soil Environ. 2012, 58, 417–423. [Google Scholar] [CrossRef]
- Nazar, R.; Umar, S.; Khan, N.A. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal. Behav. 2015, 10, e1003751. [Google Scholar] [CrossRef]
- Poór, P.; Borbély, P.G.; Bódi, N.; Bagyanszki, M.; Tari, I. Effects of salicylic acid on photosynthetic activity and chloroplast morphology under light and prolonged darkness. Photosynthetica 2019, 57, 367–376. [Google Scholar] [CrossRef]
- Wu, F.Z.; Bao, W.K.; Zhou, Z.Q.; Wu, N. Carbon accumulation, nitrogen and phosphorus use efficiency of Sophora davidii seedlings in response to nitrogen supply and water stress. J. Arid Environ. 2009, 73, 1067–1073. [Google Scholar] [CrossRef]
- Liu, C.; Huang, Y.; Wu, F.; Liu, W.J.; Ning, Y.Q.; Huang, Z.R.; Tang, S.Q.; Liang, Y. Plant adaptability in karst regions. J. Plant Res. 2021, 134, 889–906. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Ning, Y.Q.; Huang, Z.R.; Tang, A.Q.; Liang, Y. Breeding toward improved ecological plant–microbiome interactions. Trends Plant Sci. 2022, 27, 1360–1385. [Google Scholar]
ABA/PEG Treats | 0% PEG | 5% PEG | 20% PEG |
---|---|---|---|
0 mg·L−1 ABA | CK | P5 | P20 |
10 mg·L−1 ABA | A10 | A10P5 | A10P20 |
50 mg·L−1 ABA | A50 | A50P5 | A50P20 |
100 mg·L−1 ABA | A100 | A100P5 | A100P20 |
200 mg·L−1 ABA | A200 | A200P5 | A200P20 |
Index | PEG-6000 Concentration | ABA Concentration (mg·L−1) | ||||
---|---|---|---|---|---|---|
0 | 10 | 50 | 100 | 200 | ||
Germination rate (GR) | 0% | 30.00 ± 8.90 Aab | 25.63 ± 8.98 Bab | 35.63 ± 1.25 Ba | 19.38 ± 11.25 Bb | 30.00 ± 16.20 Aab |
5% | 42.50 ± 23.18 Ab | 29.38 ± 7.18 Bb | 69.38 ± 21.25 Aa | 51.88 ± 15.05 Aab | 43.75 ± 11.27 Ab | |
20% | 3.75 ± 3.23 Bc | 57.50 ± 9.13 Aa | 43.75 ± 12.67 Bab | 45.63 ± 10.08 Aab | 25.63 ± 29.04 Abc | |
Germination potential (GP) | 0% | 29.38 ± 8.98 Aa | 23.13 ± 7.74 Ba | 27.50 ± 3.54 Ba | 8.13 ± 10.08 Bb | 1.88 ± 2.39 Ab |
5% | 35.00 ± 17.44 Ab | 28.13 ± 5.91 Bb | 57.50 ± 24.92 Aa | 21.25 ± 6.61 Abc | 1.88 ± 2.39 Ac | |
20% | 3.13 ± 3.75 Bc | 40.00 ± 2.04 Aa | 13.75 ± 1.44 eBb | 3.75 ± 3.23 Bc | 0.63 ± 1.25 Ac | |
Germination Index (GI) | 0% | 13.74 ± 0.09 Bb | 11.70 ± 0.20 Cc | 16.18 ± 0.19 Ca | 7.71 ± 0.33 Ce | 10.54 ± 0.53 Ad |
5% | 19.14 ± 0.69 Ac | 13.37 ± 0.80 Bd | 31.34 ± 0.50 Aa | 20.35 ± 0.68 Ab | 10.34 ± 0.78 Ae | |
20% | 1.28 ± 0.85 Ce | 24.84 ± 0.82 Aa | 17.94 ± 0.21 Bb | 14.87 ± 0.44 Bc | 5.74 ± 3.83 Bd |
Source of Variation | ABA | PEG | ABA × PEG | |||
---|---|---|---|---|---|---|
GR | F = 0.008 | p = 0.931 | F = 0.078 | p = 0.781 | F = 0.022 | p = 0.882 |
GP | F = 27.915 | p < 0.001 | F = 4.351 | p = 0.042 | F = 0.556 | p = 0.459 |
GI | F = 5.383 | p = 0.024 | F = 0.248 | p = 0.621 | F = 0.093 | p = 0.762 |
POD | F = 38.099 | p < 0.001 | F = 139.480 | p < 0.001 | F = 11.622 | p = 0.001 |
SOD | F = 30.235 | p < 0.001 | F = 31.627 | p < 0.001 | F = 0.124 | p = 0.726 |
CAT | F = 33.548 | p < 0.001 | F = 55.129 | p < 0.001 | F = 0.590 | p = 0.446 |
MDA | F = 26.261 | p < 0.001 | F = 21.266 | p < 0.001 | F = 0.508 | p = 0.479 |
Pro | F = 40.767 | p < 0.001 | F = 56.761 | p < 0.001 | F = 0.011 | p = 0.916 |
Index | GP | GR | GI | MDA | SOD | Pro | CAT | POD |
---|---|---|---|---|---|---|---|---|
GP | 1 | |||||||
GR | 0.587 ** | 1 | ||||||
GI | 0.752 ** | 0.750 ** | 1 | |||||
MDA | −0.199 | 0.280 * | 0.197 | 1 | ||||
SOD | −0.110 | 0.412 ** | 0.289 * | 0.913 ** | 1 | |||
Pro | −0.229 | 0.349 ** | 0.156 | 0.837 ** | 0.896 ** | 1 | ||
CAT | −0.189 | 0.384 ** | 0.238 | 0.889 ** | 0.950 ** | 0.910 ** | 1 | |
POD | −0.236 | 0.277 * | 0.111 | 0.832 ** | 0.864 ** | 0.881 ** | 0.890 ** | 1 |
Variance | Principal Component 1 | Principal Component 2 |
---|---|---|
Germination rate (GR) | −0.0466 | 0.6111 |
Germination potential (GP) | 0.2153 | 0.5038 |
Germination index (GI) | 0.1462 | 0.5799 |
POD activity | 0.4187 | −0.1250 |
SOD activity | 0.4437 | −0.0175 |
CAT activity | 0.4429 | −0.0589 |
MDA content | 0.4217 | −0.0890 |
Pro content | 0.4288 | −0.0957 |
Eigenvalue | 4.804 | 2.331 |
Contribution rate (%) | 60.05% | 29.14% |
Cumulative contribution rate (%) | 60.05% | 89.19% |
Treatment | GP | GR | GI | MDA | SOD | Pro | CAT | POD | Membership Function Value | Rank |
---|---|---|---|---|---|---|---|---|---|---|
CK | 0.375 | 0.533 | 0.350 | 0.553 | 0.542 | 0.455 | 0.440 | 0.602 | 0.481 | 9 |
A10 | 0.500 | 0.472 | 0.594 | 0.456 | 0.312 | 0.545 | 0.521 | 0.397 | 0.475 | 10 |
A50 | 0.565 | 0.625 | 0.542 | 0.466 | 0.574 | 0.301 | 0.562 | 0.544 | 0.522 | 4 |
A100 | 0.607 | 0.656 | 0.608 | 0.408 | 0.416 | 0.407 | 0.586 | 0.374 | 0.508 | 6 |
A200 | 0.538 | 0.529 | 0.561 | 0.406 | 0.516 | 0.412 | 0.433 | 0.364 | 0.470 | 11 |
P5 | 0.583 | 0.596 | 0.373 | 0.532 | 0.336 | 0.437 | 0.351 | 0.493 | 0.463 | 12 |
P5A10 | 0.361 | 0.417 | 0.539 | 0.569 | 0.542 | 0.621 | 0.505 | 0.471 | 0.503 | 8 |
P5A50 | 0.584 | 0.653 | 0.616 | 0.632 | 0.566 | 0.493 | 0.503 | 0.429 | 0.560 | 1 |
P5A100 | 0.417 | 0.501 | 0.737 | 0.440 | 0.463 | 0.485 | 0.534 | 0.462 | 0.505 | 7 |
P5A200 | 0.344 | 0.375 | 0.350 | 0.409 | 0.563 | 0.531 | 0.442 | 0.622 | 0.455 | 13 |
P20 | 0.375 | 0.501 | 0.547 | 0.366 | 0.463 | 0.338 | 0.450 | 0.395 | 0.429 | 14 |
P20A10 | 0.544 | 0.509 | 0.643 | 0.618 | 0.407 | 0.572 | 0.610 | 0.538 | 0.555 | 2 |
P20A50 | 0.513 | 0.517 | 0.732 | 0.604 | 0.498 | 0.515 | 0.525 | 0.435 | 0.542 | 3 |
P20A100 | 0.567 | 0.488 | 0.428 | 0.547 | 0.583 | 0.589 | 0.484 | 0.474 | 0.520 | 5 |
P20A200 | 0.372 | 0.519 | 0.566 | 0.365 | 0.346 | 0.316 | 0.397 | 0.405 | 0.411 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, X.; Zhang, Y.; Gao, Y.; Zhao, L.; Wang, P. Influence of Exogenous Abscisic Acid on Germination and Physiological Traits of Sophora viciifolia Seedlings under Drought Conditions. Appl. Sci. 2024, 14, 4359. https://doi.org/10.3390/app14114359
Rao X, Zhang Y, Gao Y, Zhao L, Wang P. Influence of Exogenous Abscisic Acid on Germination and Physiological Traits of Sophora viciifolia Seedlings under Drought Conditions. Applied Sciences. 2024; 14(11):4359. https://doi.org/10.3390/app14114359
Chicago/Turabian StyleRao, Xin, Yujun Zhang, Yang Gao, Lili Zhao, and Puchang Wang. 2024. "Influence of Exogenous Abscisic Acid on Germination and Physiological Traits of Sophora viciifolia Seedlings under Drought Conditions" Applied Sciences 14, no. 11: 4359. https://doi.org/10.3390/app14114359
APA StyleRao, X., Zhang, Y., Gao, Y., Zhao, L., & Wang, P. (2024). Influence of Exogenous Abscisic Acid on Germination and Physiological Traits of Sophora viciifolia Seedlings under Drought Conditions. Applied Sciences, 14(11), 4359. https://doi.org/10.3390/app14114359