
Citation: Lee, J.-K.; Hong, T.; Lee, G.

AI-Based Approach to Firewall Rule

Refinement on High-Performance

Computing Service Network. Appl.

Sci. 2024, 14, 4373. https://

doi.org/10.3390/app14114373

Academic Editor: Andrea Prati

Received: 25 April 2024

Revised: 16 May 2024

Accepted: 20 May 2024

Published: 22 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

AI-Based Approach to Firewall Rule Refinement on
High-Performance Computing Service Network
Jae-Kook Lee , Taeyoung Hong and Gukhua Lee *

National Supercomputing Center, Korea Institute of Science and Technology Information, 245 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea; jklee@kisti.re.kr (J.-K.L.); tyhong@kisti.re.kr (T.H.)
* Correspondence: ghlee@kisti.re.kr; Tel.: +82-42-869-1689

Abstract: High-performance computing (HPC) relies heavily on network security, particularly when
supercomputing services are provided via public networks. As supercomputer operators, we intro-
duced several security devices, such as anti-DDoS, intrusion prevention systems (IPSs), firewalls,
and web application firewalls, to ensure the secure use of supercomputing resources. Potential
threats are identified based on predefined security policies and added to the firewall rules for access
control after detecting abnormal behavior through anti-DDoS, IPS, and system access logs. After
analyzing the status change patterns for rule policies added owing to human errors among these
added firewall log events, 289,320 data points were extracted over a period of four years. Security
experts and operators must go through a strict verification process to rectify policies that were added
incorrectly owing to human error, which adds to their workload. To address this challenge, our
research applies various machine- and deep-learning algorithms to autonomously determine the
normalcy of detection without requiring administrative intervention. Machine-learning algorithms,
including naïve Bayes, K-nearest neighbor (KNN), OneR, a decision tree called J48, support vector
machine (SVM), logistic regression, and the implemented neural network (NN) model with the
cross-entropy loss function, were tested. The results indicate that the KNN and NN models exhibited
an accuracy of 97%. Additional training and feature refinement led to even better improvements,
increasing the accuracy to 98%, a 1% increase. By leveraging the capabilities of machine-learning and
deep-learning technologies, we have provided the basis for a more robust, efficient, and autonomous
network security infrastructure for supercomputing services.

Keywords: network security; machine learning; deep learning; firewall; rule management; high-
performance computing service network

1. Introduction

Network security is critical in high-performance computing (HPC) environments,
particularly in the provision of supercomputing services. Security device configuration
and operation are integral components of the HPC infrastructure. Many of these security
devices use separate log-collection and analysis servers to detect cyberattacks, gather
logs from target nodes, and collect events from network security devices for abnormal
detection [1,2]. An abnormal detection event is considered a potential threat and processed
as a DROP policy object to prevent attack attempts when it exceeds a predetermined
threshold [3]. Tightening these thresholds enhances security and increases the firewall
load [4]. Consequently, the risk of incorrectly adding a DROP policy object increases as
attack attempts become more frequent. Several studies have focused on the classification
of abnormalities. Machine-learning algorithms such as naïve Bayes, K-nearest neighbors
(KNN), one rule (OneR), and J48 were used to classify firewall logs [5,6]. Their firewall
log-generation tools generated a training dataset of 500,000 instances. According to the
performance analysis, KNN was the classifier with the highest accuracy. The machine-
learning algorithms in [7] were used to generate and analyze a training dataset comprising

Appl. Sci. 2024, 14, 4373. https://doi.org/10.3390/app14114373 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14114373
https://doi.org/10.3390/app14114373
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6159-3124
https://orcid.org/0000-0003-3314-3887
https://doi.org/10.3390/app14114373
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14114373?type=check_update&version=1

Appl. Sci. 2024, 14, 4373 2 of 18

5,000,000 instances. The KNN classifier outperformed the other classifiers. Support vector
machine (SVM) was used to classify the firewall logs in [8]. Various activation functions,
including linear, polynomial, sigmoid, and radial-basis functions (RBFs) were used for
the SVM classification. Among these, the SVM with the sigmoid function and a training
dataset of 65,532 instances showed the best performance. Several neural network (NN)
models have been applied to develop basic classification models for deep learning-based
classification, as seen in [9–11]. In the previously mentioned studies, machine-learning
algorithms were used to classify DROP or PASS actions from firewall event logs. However,
the trained dataset was exclusively generated using firewall log-generation tools and did
not originate from a real service environment. The existing issues in these studies were
addressed as follows:

• The gathered firewall event logs contain vast amounts of data, which vary with the
status of cyberattacks. To extract the required data for analysis from this raw data,
a database specifically tailored for research must be created. A suitable database
that conforms to the specific properties of the collected logs must be constructed to
efficiently store and process big data. This database should be designed to handle the
high-speed processing demands inherent in big-data analysis.

• When abnormal events are detected, they are classified as attacks based on set thresh-
olds and added to block policies. However, human errors, such as administrator
mistakes, can lead to policy mishaps. Proactively identifying and correcting misclas-
sifications by monitoring and analyzing traffic data during firewall event changes
improves the cyber security response.

• The machine-learning analysis of firewall logs is limited because the firewall has only
a five-tuple policy rule. To enhance the accuracy in real service networks, additional
methods or artificial intelligence (AI)-based models must be explored. Improved mod-
els provide automated threat detection and response capabilities to administrators.

To address the three previously mentioned issues, we collected, integrated, and an-
alyzed events from the network security equipment of the Supercomputer Nurion over
a four-year period in the existing HPC service environment. This process involved the
following steps: parsing, extracting, pre-processing, training, evaluating, and detecting.
First, we removed consecutive duplicate values from the raw data and parsed the features
necessary for extraction. Because of the vast amount of raw data, we developed a parser
capable of parallel processing in an HPC cluster environment. A continuous increase in ab-
normal detection counts was discovered when traffic data where policies were erroneously
added to the firewall rules owing to human error were analyzed. We defined patterns at
the moments when the firewall event state changed to PASS–DROP–PASS or DROP–PASS,
and extracted data monthly, classifying the patterns as firewall rule policy errors. Using
this extracted four-year dataset of firewall rule policy errors and by accurately adding
firewall rule policy data, we created training datasets in equal proportions. To achieve the
highest accuracy, we used various pre-processing methods, algorithms, and techniques.
We developed machine-learning classification algorithms and deep-learning models and
explored suitable methods using various data-scaling techniques. We compared the results
classified by the NN model with the cross-entropy loss function and attempted to improve
the accuracy by refining the features and training the model with finer granularity. The
contributions of this study can be summarized as follows:

• Enhancement of network security in the HPC service environment: We analyzed over
four years of event data from the network security equipment of the Supercomputer
Nurion to improve the network security in the HPC service environment.

• Detection and analysis of firewall rule policy errors: We analyzed traffic data with
policies erroneously added owing to human error to identify continuous abnormal
detection. We also defined patterns when the firewall event state changes to categorize
firewall policy errors.

Appl. Sci. 2024, 14, 4373 3 of 18

• Application of machine-learning algorithms and deep learning models: We trained the
datasets using classification algorithms such as naïve Bayes, KNN, OneR, J48, logistic
regression, SVM, and an NN model with cross-entropy loss function to detect security
events and increase accuracy.

• Various attempts to improve accuracy: We improved the accuracy of our analysis using
various techniques such as data pre-processing, algorithms, and feature refinement.

This paper is outlined as follows: Section 2 provides an introduction to related works.
Section 3 presents the overall architecture and methods for firewall data refinement. This
includes details on data pre-processing and the implemented training model. Section 4
presents a comparative analysis and discussion of the results. In the final section, the con-
clusions and directions for future work are described.

2. Related Works

Table 1 provides an overview of various aspects of cybersecurity covered by previ-
ous studies. Each row represents a specific study referenced in the related work section,
while the columns represent different aspects or topics related to cybersecurity. Anomaly
detection indicates whether the study contributes to techniques or methods for detecting
anomalies in systems or networks [12–15]. Firewall log analysis specifies if the study
focuses on the analysis of firewall logs to identify patterns or anomalies. Machine learning
indicates whether the study employs machine-learning algorithms or techniques for cyber-
security applications [16–22]. Deep learning implies that the study utilizes deep-learning
models or techniques for cybersecurity tasks [23]. Adversarial attacks indicate whether the
study addresses the challenges posed by adversarial attacks, such as evasion or poisoning
attacks [24–27].

He et al. [1] focused on anomaly detection techniques, particularly in system log
analysis, emphasizing the importance of analyzing system logs for identifying potential
security threats. Lee et al. [4] conducted a detailed analysis of firewall logs, highlighting
the traffic and overhead analysis of pre-filtering ACL firewall on HPC service networks.
As-Suhbani and Khamitkar [5] and Esmaeil et al. [7] explored machine-learning algorithms
for the classification of firewall logs and for discovering anomalous rules in firewall logs,
respectively. Ertam and Kaya [8] and Zhu et al. [9] utilized machine-learning techniques,
including multiclass SVMs and softmax loss function improvement using scalable batch
normalization, for firewall log analysis. Uçar and Ozhan [6] and Mohammadian et al. [28]
analyzed firewall policies, focusing on the effectiveness of different policy configurations,
using machine-learning and data-mining techniques. Wu et al. [11] and Dawadi et al. [29]
surveyed network attack detection methods and proposed a deep learning-enabled web
application firewall for detecting web attacks, respectively, emphasizing the role of deep
learning in cybersecurity. Saleous and Trabelsi [30] enhanced the performance of firewall
filters using NNs, and Mohammadian et al. [28] developed a gradient-based approach for
adversarial attacks on deep learning-based NIDSs, addressing the challenges associated
with adversarial attacks in cybersecurity. Pinto et al. [31] surveyed intrusion detection
systems based on machine-learning techniques and highlighted the importance of machine
learning in protecting critical infrastructures.

Furthermore, these related reports mention various keywords such as “Human Er-
ror”, “Error Prevention”, or “Error Reduction”. He et al. [1] focused on system log anal-
ysis for anomaly detection, which may indirectly address human errors by identifying
abnormal system behaviors that could result from human mistakes. Esmaeil et al. [5]
and Esmaeil et al. [7] discussed the classification of firewall logs and anomalous rules,
which could involve identifying errors in log data and implementing strategies to elimi-
nate or reduce such errors. Pinto et al. [31] surveyed intrusion-detection systems based
on machine-learning techniques, which may include discussions on error rates and ap-
proaches to improve detection accuracy or reduce false alarms. These related studies deal
with errors, whereas our study focuses on human errors that are extensively processed and
analyzed. To explain the uniqueness of our study, we provide additional explanations as

Appl. Sci. 2024, 14, 4373 4 of 18

follows. We analyzed the data collected over a four-year period in a real service-providing
environment—the operational environment of the HPC service network. Herein, we de-
scribe the configuration of the service network environment, security equipment, and
abnormal-detection data collected from these devices. We also define and explain human
error data extracted from the collected raw data.

Table 1. Overview of various aspects of cybersecurity, including anomaly detection, firewall log
analysis, machine learning, deep learning, and adversarial attacks, surveyed in previous studies.

Reference Anomaly Detection Firewall Log Analysis Machine Learning Deep Learning Adversarial Attacks Errors

[1] ✓ ✓
[4] ✓ ✓

[5,7] ✓ ✓ ✓
[8,9] ✓ ✓ ✓
[6,10] ✓

[11,29] ✓ ✓ ✓
[30,32] ✓ ✓ ✓
[33,34] ✓ ✓ ✓

[28] ✓ ✓ ✓
[31] ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓

2.1. HPC Service Network Environment

The fifth national supercomputer (KISTI-5), established and operated by KISTI in
2018, consists of the main system, Nurion, and the auxiliary system, Neuron. Nurion and
Neuron have theoretical performances of 25.7 and 3.5 PFlops, respectively. Both provide
login nodes for terminal access to industrial and academic researchers and DataMover
nodes for data transfer. Furthermore, web servers are operated to provide HPC services
through Jupyter notebooks and web services. To safeguard the system from external access,
network security is reinforced through redundant configurations of anti-DDoS, intrusion
prevention systems, firewalls, and web application firewalls. In particular, the firewall
uses the five-tuple policy rule to control traffic entering from external sources into internal
networks and outbound traffic from internal sources to external sources. The diagram
below in Figure 1 illustrates the KISTI-5 supercomputer service network structure.

Figure 1. Diagram of KISTI-5 supercomputer service network.

Appl. Sci. 2024, 14, 4373 5 of 18

Nurion provides services to remote users via the Internet. Therefore, pass policy
rules are applied to the service ports of each infrastructure node to accommodate several
unspecified users. However, external cyberattacks are not limited to specific infrastructure
nodes, but attempt to simultaneously target multiple nodes. Therefore, it is crucial to detect
and block them promptly to prevent damage. To address this issue, we set the firewall’s
highest-priority drop policy rules. This allows us to register IP addresses for cyberattacks
and prevent them from spreading to other infrastructure nodes.

2.2. Abnormal Detection

To detect cyberattacks, we established a log-collection and -analysis server to integrate
and collect logs from each infrastructure node and events from network security devices.
The logs and events were then analyzed to detect abnormal behaviors. We categorized
cyberattacks that targeted the services used on each infrastructure node into SSH, FTP,
and HTTP web server attacks. Furthermore, we included scanning attacks that target
arbitrary IPs or ports. We also distinguished between the attack IPs received from the
National Cyber Security Center. For each targeted service, we added abnormal events
detected above a certain threshold as objects to the DROP policy to prevent attempted
attacks on other infrastructure nodes. As shown in Figure 2, we implemented different
thresholds for various time windows to detect brute-force attacks that occur rapidly within
a short time as well as low and slow attacks that attempt to breach over an extended period.
Time windows and thresholds can be arbitrarily set according to the characteristics of the
services. However, for the current Nurion supercomputer, we used four time windows to
detect abnormal behaviors.

Figure 2. Time windows of abnormal detection.

2.3. Human Error

We collected and analyzed firewall event logs for over four years. Upon parsing and
extracting the raw data, we discovered approximately 4.6 billion detected instances. We
identified 289,320 instances of firewall rule-policy errors attributed to administrator and
user errors. At these firewall event state changes, we defined patterns as PASS–DROP–PASS
or DROP–PASS to indicate human error. Figure 3 (top image) illustrates the exponential
increase in the number of rule policies correctly detected by firewalls from December
2018 to December 2021. This increase signifies the successful enforcement of the firewall’s
stringent policies and the escalation of the daily load. Figure 3 (bottom image) shows the
monthly extraction of human error. The irregular and unbalanced occurrence of incorrectly
detected policies was evident. Although this pattern has remained consistent since the
second half of 2020, there are no established rules governing its occurrence.

Appl. Sci. 2024, 14, 4373 6 of 18

 0

 5x10
7

 1x10
8

 1.5x10
8

 2x10
8

 2.5x10
8

C
o

u
n

t

Correct

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

2
0
1
8
.0

1

2
0
1
8
.0

2

2
0
1
8
.0

3

2
0
1
8
.0

4

2
0
1
8
.0

5

2
0
1
8
.0

6

2
0
1
8
.0

7

2
0
1
8
.0

8

2
0
1
8
.0

9

2
0
1
8
.1

0

2
0
1
8
.1

1

2
0
1
8
.1

2

2
0
1
9
.0

1

2
0
1
9
.0

2

2
0
1
9
.0

3

2
0
1
9
.0

4

2
0
1
9
.0

5

2
0
1
9
.0

6

2
0
1
9
.0

7

2
0
1
9
.0

8

2
0
1
9
.0

9

2
0
1
9
.1

0

2
0
1
9
.1

1

2
0
1
9
.1

2

2
0
2
0
.0

1

2
0
2
0
.0

2

2
0
2
0
.0

3

2
0
2
0
.0

4

2
0
2
0
.0

5

2
0
2
0
.0

6

2
0
2
0
.0

7

2
0
2
0
.0

8

2
0
2
0
.0

9

2
0
2
0
.1

0

2
0
2
0
.1

1

2
0
2
0
.1

2

2
0
2
1
.0

1

2
0
2
1
.0

2

2
0
2
1
.0

3

2
0
2
1
.0

4

2
0
2
1
.0

5

2
0
2
1
.0

6

2
0
2
1
.0

7

2
0
2
1
.0

8

2
0
2
1
.0

9

2
0
2
1
.1

0

2
0
2
1
.1

1

2
0
2
1
.1

2

C
o

u
n

t

Human Error

Figure 3. Total counts of “correct” policy and “human error”.

3. Methodology

The entire analysis process adopted the architecture shown in Figure 4. It is divided
into data pre-processing, training, and testing processes. Data pre-processing includes
log parsing, data extraction, feature selection, and data scaling. These processes account
for 90% of the entire process. We directly implemented and trained machine- and deep-
learning models and analyzed the results through the testing process. We then automated
the process of refining the firewall rules. We reduced the calculation time by deploying
appropriate computational resources and considering the computing characteristics of
each process.

Figure 4. Overall architecture.

3.1. Data Pre-Processing
3.1.1. Log Parsing

The raw data collected over four years comprised 1460 files that exceed 3.4 TB. Owing
to I/O-intensive computing, we developed a K-parser that uses the HPC’s distributed
environment to generate and process one process per day in parallel. Figure 5 shows the
configuration file *.conf, which is modified on the HPC login node to simultaneously set
the number of files to be processed, specify the required computational resources in the
scheduler, and submit the job through the batch scheduler. K-parser is executed in parallel
according to the number of submitted tasks and is stored in HDF5 format in a designated
directory in a parallel file system environment. Similarly, in the files saved daily in HDF5
format, the start time of the attack event, the end time of the event, the source IP and port,

Appl. Sci. 2024, 14, 4373 7 of 18

the destination IP and port, and the DROP or PASS actions are parsed and stored in a
key-value form. The file size created by the log-parsing process was reduced to 1.4 TB.
The processing time varied depending on the daily file size; however, the average daily
processing time was approximately 5 min. We allocated 365 computing resources from
Nurion computing nodes, executed four K-parsers per node, and completed the process in
less than 10 min.

Figure 5. Workflow of parallel parsing. (* stands for the day format).

3.1.2. Data Extracting

To extract human errors, a labeled dataset was created by marking as human errors
any instances of PASS–DROP–PASS and DROP–PASS patterns within a certain time range
for the same source and destination IP addresses and ports in the firewall rule event log.
We created an algorithm that reads HDF5 files monthly, removes redundant data, and
determines the state-change values. Because this process uses a large amount of memory
depending on the size of the data, we calculated it using large memory resources that are
easily memory-intensive. In Algorithm 1, a and b denote the monthly collected lists for
the PASS and DROP data, respectively. Both a and b are dictionary types with a key (k)
and a value (v). The source IP, source port, destination IP, and destination port are defined
as k. The index of the data sequence is defined as v. From a and b, the latest PASS data m
and DROP data n, which have the maximum number of indices, are extracted using two
loops. Through the intersection of m and n, the duplicates of the PASS and DROP data
were removed and combined to obtain t. In the third loop, if two v exist for the same k,
we compared the corresponding v and extracted the human error e to assess whether the
first v is greater than the second v. The remaining were detected correctly and returned to
c. The number of e instances extracted in this manner was 289,320. From January 2018 to
December 2021, we extracted values randomly from c every month according to the ratio
of e in c to create a labeled dataset. Extracting e from one month took approximately 1.5 h,
and it was executed on a 1.5 TB memory node.

3.1.3. Feature Selection

According to Table 2, we extract the source IP (Src.IP), destination IP (Dst.IP), source
port (Src.Port), and destination port (Dst.Port) as X inputs in the labeled dataset. The human
error value, TRUE or FALSE, is designated as the Y output corresponding to the action
(note that the IP addresses and ports displayed in Table 2 are for illustrative purposes
only and do not represent actual data). Before classification, all of the IP addresses were
converted into integers.

Src.IP and Dst.IP are in an IPv4 address that is divided into four sections, each sepa-
rated by a dot according to its hierarchical structure. Each section represents 8 bits of the
32-bit IPv4 address [32]. To improve the accuracy of the tested classifiers, we increased
the number of features before classification based on IPv4’s section-based spatial structure
partitioning. Given the limited features extracted from the five-tuple policy, we divided the
existing features to test them. Shown in Table 3, all of the IPs were segmented into four

Appl. Sci. 2024, 14, 4373 8 of 18

parts: labeled a, b, c, and d, and expanded from four to ten. The detailed results of the
prediction accuracy comparison are presented in the following section.

Algorithm 1 Extracting algorithm

1: procedure EXTRACT(a,b)
2: for k and v in a do
3: m[k]← max(v)
4: end for
5: for k and v in b do
6: n[k]← max(v)
7: end for
8: t← m ∩ n
9: for k and v in t do

10: if v has two elements then
11: if the first v is bigger than the second then
12: e←k
13: end if
14: c←k
15: end if
16: c←k
17: end for
18: return e and c
19: end procedure

Table 2. Four-feature selection from firewall rules.

No. Src.IP Dst.IP Src.Port Dst.Port Action

1 192.168.0.100 8.8.8.8 1950 53 TRUE
...

N 8.8.8.8 192.168.0.2 0 2048 FALSE

Table 3. Ten-feature selection from firewall rules.

No. Src.IP(a) Src.IP(b) Src.IP(c) Src.IP(d) Dst.IP(a) Dst.IP(b) Dst.IP(c) Dst.IP(d) Src.Port Dst.Port Action

1 192 168 0 100 8 8 8 8 1950 53 TRUE
...

N 8 8 8 8 192 168 0 2 0 2048 FALSE

3.1.4. Data Scaling

Data scaling is necessary for each feature value in a dataset if the features have
different data ranges. Specifically, if the data are not scaled before deep-learning training,
they may not be trained effectively or function properly. To improve the classifier model
with deep learning and ensure effective data scaling, we trained each for 100 epochs using
the following scikit-learn data scalars: MaxAbs, MinMax, Normalize, Power, Quantile,
Robust, and Standard.

As shown in Figure 6, the Quantile scaler achieved the highest F1-score accuracy of 0.96,
whereas the MinMax scaler achieved the lowest F1-score. Training loss analysis (top image
in Figure 7) showed that the filled triangle graph representing Quantile had the lowest
loss (the lower the better), followed by the empty triangle representing Power. Robust
showed the highest instability and loss compared with the F1-score. The bottom image in
Figure 7 illustrates the accuracy of the results. Similarly, the filled triangle representing
the Quantile scalar had the highest accuracy (the higher the better), followed by the empty
triangle representing the Power scalar. Robust showed the lowest accuracy. Based on these
data-scaling results, we used the Quantile scalar to preprocess the data before training the
deep-learning model.

Appl. Sci. 2024, 14, 4373 9 of 18

 0

 0.2

 0.4

 0.6

 0.8

 1

MaxAbs MinMax Normalize Power Quantile Robust Standard

F
1

 S
co

re
 A

cc
u

ra
cy

0.89

0.57

0.80

0.93
0.96

0.83

0.91

Figure 6. F1-score accuracy comparison of data scalars.

 0

 0.2

 0.4

 0.6

 0.8

 1

T
ra

in
n

in
g

 L
o

ss

MaxAbs
MinMax

Normalize
Power

Quantile
Robust

Standard

 0

 20

 40

 60

 80

 100

 1 10 20 30 40 50 60 70 80 90 100

T
ra

in
in

g
 A

cc
u
ra

cy

Epoch

Figure 7. Training loss and accuracy comparison of data scalars.

3.2. Machine-Learning Algorithms
3.2.1. Naïve Bayes

For naïve Bayes, we used the Gaussian naïve Bayes (GNB) classifier GaussianNB()
provided by scikit-learn 1.4.0 with normalize = True to predict the model owing to the simple
and fast implementation of GNB. GNB primarily involves the application of Bayes’ theo-
rem [35] for classification, with the simple assumption that the features are conditionally
independent for a given class label and follow a Gaussian distribution. The theorem is
mathematically expressed as (in Equation (1)):

P(class|data) =
P(data|class)× P(class)

P(data)
(1)

Appl. Sci. 2024, 14, 4373 10 of 18

where P(class|data) represents the probability of a class for given data, i.e., the posterior
probability; P(data|class) is the likelihood of the data for a given class; P(class) is the
prior probability of the class; and P(data) is the probability of the data, also known as the
evidence. In summary, while naïve Bayes classifiers are simple and efficient algorithms
that operate well in several scenarios, their assumption of feature independence can be a
limitation for datasets with correlated or complex interacting features. Thus, considering
this disadvantage and assessing whether the independence assumption holds true for a
given dataset before applying naïve Bayes classifiers are crucial steps.

3.2.2. KNN

For KNN, we used the KNeighborsClassifier() provided by scikit-learn 1.4.0 with
neighbors (k). The main equation of the KNN algorithm [7] allows computation of the
distances between the new data point and all of the data points in the training set, the
selection of the k nearest neighbors based on these distances, and performing predictions
based on the labels (for classification) or values (for regression) of these neighbors. In this
experiment, we used this equation, mathematically expressed below, for classification
(in Equation (2)):

ŷnew = argmaxy

k

∑
i=1

I(yi = y) (2)

Here, ŷnew is the predicted class label for the new data point xnew; yi are the class
labels of the k nearest neighbors; I is the indicator function that returns 1 if the condition
inside the parentheses is true and 0 otherwise; y is the class label being considered; and
argmaxy returns the class label with the highest count among the k nearest neighbors.
In this experiment, we tested k from 1 to 10, and k = 3 showed the highest score.
While KNN is a simple and versatile algorithm without a training phase, and it does
not assume the underlying data distribution, this algorithm has limitations related to
computational complexity, memory usage, and sensitivity to feature scaling, in addition
to exhibiting the curse of dimensionality and requiring an appropriate choice of the
number of neighbors k.

3.2.3. OneR

OneR is a simple and interpretable algorithm used for classification tasks. The main
concept of the OneR algorithm [7] is to select one feature (predictor) and one value of that
feature (rule) for performing predictions. It operates by selecting the best rule (feature and
value pair) based on misclassification minimization, and no function is provided by any
packages. In this experiment, we developed the pseudocode of the partial code in the code
block in Listing 1 as follows:

Appl. Sci. 2024, 14, 4373 11 of 18

Listing 1: Psedocode of OneR.

Function TrainFeatureValue(x, y, feature_index, value):
For each sample, i in zip(x, y):

If feature value of the sample at feature_index is equal to value:
Increment count of corresponding class label in class_counts

Sort class_counts by counts in descending order
Select most frequent class label as predictor
Calculate total number of incorrect predictions
Return predictor and total number of incorrect~predictions

Function TrainOnFeature(x, y, f_i):
For each unique value i in feature f_i:

Train predictor for feature f_i and value i using TrainFeatureValue
Add predictor to predictors dictionary
Append total error of predictor to errors list

Select value with minimum total error as best value
Return predictors for best value and minimum total~error

Function Predict(x_test, model):
For each sample in x_test:

Retrieve best value and predictors from model
Apply predictor associated with best value to corresponding feature of the

sample
Assign predicted class label to the sample

Return predicted class~labels

Train the model:
For each feature index f_i in the dataset:

Train model for feature using TrainOnFeature
Store predictors and errors for feature in all_predictors and~errors

Select the best feature and value pair with minimum error
Make predictions on the test set using the selected model
Evaluate the performance of the model (e.g., calculate accuracy)

The functions TrainFeatureValue(), TrainOnFeature(), and Predict() implement the main
concept of the feature–value pair. Although OneR offers simplicity, interpretability, and low
computational costs, it has limitations in terms of expressiveness, robustness to outliers
and noise, performance, and overfitting. This algorithm is suitable for simple classification
tasks with well-behaved data.

3.2.4. J48

For J48, which is also known as a decision tree classifier, we used DecisionTreeClassifier
provided by scikit-learn 1.4.0. J48 constructs a decision tree recursively by splitting the
dataset based on the attribute that provides the best information gain or gain ratio at each
node [7]. Information gain measures the reduction in uncertainty about the class label after
a split. In this experiment, information gain, which measures the reduction in entropy, is
achieved by splitting the data on a particular attribute. It is calculated using the following
equation (in Equation (3)):

IG(D, A) = H(D)− ∑
v∈Values(A)

|Dv|
|D| H(Dv) (3)

where IG(D, A) is the information gain of attribute A on dataset D; H(D) is the entropy of
dataset D; |D| is the number of instances in dataset D; |Dv| is the number of instances in

Appl. Sci. 2024, 14, 4373 12 of 18

dataset D with a value v for attribute A; and H(Dv) is the entropy of dataset Dv (the subset of
D with a value v for attribute A). While J48 offers simplicity, interpretability, and versatility
in handling mixed data types, it exhibits overfitting, a high variance, instability, and biases
toward certain features. The careful tuning of hyperparameters and tree pruning techniques
can help mitigate some of these disadvantages. We tuned the number of max_depth to be 16
with the entropy criterion for DecisionTreeClassifier.

3.2.5. SVM

For SVM, we used svm provided by scikit-learn 1.4.0. SVM is a powerful and versatile
algorithm that can be applied to a wide range of classification tasks, including both linearly
and non-linearly separable data, and has the ability to control the trade-off between model
complexity and generalization performance [8]. SVM supports various kernel functions,
such as linear functions, polynomial functions, RBFs, and sigmoid functions, which can
be selected based on the data characteristics and problem domain. In this experiment, we
tested all types of kernels and found that SVM with a polynomial kernel showed the best
score. The SVM algorithm identifies the optimal hyperplane that separates classes in the
feature space. In the case of linearly separable classes, the hyperplane is represented by the
equation of a hyperplane (for linearly separable data refer to Equation (4); for non-linearly
separable data with kernel refer to Equation (5)):

w · x + b = 0 (4)

w · ϕ(x) + b = 0 (5)

where w is the weight vector (normal to the hyperplane), x is the input feature vector, b
is the bias or intercept term, and ϕ(x) is the feature-mapping function. The optimization
problem for finding w and b can be represented as (in Equation (6)):

min
w,b

1
2
∥w∥2 + C

N

∑
i=1

ξi

subject to: yi(w · xi + b) ≥ 1− ξi

ξi ≥ 0

(6)

In this experiment, we used the svm.SVC() function with a polynomial kernel,
degree = 3, and C = 2.0 parameters. SVMs are powerful and versatile models that per-
form well in many classification tasks. However, they may not be suitable for every
situation, especially when computational resources are limited or interpretability is crucial.

3.2.6. Logistic Regression

For logistic regression, we used LogisticRegression() provided by scikit-learn 1.4.0.
Logistic regression models the probability that a given input belongs to a particular class. It
extends linear regression by using a logistic function (also known as the sigmoid function)
to transform the output of a linear combination of input features into a probability value
between 0 and 1 [36]. The equation of the sigmoid function is expressed as (in Equation 7):

σ(z) =
1

1 + e−z (7)

where σ(z) represents the sigmoid function, z is the input variable, and e is the base of
the natural logarithm. The sigmoid function takes any real number z as the input and
outputs a value between 0 and 1, representing the probability of occurrence of an event. It
has an S-shaped curve with values close to 0 and 1 for large negative and positive inputs,
respectively, and a value of approximately 0.5 is obtained at z = 0. Logistic regression is
advantageous owing to its simplicity, interpretability, and efficiency with small datasets.

Appl. Sci. 2024, 14, 4373 13 of 18

However, it may struggle to capture complex non-linear relationships and is sensitive
to outliers.

3.3. Implemented NN Model

PyTorch was used to implement the multiclass-classification NN model. It comprises
four fully connected linear layers and an output layer. The rectified linear unit (ReLU) was
used as the activation function after each linear layer, except after the output layer. Dropout
regularization with a probability of 0.5 was applied after the ReLU activation function in
the first layer. Dropout helps prevent overfitting by randomly dropping a proportion of the
units during training. Batch normalization was applied after each linear layer, except after
the output layer. It normalized the activation of each layer, facilitating faster training and
better generalization. The batch size of the model parameter value was set to 4096, and the
learning rate was set to 0.007. The description of each layer is as follows:

• layer_1: A linear layer with 4 (and 10) input features, implying that the input to this
layer has either 4 or 10 features. It has 4096 output features and is followed by a ReLU
activation function, batch normalization (batchnorm1), and dropout with a probability
of 0.5.

• layer_2: A linear layer with 4096 input features (output from layer_1) and 512 output
features. It is followed by batch normalization (batchnorm2).

• layer_3: A linear layer with 512 input features (output from layer_2) and 128 output
features. It is followed by batch normalization (batchnorm3).

• layer_4: A linear layer with 128 input features (output from layer_3) and 64 output
features. It is followed by batch normalization (batchnorm4).

• layer_out: A linear layer with 64 input features (output from layer_4) and 2 output
features. This is the final output layer for classification, with two classes, and is
followed by a bias term.

We used a cross-entropy loss function [37], called CrossEntropyLoss, provided by
PyTorch with class weights as well as the Adam optimizer with a specified learning rate of
0.007. This model was trained on Neuron, a GPU-based cluster, using the Adam optimizer
with a cross-entropy loss function. We trained approximately 400 epochs with two A100
GPUs for 578,640 instances of the dataset. Python 3.10.6, PyTorch 1.13.1, CUDA 11.6,
and scikit-learn 1.4.0 were used to implement this model, whose code block Listing 2 is
provided below:

Listing 2: Model Description.

Data_Parallel(
(module): Multiclass_Classification(
(layer_1): Linear(input_features=4(and 10), output_features=4096, bias=True)
(layer_2): Linear(input_features=4096, output_features=512, bias=True)
(layer_3): Linear(input_features=512, output_features=128, bias=True)
(layer_4): Linear(input_features=128, output_features=64, bias=True)
(layer_out): Linear(input_features=64, output_features=2, bias=True)
(relu): ReLU()
(dropout): Dropout(p=0.5, inplace=False)
(batchnorm1): BatchNorm1d(4096, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(batchnorm2): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(batchnorm3): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(batchnorm4): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
)

)

Appl. Sci. 2024, 14, 4373 14 of 18

4. Result and Discussion

Figure 8 compares the F1-score average accuracies of the different classification al-
gorithms with four and 10 features. KNN (neighbors = 3) showed the best performance
among the tested machine-learning classification algorithms, with an accuracy of 0.97.
The implemented NN model and J48 had the highest accuracy of 0.98 using 10 features.
Naïve Bayes showed a decent performance, improving slightly from 0.79 with four features
to 0.83 with 10 features. SVM with a kernel polynomial showed the highest accuracy
compared to linear, RBF, and sigmoid, particularly with 10 features. OneR and logistic
regression showed consistent performance for both feature sets. These results demonstrate
that the algorithm and number of features used significantly affect the classification accu-
racy, with more complex models, such as KNN, J48, and NN, achieving higher accuracy
when the feature set was expanded.

Figure 9 compares the improvement of different classification algorithms using four and
ten features. SVM (polynomial) showed the highest improvement in the F1-score average
accuracy, with an 11.36% increase. Logistic regression also showed a notable improvement,
with a 4.70% increase. Naïve Bayes showed a moderate improvement of 4.59%, whereas
J48 showed a significant improvement of 2.94%. The NN model maintained a consistent
improvement of 1.02%. KNN (neighbors = 3) and OneR had relatively small improvements
of 0.33% and 0.21%, respectively. These results demonstrate the various levels of accuracy
improvement achieved by the various classification algorithms. Notably, the SVM with a
polynomial kernel showed the highest improvement in classification performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

N
ativeB

ayes

K
N

N

O
neR

J48

L
ogistic

S
V

M

N
N

F
1

-S
co

re
 A

cc
u

ra
cy

4-Features
10-Features

Deep LearningMachine Learning

Figure 8. F1-score average accuracy: performance improvement comparison between machine-
learning algorithms and the proposed deep-learning model with different feature selections.

Because more features provide more decision paths for classifying the data, models
such as KNN, NN, and J48 can make better use of the additional information provided,
which improves the accuracy. With 10 features, J48 can create more complex decision
boundaries, which increases the accuracy. An SVM captures complex relationships in data
better and performs well with an increased feature space. Models such as linear decision
boundaries and logistic regression showed improved accuracy, indicating that the data may
have become more separable with more features. Naïve Bayes and OneR showed mixed

Appl. Sci. 2024, 14, 4373 15 of 18

results, implying that the nature of the dataset and the assumptions they made regarding
the data distribution might have impacted their performance.

Ultimately, the optimal choice depends on various factors such as the specific require-
ments of the problem, computational resources, interpretability needs, and the balance
between model complexity and accuracy. For a well-rounded option, KNN (neighbors = 3)
or NN are recommended.

 0

 2

 4

 6

 8

 10

 12

N
ativeB

ayes

K
N

N

O
neR

J48

L
ogistic

S
V

M

N
N

R
at

io
 o

f
A

cc
u

ra
cy

 I
m

p
ro

v
em

en
t(

%
)

4.59

0.33 0.21

2.94

4.70

11.36

1.02

Deep LearningMachine Learning

Figure 9. F1-score average accuracy: improvement comparison of machine-learning algorithms and
deep-learning model with different feature selections.

Figure 10 shows the training and validation accuracies and losses when using four
and ten features and training for over 400 epochs. Regarding the loss comparison in the
upper image, the training loss (gray line) decreases rapidly during the initial epochs and
then gradually decreases, reaching approximately 0.12. The validation loss (gray line) also
follows a similar trend, beginning at 0.20 and decreasing steadily to approximately 0.10 at
the end of the epochs. The training loss (blue line) begins at approximately 0.21 and steadily
decreases to approximately 0.08. The validation loss (blue line) follows a similar trend,
starting from approximately 0.14 and decreasing steadily to approximately 0.08 at the end.
Regarding the accuracy comparison in the bottom image, the training accuracy (gray line)
begins at 87.56% and increases steadily to approximately 96.1% at the end. The validation
accuracy (gray line) begins at 92.92% and increases to approximately 96.8% at the end.
The training accuracy (blue line) begins at 91.80% and increases steadily to approximately
97.7% at the end. The validation accuracy (blue line) begins at 95.39% and increases to
approximately 97.7% at the end.

Both models showed a consistent decrease in both the training and validation losses;
this result indicates that they were learning effectively. The ten-feature model outperformed
the four-feature model in terms of losses, indicating that the inclusion of additional features
improved the model’s ability to generalize unseen data. Regarding accuracy trends, both
models showed consistent improvement over the epochs. The ten-feature model outper-
formed the four-feature model in terms of accuracy on both the training and validation sets.
This indicates that the model can learn more and perform better as a result of the additional
information provided by the extra features. There seems to be a slight indication of overfit-
ting in both models, particularly towards the later epochs, where the training loss continues
to decrease, whereas the validation loss plateaus or slightly increases. However, this effect

Appl. Sci. 2024, 14, 4373 16 of 18

was more evident in the four-feature model than in the ten-feature model. This implies
that the 10-feature model was more robust and less overfitting. Based on the provided
data, the 10-feature model appeared to perform better in terms of loss and accuracy in both
the training and validation sets. This model provides better generalization and predictive
ability than the four-feature model. In conclusion, the 10-feature model exhibited better
performance in terms of loss and accuracy, suggesting that it was the preferred model for
this dataset. However, to make a more informed decision, it is essential to consider factors
such as computational resources, model complexity, and practical application requirements.

 0

 0.05

 0.1

 0.15

 0.2

 1 100 200 300 400

L
o
ss

Epoch

Training Loss

4 Features
10 Features

 0

 0.05

 0.1

 0.15

 0.2

 1 100 200 300 400

L
o
ss

Epoch

Validation Loss

4 Features
10 Features

 80

 85

 90

 95

 100

 1 100 200 300 400

A
cc

u
ra

cy

Epoch

Training Accuracy

4 Features
10 Features

 80

 85

 90

 95

 100

 1 100 200 300 400

A
cc

u
ra

cy

Epoch

Validation Accuracy

4 Features
10 Features

Figure 10. Accuracy and loss (both in training and validation): comparison of deep-learning model
with different feature selections.

5. Conclusions

This study addresses the critical challenges in network security within HPC environ-
ments by analyzing firewall event logs using machine- and deep-learning models. We
collected and integrated events from Supercomputer Nurion’s network security equipment
over a four-year period. This allowed us to significantly contribute to improving network
security in the HPC service environment. Our analysis process involved parsing, extracting,
and pre-processing vast firewall event logs to create labeled datasets for training. We
developed a tailored database for efficient big-data storage and processing, ensuring that
the high-speed demands of real service networks were satisfied. Our method success-
fully detected and classified human error-caused firewall rule policy errors by identifying
patterns when the firewall event state changes.

We implemented various machine-learning algorithms (naïve Bayes, KNN, OneR,
J48, logistic regression, and SVM) and a deep-learning model (NN with cross-entropy
loss function) by experimenting with different feature sets and data-scaling techniques.
The results demonstrate the effectiveness of these models in classifying security events and
improving their accuracy. Our comparative analyses showed that models such as KNN,
J48, and the NN model performed exceptionally well with expanded feature sets, achieving
high accuracy in classifying firewall event logs. An SVM with a polynomial kernel also
showed significant performance improvements with increased features.

The findings of this study provide valuable insights into the effective use of machine-
learning and deep-learning models for network security analyses in HPC environments.
Our proposed solutions and methodologies provide the basis for enhanced network security
measures, the proactive identification of policy errors, and automated threat-detection and

Appl. Sci. 2024, 14, 4373 17 of 18

-response capabilities. Future studies will focus on refining the models, exploring additional
classification algorithms, and implementing real-time security-monitoring systems based
on these findings.

Author Contributions: Conceptualization, G.L.; Formal analysis, J.-K.L.; Writing—original draft,
J.-K.L.; Writing—review & editing, G.L.; Project administration, T.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research has been performed as a project of Project No. K24L2M1C1 (The national
flagship supercomputer infrastructure implementation and service) supported by the Korea Institute
of Science and Technology Information (KISTI).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: This research was supported by the Korea Institute of Science and Technology
Information(KISTI) (No. K24L2M1C1).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. He, S.; Zhu, J.; He, P.; Lyu, M.R. Experience Report: System Log Analysis for Anomaly Detection. In Proceedings of the 2016

IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), Ottawa, ON, Canada, 23–27 October 2016;
pp. 207–218. [CrossRef]

2. Putra, M.A.R.; Ahmad, T.; Hostiadi, D.P. Analysis of botnet attack communication pattern behavior on computer networks. Int. J.
Intell. Eng. Syst. 2022, 15, 533–544.

3. Maosa, H.; Ouazzane, K.; Ghanem, M.C. A hierarchical security event correlation model for real-time threat detection and
response. Network 2024, 4, 68–90. [CrossRef]

4. Lee, J.-K.; Hong, T.; Li, G. Traffic and overhead analysis of applied pre-filtering ACL firewall on HPC service network. J. Commun.
Netw. 2021, 23, 192–200. [CrossRef]

5. As-Suhbani, H.E.; Khamitkar, S.D. Classification of Firewall Logs Using Supervised Machine Learning Algorithms. Int. J. Comput.
Sci. Eng. (JCSE) 2019, 7, 301–304. [CrossRef]

6. Uçar, E.; Ozhan, E. The Analysis of Firewall Policy Through Machine Learning and Data Mining. Wirel. Pers. Commun. 2017, 96,
2891–2909. [CrossRef]

7. Khamitkar, S.D.; As-Suhbani, H.E. Discovering Anomalous Rules In Firewall Logs Using Data Mining And Machine Learning
Classifiers. Int. J. Sci. Technol. Res. 2020, 9, 2491–2497.

8. Ertam, F.; Kaya, M. Classification of firewall log files with multiclass support vector machine. In Proceedings of the 2018 6th
International Symposium on Digital Forensic and Security (ISDFS), Antalya, Turkey, 22–25 March 2018; pp. 1–4. [CrossRef]

9. Zhu, Q.; He, Z.; Zhang, T.; Cui, W. Improving Classification Performance of Softmax Loss Function Based on Scalable Batch-
Normalization. Appl. Sci. 2020, 10, 2950. [CrossRef]

10. Wu, Y.; Wei, D.; Feng, J. Network Attacks Detection Methods Based on Deep Learning Techniques: A Survey. Sec. Commun. Netw.
2020, 2020, 1–17. [CrossRef]

11. Du, M.; Li, F.; Zheng, G.; Srikumar, V. DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS ’17), Dallas, TX, USA, 30
October–3 November 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 1285–1298. [CrossRef]

12. Ali, M.N.; Imran, M.; Din, M.S.U.; Kim, B.S. Low rate DDoS detection using weighted federated learning in SDN control plane in
IoT network. Appl. Sci. 2023, 13, 1431. [CrossRef]

13. Wu, C.; Chen, S. A heuristic intrusion detection approach using deep learning model. In Proceedings of the 2023 International
Conference on Information Networking (ICOIN), Bangkok, Thailand, 1–14 January 2023; pp. 438–442.

14. Garcia, J.F.C.; Blandon, G.E.T. A deep learning-based intrusion detection and preventation system for detecting and preventing
Denial-of-Service attacks. IEEE Access 2022, 10, 83043–83060. [CrossRef]

15. Kumar, D.; Pateriya, R.K.; Gupta, R.K.; Dehalwar, V.; Sharma, A. DDoS detection using deep learning. Proc. Comput. Sci. 2023,
218, 2420–2429. [CrossRef]

16. Saeed, A.M.; Wang, D.; Alnedhari, H.A.; Mei, K.; Wang, J. A survey of machine learning and deep learning based dga detection
techniques. In Proceedings of the International Conference on Smart Computing and Communication, Kochi, India, 1–3 July 2021;
pp. 133–143.

http://doi.org/10.1109/ISSRE.2016.21
http://dx.doi.org/10.3390/network4010004
http://dx.doi.org/10.23919/JCN.2021.000011
http://dx.doi.org/10.26438/ijcse/v7i8.301304
http://dx.doi.org/10.1007/s11277-017-4330-0
http://dx.doi.org/10.1109/ISDFS.2018.8355382
http://dx.doi.org/10.3390/app10082950
http://dx.doi.org/10.1155/2020/8872923
http://dx.doi.org/10.1145/3133956.3134015
http://dx.doi.org/10.3390/app13031431
http://dx.doi.org/10.1109/ACCESS.2022.3196642
http://dx.doi.org/10.1016/j.procs.2023.01.217

Appl. Sci. 2024, 14, 4373 18 of 18

17. Hassaoui, M.; Hanini, M.; El Kafhali, S. A comparative study of neural networks algorithms in cyber-security to detect domain
generation algorithms based on mixed classes of data. In Proceedings of the International Conference on Advanced Intelligent
Systems for Sustainable Development, Rabat, Morocco, 22–27 May 2022; pp. 240–250.

18. Maiga, A.-A.; Ataro, E.; Githinji, S. Intrusion Detection With Deep Learning Classifiers: A Synergistic Approach of Probabilistic
Clustering and Human Expertise to Reduce False Alarms. IEEE Access 2024, 12, 17836–17858. [CrossRef]

19. Islam, M.S.; Uddin, M.A.; Ahmed, D.M.S.; Moazzam, G. Analysis and evaluation of network and application security based on
next generation firewall. Int. J. Comput. Digit. Syst. 2023, 13, 193–202. [CrossRef] [PubMed]

20. Liao, R.; Wang, S. Malicious domain detection based on semi-supervised learning and parameter optimization. IET Commun.
2024, 18, 386–397. [CrossRef]

21. Park, K.H.; Song, H.M.; Yoo, J.D.; Hong, S.Y.; Cho, B.; Kim, K.; Kim, H.K. Unsupervised malicious domain detection with less
labeling effort. Comp. Secur. 2022, 116, 102662. [CrossRef]

22. Ghadermazi, J.; Shah, A.; Jajodia, S. A Machine Learning and Optimization Framework for Efficient Alert Management in a
Cybersecurity Operations Center. Digit. Threat. Res. Pract. 2024. [CrossRef]

23. Hnamte, V.; Nhung-Nguyen, H.; Hussain, J.; Hwa-Kim, Y. A novel two-stage deep learning model for network intrusion detection:
LSTM-AE. IEEE Access 2023, 11, 37131–37148. [CrossRef]

24. Imran, M.; Siddiqui, H.U.R.; Raza, A.; Raza, M.A.; Rustam, F.; Ashraf, I. A performance overview of machine learning-based
defense strategies for advanced persistent threats in industrial control systems. Comput. Secur. 2023, 134, 103445. [CrossRef]

25. Kumar, G.S.C.; Kumar, R.K.; Kumar, K.P.V.; Sai, N.R.; Brahmaiah, M. Deep residual convolutional neural network: An efficient
technique for intrusion detection system. Expert Syst. Appl. 2024, 238, 121912. [CrossRef]

26. Xu, H.; Sun, L.; Fan, G.; Li, W.; Kuang, G. A hierarchical intrusion detection model combining multiple deep learning models
with attention mechanism. IEEE Access 2023, 11, 66212–66226. [CrossRef]

27. Hnamte, V.; Hussain, J. Dependable intrusion detection system using deep convolutional neural network: A novel framework
and performance evaluation approach. Telemat. Informat. Rep. 2023, 11, 100077. [CrossRef]

28. Mohammadian, H.; Ghorbani, A.A.; Lashkari, A.H. A gradient-based approach for adversarial attack on deep learning-based
network intrusion detection systems. Appl. Soft Comput. 2023, 137, 110173. [CrossRef]

29. Dawadi, B.R.; Adhikari, B.; Srivastava, D.K. Deep Learning Technique-Enabled Web Application Firewall for the Detection of
Web Attacks. Sensors 2023, 23, 2073. [CrossRef] [PubMed]

30. Saleous, H.; Trabelsi, Z. Enhancing Firewall Filter Performance Using Neural Networks. In Proceedings of the 2019 15th
International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 1853–
1859. [CrossRef]

31. Pinto, A.; Herrera, L.-C.; Donoso, Y.; Gutierrez, J.A. Survey on intrusion detection systems based on machine learning techniques
for the protection of critical infrastructure. Sensors 2023, 23, 2415. [CrossRef] [PubMed]

32. Beverly, R.; Sollins, K. An internet protocol address clustering algorithm. In Proceedings of the Third Conference on Tackling
Computer Systems Problems with Machine Learning Techniques (SysML’08), San Diego, CA, USA, 13–15 February 2018; USENIX
Association: Long Beach, WA, USA, 2018.

33. Tuan, T.A.; Long, H.V.; Taniar, D. On detecting and classifying dga botnets and their families. Comput. Secur. 2022, 113, 102549.
[CrossRef]

34. August, T.; Dao, D.; Niculescu, M.F. Economics of ransomware: Risk interdependence and large-scale attacks. Manag. Sci. 2022,
68, 8979–9002. [CrossRef]

35. Rish, I. An empirical study of the naive Bayes classifier. In IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence; IBM:
Boulder, CO, USA, 2001; Volume 3, pp. 41–46.

36. Maalouf, M. Logistic regression in data analysis: An overview. Int. J. Data Anal. Tech. Strateg. 2011, 3, 281–299. [CrossRef]
37. Agarwala, A.; Pennington, J.; Dauphin, Y.; Schoenholz, S. Temperature check: Theory and practice for training models with

softmax-cross-entropy losses. arXiv 2020, arXiv:2010.07344.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2024.3359595
http://dx.doi.org/10.12785/ijcds/130116
http://www.ncbi.nlm.nih.gov/pubmed/35459351
http://dx.doi.org/10.1049/cmu2.12739
http://dx.doi.org/10.1016/j.cose.2022.102662
http://dx.doi.org/10.1145/3644393
http://dx.doi.org/10.1109/ACCESS.2023.3266979
http://dx.doi.org/10.1016/j.cose.2023.103445
http://dx.doi.org/10.1016/j.eswa.2023.121912
http://dx.doi.org/10.1109/ACCESS.2023.3290613
http://dx.doi.org/10.1016/j.teler.2023.100077
http://dx.doi.org/10.1016/j.asoc.2023.110173
http://dx.doi.org/10.3390/s23042073
http://www.ncbi.nlm.nih.gov/pubmed/36850675
http://dx.doi.org/10.1109/IWCMC.2019.8766576
http://dx.doi.org/10.3390/s23052415
http://www.ncbi.nlm.nih.gov/pubmed/36904618
http://dx.doi.org/10.1016/j.cose.2021.102549
http://dx.doi.org/10.1287/mnsc.2022.4300
http://dx.doi.org/10.1504/IJDATS.2011.041335

	Introduction
	Related Works
	HPC Service Network Environment
	Abnormal Detection
	Human Error

	Methodology
	Data Pre-Processing
	Log Parsing
	Data Extracting
	Feature Selection
	Data Scaling

	Machine-Learning Algorithms
	Naïve Bayes
	KNN
	OneR
	J48
	SVM
	Logistic Regression

	Implemented NN Model

	Result and Discussion
	Conclusions
	References

