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Abstract

:

The blood oxygen saturation, which indicates the ratio of oxygenated hemoglobin to total hemoglobin in the blood, is closely related to one’s health status. Oxygen saturation is typically measured using a pulse oximeter. However, this method can cause skin irritation, and in situations where there is a risk of infectious diseases, the use of such contact-based oxygen saturation measurement devices can increase the risk of infection. Therefore, recently, methods for estimating oxygen saturation using facial or hand images have been proposed. In this paper, we propose a method for estimating oxygen saturation from facial images based on a convolutional neural network (CNN). Particularly, instead of arbitrarily calculating the AC and DC components, which are essential for measuring oxygen saturation, we directly utilized signals obtained from facial images to train the model and predict oxygen saturation. Moreover, to account for the time-consuming nature of accurately measuring oxygen saturation, we diversified the model inputs. As a result, for inputs of 10 s, the Pearson correlation coefficient was calculated as 0.570, the mean absolute error was 1.755%, the root mean square error was 2.284%, and the intraclass correlation coefficient was 0.574. For inputs of 20 s, these metrics were calculated as 0.630, 1.720%, 2.219%, and 0.681, respectively. For inputs of 30 s, they were calculated as 0.663, 2.142%, 2.612%, and 0.646, respectively. This confirms that it is possible to estimate oxygen saturation without calculating the AC and DC components, which heavily influence the prediction results. Furthermore, we analyzed how the trained model predicted oxygen saturation through ‘SHapley Additive exPlanations’ and found significant variations in the feature contributions among participants. This indicates that, for more accurate predictions of oxygen saturation, it may be necessary to individually select appropriate color channels for each participant.






Keywords:


non-contact measurement; facial image analysis; blood oxygen saturation; convolutional neural network; Shapley additive explanations












1. Introduction


Oxygen saturation is an indicator of how much of the hemoglobin in the blood is bound to oxygen. Oxygen saturation is generally expressed as a percentage and refers to the ratio of hemoglobin combined with oxygen. It is used as an important indicator in evaluating the amount of oxygen supplied to cells and tissues. Oxygen saturation plays a key role in maintaining a healthy state. A sufficient oxygen supply is essential for maintaining cell metabolism and function, and oxygen deficiency can lead to serious physiological problems. Therefore, measuring oxygen saturation helps to evaluate the oxygen supply status of the body and identify abnormalities in blood circulation and respiratory function [1,2]. In particular, the importance of oxygen saturation has become more prominent in infectious disease situations such as COVID-19. Even before symptoms develop due to COVID-19 infection, there is a decrease in the oxygen saturation in the blood, which is helpful for the early detection and diagnosis of symptoms. Therefore, measuring oxygen saturation plays an important role in the early diagnosis and treatment of respiratory diseases [3].



One of the main ways to measure oxygen saturation is to use a finger pulseoximeter. A pulseoximeter measures the oxygen saturation in the blood in a non-invasive manner, allowing it to monitor the patient’s current condition in real-time situations [4]. However, pulseoximeters may not provide accurate measurements in some environments. For example, cold hands can cause vasoconstriction, which can reduce blood flow and potentially affect the accuracy of the reading. In addition, for fingers with nail polish, the nail polish present may affect the amount of light transmission, resulting in inaccurate measurements [5]. Especially in infectious disease situations such as COVID-19, it can increase the risk of infectious diseases, as you have to use a device within someone else’s use. As these problems and the risk of infection have become more prominent, non-contact oxygen saturation measurement methods have been actively studied in response [6,7].



In general, non-contact oxygen saturation studies are based on the operating principle of a pulseoximeter. A pulseoximeter is based on the principles of the different absorptions of different light wavelengths by hemoglobin species. A pulseoximeter transmits infrared and red light to the finger. As shown in Figure 1, hemoglobin without oxygen and hemoglobin with oxygen absorb infrared and red light differently. At this time, hemoglobin that is not bound to oxygen absorbs more infrared light, and hemoglobin that is bound to oxygen absorbs more red light.



The pulseoximeter measures and analyzes the amount of light absorbed by the sensor. It determines the oxygen saturation in the blood by calculating the difference in absorption for infrared and red light [9]. In measuring oxygen saturation, the alternating current (AC) and direct current (DC) components form an important part of the principle of measurement. By measuring the transmitted light hundreds of times per second, the pulseoximeter can distinguish between the AC component, which is a variable pulsating component of arterial blood, and the DC component, which is an unchanging static component of a signal consisting of tissue, venous blood, and non-pulse arterial blood. The static component can then be removed from the signal so that the pulsating component, which is typically composed of 1% to 5% of the total signal, can be separated. As shown in Equation (1), dividing the AC level by the DC level at each wavelength also compensates for the change in the incident light intensity, which can remove other complex variables from the equation. Doing this at each wavelength reduces the main source of absorption in the arterial blood and separates the relative absorbance of oxygenated Hb. The ratio of the red signal (    A C   R e d    /    D C   R e d    ) to the infrared signal (    A C   I R    /    D C   I R    ) reflects a ratio similar to that of oxygenated Hb, which can be converted to oxygen saturation through Equation (2) [10].


  R o R =       A C   R e d       D C   R e d           A C   I R       D C   I R          



(1)






  S p   O   2   = A · R o R + B  



(2)







Reviewing existing studies summarized in Section 2, the method of calculating the AC and DC components was also used in the non-contact oxygen saturation measurement. However, since IR wavelengths are not observed in RGB cameras, as shown in Figure 1, a visible light wavelength band with light absorption characteristics similar to IR was used. However, unlike pulseoximetry, this method is highly sensitive to factors such as skin color and ambient lighting conditions. Therefore, the methods for calculating the AC and DC components are different in each existing paper, and this diversity can affect the accuracy and reliability of the results. In fact, existing studies have not been able to produce satisfactory results.



Therefore, in this study, the oxygen saturation was estimated using the signals obtained from the video as the input of the model without calculating the AC and DC components. Specifically, we separated the signals obtained from videos into 10 color spaces and predicted the oxygen saturation using a ResNet-based deep learning model. We investigated the feasibility of various color components, rather than specific wavelength color components, in reflecting the oxygen saturation values. Considering the time-consuming nature of accurately measuring the oxygen saturation, we diversified the model inputs into 10 s, 20 s, and 30 s intervals to compare performance. Additionally, we analyzed the color channels contributing to oxygen saturation prediction on a per-subject basis using SHAP (Shapley additive explanations).




2. Related Works


Recently, methods have been proposed to measure oxygen saturation non-invasively using facial or hand images. These methods utilize specialized cameras with filters capable of capturing specific wavelength bands [11] or commonly available RGB cameras such as webcams or smartphone cameras. While specialized cameras can capture wavelength bands suitable for measuring oxygen saturation, they are not widely used. Therefore, there is a need for methods that can measure oxygen saturation using RGB cameras.



Previous studies that utilize RGB cameras for measuring oxygen saturation have primarily employed the ratio of ratios (RoRs) method. Tarassenko et al. [12] and Rahman et al. [13] estimated the AC and DC components for red and blue wavelengths from the facial region of the RGB image and calculated the RoRs to measure oxygen saturation. Sun et al. [14] estimated the AC and DC components for red and green wavelengths from the dorsum of the hand region in the RGB image and calculated the RoRs to measure oxygen saturation.



Additionally, some methods go beyond using two wavelength bands and utilize all three channels of the RGB image. Wei et al. [15] estimated the AC and DC components by using all three wavelength bands from the facial region of the RGB image, while Tian et al. [16] estimated the AC and DC components by using all three wavelength bands from the palm region of the RGB image and calculated the RoRs to measure oxygen saturation.



Furthermore, methods that use convolutional neural networks (CNNs) to measure oxygen saturation have been proposed, which differ from previous regression-based methods. Akamatsu et al. [17] calculated the AC and DC components using the red, green, and blue wavelengths from the facial region of the RGB image and fed the resulting spatiotemporal map into a CNN model to measure oxygen saturation.



Various papers have proposed methods using RGB cameras to measure oxygen saturation, with most considering the AC and DC components. However, the methods for estimating the AC and DC components from the photoplethysmography (PPG) signal, despite the clear relationship between RoRs and oxygen saturation, vary among the papers.



In the examined papers, Tarassenko et al. [12] calculated the AC component as the average of the peaks and valleys in the PPG signal and the DC component as the mean of the PPG signal. Rahman et al. [13] calculated the AC component as the standard deviation of the PPG signal and the DC component as the mean of the PPG signal. Sun et al. [14] applied band-pass filtering with a bandwidth of 0.5–5 Hz to obtain the AC component and low-pass filtering with a cut-off frequency of 0.3 Hz to obtain the DC component. Wei et al. [15] performed band-pass filtering with a bandwidth of 0.6–3 Hz to obtain the AC component and low-pass filtering with a cut-off frequency of 3 Hz to obtain the DC component. Tian et al. [16] used an eighth-order Butterworth filter with a bandwidth of 0.1 Hz centered around the estimated heart rate to obtain the AC component as the average of the peaks and valleys in the filtered signal and a second-order low-pass Butterworth filter with a cut-off frequency of 0.1 Hz to obtain the DC component as the median of the filtered signal. Akamatsu et al. [17] applied band-pass filtering with a bandwidth of 0.75–2.5 Hz to obtain the AC component and low-pass filtering with a cut-off frequency of 0.3 Hz to obtain the DC component.



While extracting the AC and DC components is essential in the principle of estimating oxygen saturation, the performance of predicting oxygen saturation varies greatly depending on how these components are extracted [16]. Therefore, in this paper, we proposed a method for estimating oxygen saturation using RGB cameras without arbitrarily extracting the AC and DC components, utilizing the time-series data obtained from RGB images. Table 1 shows a summary of the related works.




3. Method


In this study, oxygen saturation was calculated using acquired images. To do this, the segment corresponding to the skin area in the image was extracted by using RGB values, and the RGB signals in the skin area were then obtained. Afterwards, the RGB signal was converted to YCrCgCb and the HSV color space, and then these signals were used to generate 10-dimensional feature data. Afterward, the oxygen saturation was calculated using a ResNet-based CNN model. Figure 2 shows the overall process.



3.1. Dataset


In this study, an experiment was conducted by controlling the factors that could affect the oxygen saturation prediction, such as race, distance, and lighting. A total of 14 Korean participants (eight males and six females) between the ages of 24 and 32 took part in the experiment. Table 2 shows the demographic characteristics and the average values of the Cg and Cb color channels of the subjects. Figure 3 displays the distribution of skin colors for all the data. Since the study was limited to Koreans, the dots were clustered in one area. During the data collection, the participants were instructed to sit comfortably and minimize movement as much as possible. Additionally, they were asked to hold their breath to lower their oxygen saturation levels, and if they experienced discomfort, they were instructed to resume breathing. Each experiment lasted for 5 min and 30 s, during which breath-holding was repeated three times. Each participant took part in the experiment twice.



The experiment was conducted in an indoor environment. To acquire the facial images, a conventional RGB camera (Logitech C920e) [18] was used. Figure 4 presents a comparison of the signals obtained from the Logitech C920e webcam, iPhone 14, and Galaxy Z Flip4. Since smartphones undergo their own color correction and other adjustments, it can be difficult to accurately assess color changes. For this reason, in this study, only the webcam (Logitech C920e) was used in the experiments to obtain more accurate and reliable results. To enable the participants to comfortably sit in the chair and participate in the experiment, the camera was placed 60 cm away from the participants and captured facial images at a speed of 30 frames per second with a resolution of 640 × 480 pixels. Simultaneously, to measure the oxygen saturation levels, the participants’ fingers were attached to a CMS-50E pulseoximeter [19]. This device was synchronized with the recorded images using timestamps. Prior to the experiment, consent was obtained from all the participants. The averages of the Cg and Cb color channels in Table 2 were calculated as the mean values of the two experimental datapoints for each participant.




3.2. Data Preprocessing


The facial images obtained through the camera contained not only the face but also the clothing and background. To isolate only the face, a single-shot multiple detector (SSD) face detector was used to detect the faces in the images. However, the detected face regions still included the eyebrows, hair, and other elements. To remove these unwanted components, the RGB color space of the image was converted to the YCbCr color space, and only the skin region was selected. The selected range for the skin region was 0 ≤ Y ≤ 235, 77 ≤ Cb ≤ 127 and 133 ≤ Cr ≤ 173 [20].



After this process, the selected skin region was in the RGB color space. In this paper, the selected skin region of interest (ROI) used a time series of 10 channels (R, G, B, Y, Cr, Cg, Cb, H, S, and V) as the data. Therefore, the RGB signals were transformed into the YCrCgCb and HSV signals. To do this, the average values of R, G, and B per frame were calculated within the selected ROI. These values were then normalized to the range from 0 to 1 by dividing them by the maximum pixel value of 255. We denoted the normalized R, G, and B signals as R′, G′, and B′, respectively. Using Equations (3)–(6) [21] and Equations (7)–(12) [22], the RGB signals could be transformed into the YCrCgCb and HSV signals, respectively.


  Y = 16 +   65.481 ×  R ′    +   128.533 ×   G   ′     +   24.966 ×   B   ′        



(3)






  C r = 128 +   112 ×   R   ′     +   − 93.786 ×   G   ′     +   − 18.214 ×   B   ′      



(4)






  C g = 128 +   − 81.085 ×   R   ′     +   112 ×   G   ′     +   − 30.915 ×   B   ′      



(5)






  C b = 128 +   − 37.797 ×   R   ′     +   − 74.203 ×   G   ′     +   112 ×   B   ′      



(6)






    C   m a x     =   max  ⁡      R   ′   ,     G   ′   ,     B   ′        



(7)






    C   m i n   =   min  ⁡      R   ′   ,     G   ′   ,     B   ′        



(8)






  ∆ =   C   m a x   −   C   m i n      



(9)






  H =         60 ° ×       G   ′   −   B   ′     ∆   m o d 6                             ,   i f     C   m a x   =   R   ′         60 ° ×       B   ′   −   R   ′     ∆   + 2                               ,   i f     C   m a x   =   G   ′         60 ° ×       R   ′   −   G   ′     ∆   + 4                                 ,   i f     C   m a x   =   B   ′          



(10)






  S =             0                                                                                 ,   i f     C   m a x   = 0             ∆     C   m a x                                                                           ,   i f     C   m a x     ≠ 0        



(11)






  V =   C   m a x    



(12)







Using the RGB signals and the transformed YCrCgCb and HSV signals, a dataset of size N × 10 was generated, where N represents the number of frames in the video. In this paper, considering that it takes a minimum of 30 s to successfully measure oxygen saturation [23], signals from 10, 20, and 30 s were used, resulting in dataset lengths of 300, 600, and 900, respectively.



As mentioned in Section 3.1, the oxygen saturation values were measured at a sampling rate of 1 Hz during image acquisition. Therefore, the length of the generated data needed to be adjusted accordingly. For example, when using the signals from a 10-second period, only one of the 10 oxygen saturation values measured during that time should be selected. In this paper, to best represent the decreasing trend of oxygen saturation while preserving the original values, the average of the median values was used. To calculate this, the n oxygen saturation values (in this case, n = 10, 20, 30) were first sorted, and then the average value of the oxygen saturation values corresponding to the third interval, divided into five intervals, was taken. Figure 5 shows the resulting signals when the original signal and the oxygen saturation values for 10, 20, and 30 s were calculated using the average of the median values for one of the participants.




3.3. Model Training Method


In this paper, a CNN model based on ResNet [24] was created to measure oxygen saturation using the N × 10 dataset generated in Section 3.2. Figure 6 illustrates the structure of the model developed in this paper for measuring oxygen saturation. Similar to ResNet, skip connections were used in this model to combine the input data with the output at each layer and pass it to the next layer.



The model training was conducted three times, each time using input data of size 300 × 10, 600 × 10, and 900 × 10. Two videos obtained from each participant were used, with one video used for model training and the other for testing. The loss was updated using the mean square error, and the Adam optimizer [25] was employed as the optimization algorithm. The batch size was set to 32, and the maximum number of epochs was set to 4000 for training. For testing, the model from the epoch with the lowest loss was utilized, and sliding windows of 1 s were used to obtain continuous outputs.



In the initial layers of ResNet, low-level features are primarily extracted, which mainly encompass basic information related to changes in each color space. At this stage, the model can learn information such as the average color variations and relationships between the colors. In the later stages of the model, based on the low-level features extracted in the initial layers, more complex patterns are recognized, and crucial information related to oxygen saturation is derived. By integrating various features across channels and time frames, such as temporal change analysis and a combination of high-level features, the model learns complex patterns that accurately predict oxygen saturation. This is crucial for the model to draw meaningful conclusions about oxygen saturation from changes in the color space. In conclusion, while the initial layers of ResNet extract basic information, such as the average color variations in each color space, the later layers combine and analyze this information to understand and predict more complex patterns related to oxygen saturation. In this study, half of the 28 videos acquired from the 14 participants were used to train the model, while the remaining videos were used for testing.





4. Results


To quantitatively evaluate the performance of the trained model in predicting oxygen saturation, we used the Pearson correlation coefficient, mean absolute error, and root mean square error. The Pearson correlation coefficient is one of the methods used to measure the linear correlation between two variables, indicating a strong correlation between the variables when the absolute value is close to 1. The mean absolute error represents the average error between the predicted and actual values, and smaller values indicate better predictive performance of the model. The root mean square error represents the square root of the average of the squared differences between the predicted and actual values, indicating the standard deviation of the prediction errors. Smaller values suggest better predictive performance, and like the mean absolute error, it is used for model evaluation and comparison. However, the root mean square error is more sensitive to larger errors, as its values increase with larger errors, making it more sensitive for evaluating model performance compared to the mean absolute error.



4.1. Results by Subject


The experimental results are as follows: Figure 7, Figure 8 and Figure 9 depict a comparison between the oxygen saturation estimated using the model trained with data from 10, 20, and 30 s, respectively, and the oxygen saturation measured using the contact-based sensor. The complete results for all participants are summarized in Table 3, Table 4 and Table 5.



The results indicate that the trained model did not perform well in predicting oxygen saturation compared to previous studies. However, it is important to note that previous studies on the non-contact estimation of oxygen saturation evaluated the results by averaging the individual training and testing results for each participant. Taking this into consideration, our study also conducted training and testing on a participant-specific basis. Figure 10, Figure 11 and Figure 12 show selected graphs comparing the oxygen saturation estimated using the model trained with data from 10, 20, and 30 s, respectively, with the oxygen saturation measured using the contact-based sensor. The complete results for all participants are summarized in Table 6, Table 7 and Table 8. The intraclass correlation coefficient (ICC), which measures the agreement between two evaluations, ranged between 0 and 1.



Upon examining the results, it can be observed that the individual models performed either better or comparably to previous studies, and there was a significant difference in exactness compared to the ensemble model. In Section 4.2, the reasons for the discrepancies in the output values between the individual and ensemble models are analyzed.




4.2. Feature Analysis


In order to analyze the features used by the trained model for prediction based on the observed differences in the output values between the individual and ensemble models in Section 4.1, SHAP (Shapley additive explanations) was employed [26]. SHAP is based on the concept of Shapley values, which is derived from cooperative game theory. Shapley values measure the worth of each player in a cooperative game. When applied to evaluating feature importance in machine learning models, SHAP values provide insights into the impact of features on model predictions.



The range of SHAP values varies depending on the characteristics of the features and the model’s structure. The absolute magnitude of a SHAP value represents the contribution of each feature, indicating the extent to which it influences the model’s prediction. A larger SHAP value indicates a greater impact of the corresponding feature on the model’s prediction.



When calculating the SHAP values for each feature, all combinations of features are considered to evaluate the model’s predictions. In other words, the difference between the model’s predictions when a feature is excluded and the original predictions is computed, and this difference represents the importance (SHAP value) of that feature.



Figure 13, Figure 14 and Figure 15 depict the SHAP values and feature contributions for the individual models trained and tested on the data used in Figure 10, Figure 11 and Figure 12. These visualizations were used to confirm whether the features with dominant contributions significantly impacted each individual participant.



Figure 13, Figure 14 and Figure 15 indicate significant variations in the importance of the features among different subjects. Furthermore, since these graphs demonstrate the contribution to the data used for training, it is confirmed whether the feature with the predominant contribution was important to each subject by confirming the contribution to the data used in testing. Figure 16, Figure 17 and Figure 18 show the results, displaying the SHAP values for models trained on input data for 10 s, 20 s, and 30 s.



For each subject in Figure 16, the Cr and B channels contributed the most. In Figure 17, the Y and Cg channels were the primary contributors for each respective subject, and in Figure 18, the Cg channel had the largest contribution. When examining individual models for all subjects, it became evident that most subjects had the same predominant features contributing to both the training and testing data. Considering not only the differences in feature importance but also the fact that the features contributing the most to the predictions vary from person to person, this supports the idea that personalized models perform better in predicting oxygen saturation than a unified model. Additionally, it suggests that in future research aimed at improving the exactness of oxygen saturation prediction, it may be necessary to individually select appropriate color channels for each subject rather than relying solely on the conventional approach of using specific color channels. Feature analysis graphs for all subjects are included in Appendix A.





5. Discussion


This paper proposed a method for estimating oxygen saturation using convolutional neural networks and images acquired with an RGB camera. Because the AC and DC components, which are essentially calculated in the measurement of oxygen saturation, can vary sensitively depending on the calculation method, the time-series data of the image was directly utilized. Furthermore, to account for the significant time required for successful oxygen saturation measurement, experiments were conducted with varying input times. Table 9 summarizes the oxygen saturation prediction results according to the input data lengths.



First, we trained a unified model using half of the images acquired from the subjects and conducted tests. The results were as follows: when using 10 s of data, the Pearson correlation coefficient was calculated as 0.414, with the MAE (mean absolute error) and RMSE (root mean square error) calculated as 2.592% and 3.108%, respectively. When using 20 s of data, the Pearson correlation coefficient was calculated as 0.473, with the MAE and RMSE calculated as 3.869% and 4.797%, respectively. When using 30 s of data, the Pearson correlation coefficient was calculated as 0.475, with the MAE and RMSE calculated as 3.025% and 3.547%, respectively. This can be considered as not accurately predicting oxygen saturation when compared to previous research. However, studies that measured oxygen saturation non-invasively and individually trained and tested for each subject generally. Therefore, in this study, similar to previous research, we conducted training and testing for each subject separately. As a result, for a 10-second input, the Pearson correlation coefficient was calculated as 0.570, with an MAE of 1.755% and RMSE of 2.284%, with an ICC (intraclass correlation coefficient) of 0.574. For a 20-second input, the Pearson correlation coefficient was calculated as 0.630, with an MAE of 1.720% and RMSE of 2.219%, with an ICC of 0.681. For a 30-second input, the Pearson correlation coefficient was calculated as 0.663, with an MAE of 2.142% and RMSE of 2.612%, with an ICC of 0.646. In comparison to the previous studies [15,17] that estimated oxygen saturation from the facial region of interest (ROI), their average correlation coefficients were 0.68 and 0.49, respectively, indicating that these prior studies performed well in predicting oxygen saturation. Furthermore, the method proposed in this paper is more efficient as it utilizes the signals obtained from images without the need to calculate additional AC and DC components.



In this study, we investigated the factors influencing oxygen saturation estimation by controlling various variables such as illumination, distance, and skin tone through SHAP (Shapley additive explanations) value analysis. Particularly, the analysis utilizing the SHAP values revealed significant variations in the feature importance contributions across different subjects when the trained model predicted oxygen saturation. This finding suggests that there may be diverse sets of features that exert the greatest influence on predictions for each individual. Therefore, to improve the accuracy of oxygen saturation predictions, it may be necessary to move beyond the conventional approach of using specific color channels and instead consider employing different color channels for each subject.



However, this study did not utilize a more diverse dataset encompassing various demographics such as gender, age, and skin tone. This limitation could impact the generalizability of the research findings. For instance, certain gender, age, or skin tone groups may have different color channels that affect oxygen saturation. Future research should analyze the color channels contributing to oxygen saturation prediction in greater detail by utilizing more diverse datasets, thereby enhancing our understanding of the influences of features and improving the predictive power of the model across different environments.



Furthermore, the database used in this study only included oxygen saturation values ranging from 85% to 100%, obtained by instructing participants to hold their breath. Therefore, models trained to predict oxygen saturation using this database may exhibit a tendency to predict lower oxygen saturation values than those used in training. To address this limitation, it is necessary to employ more diverse databases reflecting a wider range of oxygen saturation values. Considering that in the future, the International Organization for Standardization (ISO) will verify the accuracy of pulseoximeters through hypoxia-induced clinical trials that change oxygen saturation by 70 to 100%, the data needs to diversify the range of oxygen saturation changes. This will involve utilizing datasets with a more varied range of oxygen saturation changes for predicting oxygen saturation.



Therefore, future research plans involve conducting studies to predict oxygen saturation using more diverse datasets that consider gender, age, skin color, and varied ranges of oxygen. This will involve analyzing the color channels contributing to oxygen saturation prediction and diversifying prediction models by grouping individuals with similar contributions from each color channel without creating individualized models.
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Figure A1. SHAP values of the personalized model used in Figure 10 (all subjects). The x-axis represents the features and the y-axis shows the contributions according to the features. Among them, the orange bar is the feature with the greatest contribution. 






Figure A1. SHAP values of the personalized model used in Figure 10 (all subjects). The x-axis represents the features and the y-axis shows the contributions according to the features. Among them, the orange bar is the feature with the greatest contribution.
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Figure A2. SHAP values of the personalized model used in Figure 11 (all subjects). 






Figure A2. SHAP values of the personalized model used in Figure 11 (all subjects).
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Figure A3. SHAP values of the personalized model used in Figure 12 (all subjects). 






Figure A3. SHAP values of the personalized model used in Figure 12 (all subjects).
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Figure A4. SHAP values for the training and testing data of a model trained with 10 s of signals as the input data (all subjects). 






Figure A4. SHAP values for the training and testing data of a model trained with 10 s of signals as the input data (all subjects).
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Figure A5. SHAP values for the training and testing data of a model trained with 20 s of signals as the input data (all subjects). 






Figure A5. SHAP values for the training and testing data of a model trained with 20 s of signals as the input data (all subjects).
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Figure A6. SHAP values for the training and testing data of a model trained with 30 s of signals as the input data (all subjects). 






Figure A6. SHAP values for the training and testing data of a model trained with 30 s of signals as the input data (all subjects).
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Figure 1. The wavelength of oxygenated hemoglobin and the deoxygenated hemoglobin absorption coefficient [8]. 
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Figure 2. Entire process of the oxygen saturation prediction model. 
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Figure 3. The distribution of skin colors for all the data. 
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Figure 4. Comparison of the signals obtained from the Logitech C920e webcam, iPhone 14, and Galaxy Z Flip4. 
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Figure 5. The result of calculating the average of the original signal of oxygen saturation measured with a pulseoximeter and the median value of the oxygen saturation value. 
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Figure 6. CNN model structure based on ResNet. 
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Figure 7. Predicted oxygen saturation and actual oxygen saturation of a model trained using 10 s of signals as the input data (integrated model). For each subject, three indices were measured: corr, MAE, and RMSE: “corr” stands for the Pearson correlation coefficient, MAE stands for the “mean absolute error”, and RMSE stands for the “root mean square error”. 
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Figure 8. Predicted oxygen saturation and actual oxygen saturation of a model trained using 20 s of signals as the input data (integrated model). 
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Figure 9. Predicted oxygen saturation and actual oxygen saturation of a model trained using 30 s of signals as the input data (integrated model). 
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Figure 10. Predicted oxygen saturation and actual oxygen saturation of a model trained using 10 s of signals as the input data (personalized model). 
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Figure 11. Predicted oxygen saturation and actual oxygen saturation of a model trained using 20 s of signals as the input data (personalized model). 
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Figure 12. Predicted oxygen saturation and actual oxygen saturation of a model trained using 30 s of signals as the input data (personalized model). 
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Figure 13. SHAP values of the personalized model used in Figure 10. The x-axis represents the features and the y-axis shows the contribution according to the features. Among them, the orange bar is the feature with the greatest contribution. 
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Figure 14. SHAP values of the personalized model used in Figure 11. 
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Figure 15. SHAP values of the personalized model used in Figure 12. 
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Figure 16. SHAP values for the training and testing data of a model trained with 10 s of signals as the input data. 
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Figure 17. SHAP values for the training and testing data of a model trained with 20 s of signals as the input data. 
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Figure 18. SHAP values for the training and testing data of a model trained with 30 s of signals as the input data. 
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Table 1. Summary of the related works.






Table 1. Summary of the related works.





	
Method

	
Author

	
Result




	
Metric

	
Value






	
Use two

waves

	
Face ROI

	
Calculate the RoR and measure the oxygen saturation by estimating the AC and DC components for red and blue wavelengths

	
Tarassenko et al. [12]

	
Corrcoef

	
−0.8




	
Calculate the RoR and measure the oxygen saturation by estimating the AC and DC components for red and blue wavelengths

	
Rahman et al. [13]

	
Corrcoef

	
0.95




	
Hand ROI

	
Calculate the RoR and measure the oxygen saturation by estimating the AC and DC components for red and blue wavelengths

	
Sun et al. [14]

	
     R   2     

	
0.87




	
Use three waves

	
Face ROI

	
Calculate the AC and DC components and measure the oxygen saturation using all red, green, and blue wavelengths

	
Wei et al. [15]

	
Corrcoef

	
0.68




	
Hand ROI

	
Calculate the AC and DC components and measure the oxygen saturation using all red, green, and blue wavelengths

	
Tian et al. [16]

	
MAE

	
1.26




	
CNN

	
Face ROI

	
The space-time map is input to the CNN model using the AC and DC components calculated using the data of the red, green, and blue wavelengths.

	
Akamatsu et al. [17]

	
Corrcoef

	
0.496











 





Table 2. Demographic characteristics and the average values of the Cg and Cb color channels for the participants.
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	ID
	Gender
	Age
	Nationality
	Cb Channel

Average
	Cr Channel

Average





	1
	Male
	25
	Korean
	116.0
	145.6



	2
	Female
	25
	Korean
	115.0
	143.5



	3
	Male
	27
	Korean
	118.0
	143.3



	4
	Male
	27
	Korean
	117.4
	142.8



	5
	Female
	26
	Korean
	116.9
	142.7



	6
	Female
	30
	Korean
	117.3
	142.8



	7
	Male
	28
	Korean
	117.5
	143.1



	8
	Female
	24
	Korean
	117.6
	144.0



	9
	Female
	24
	Korean
	117.6
	143.6



	10
	Female
	25
	Korean
	120.1
	140.6



	11
	Male
	26
	Korean
	118.0
	142.5



	12
	Male
	28
	Korean
	114.9
	143.9



	13
	Male
	27
	Korean
	115.0
	144.4



	14
	Male
	32
	Korean
	114.0
	146.3










 





Table 3. Statistical results of a model trained using 10 s of signals as the input data (integrated model). For each subject, three indices were measured: the correlation coefficient, MAE, and RMSE: “correlation coefficient” stands for the Pearson correlation coefficient, MAE stands for the “mean absolute error”, and RMSE stands for the “root mean square error”.






Table 3. Statistical results of a model trained using 10 s of signals as the input data (integrated model). For each subject, three indices were measured: the correlation coefficient, MAE, and RMSE: “correlation coefficient” stands for the Pearson correlation coefficient, MAE stands for the “mean absolute error”, and RMSE stands for the “root mean square error”.





	Subject
	Correlation

Coefficient
	MAE
	RMSE





	1
	0.430
	1.738
	2.087



	2
	0.468
	2.728
	3.181



	3
	0.559
	2.059
	2.667



	4
	0.397
	2.148
	2.807



	5
	0.502
	3.208
	3.649



	6
	0.417
	3.482
	3.782



	7
	0.500
	3.987
	4.763



	8
	0.569
	2.812
	3.201



	9
	0.337
	3.358
	3.979



	10
	0.476
	3.021
	3.623



	11
	0.294
	1.550
	2.035



	12
	0.200
	1.358
	1.691



	13
	0.357
	2.375
	2.980



	14
	0.294
	2.463
	3.060



	Mean
	0.414
	2.592
	3.108










 





Table 4. Statistical results of a model trained using 20 s of signals as the input data (integrated model).
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	Subject
	Correlation

Coefficient
	MAE
	RMSE





	1
	0.586
	0.825
	6.338



	2
	0.512
	3.062
	3.816



	3
	0.696
	1.760
	2.373



	4
	0.672
	5.840
	6.343



	5
	0.496
	2.461
	2.978



	6
	0.582
	6.102
	6.692



	7
	0.512
	3.320
	3.678



	8
	0.377
	3.746
	4.259



	9
	0.241
	5.033
	5.852



	10
	0.468
	7.690
	8.289



	11
	0.594
	4.260
	4.737



	12
	0.378
	2.413
	2.903



	13
	0.056
	3.762
	4.459



	14
	0.448
	3.888
	4.437



	Mean
	0.473
	3.869
	4.797










 





Table 5. Statistical results of a model trained using 30 s of signals as the input data (integrated model).
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	Subject
	Correlation

Coefficient
	MAE
	RMSE





	1
	0.372
	2.635
	3.249



	2
	0.506
	3.772
	4.355



	3
	0.664
	2.049
	2.370



	4
	0.748
	2.066
	2.676



	5
	0.529
	1.855
	2.264



	6
	0.584
	3.628
	4.050



	7
	0.492
	2.993
	3.360



	8
	0.475
	3.190
	3.788



	9
	0.395
	5.662
	6.489



	10
	0.401
	5.686
	6.168



	11
	0.570
	1.720
	2.390



	12
	0.199
	1.785
	2.079



	13
	0.238
	2.714
	3.438



	14
	0.481
	2.598
	2.981



	Mean
	0.475
	3.025
	3.547










 





Table 6. Statistical results of a model trained using 10 s of signals as the input data (personalized model).






Table 6. Statistical results of a model trained using 10 s of signals as the input data (personalized model).





	Subject
	Correlation

Coefficient
	MAE
	RMSE
	ICC
	95% Confidence Interval





	1
	0.498
	1.487
	1.874
	0.592
	0.487~0.675



	2
	0.513
	1.774
	3.186
	0.562
	0.369~0.686



	3
	0.693
	2.212
	2.684
	0.763
	0.524~0.862



	4
	0.759
	3.990
	4.510
	0.601
	−0.213~0.852



	5
	0.451
	1.343
	1.922
	0.615
	0.517~0.693



	6
	0.653
	1.741
	1.973
	0.434
	−0.196~0.751



	7
	0.509
	2.378
	2.828
	0.375
	−0.184~0.662



	8
	0.620
	1.718
	2.279
	0.677
	0.597~0.742



	9
	0.411
	0.872
	1.374
	0.297
	0.005~0.494



	10
	0.576
	0.357
	0.694
	0.714
	0.639~0.773



	11
	0.713
	1.082
	1.444
	0.770
	0.710~0.817



	12
	0.403
	2.735
	3.238
	0.353
	0.004~0.564



	13
	0.496
	1.267
	1.709
	0.538
	0.418~0.632



	14
	0.684
	1.618
	2.255
	0.743
	0.631~0.815



	Mean
	0.570
	1.755
	2.284
	0.574
	-










 





Table 7. Statistical results of a model trained using 20 s of signals as the input data (personalized model).
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	Subject
	Correlation

Coefficient
	MAE
	RMSE
	ICC
	95% Confidence Interval





	1
	0.579
	1.558
	1.922
	0.664
	0.577~0.733



	2
	0.669
	2.125
	3.199
	0.750
	0.682~0.803



	3
	0.516
	2.980
	3.638
	0.636
	0.467~0.742



	4
	0.817
	3.014
	3.465
	0.725
	−0.189~0.907



	5
	0.512
	1.935
	2.555
	0.586
	0.293~0.737



	6
	0.767
	1.044
	1.257
	0.678
	−0.195~0.882



	7
	0.572
	1.490
	2.040
	0.620
	0.519~0.700



	8
	0.688
	2.214
	2.934
	0.603
	0.389~0.729



	9
	0.269
	1.165
	1.570
	0.369
	0.174~0.513



	10
	0.723
	0.630
	0.858
	0.816
	0.756~0.859



	11
	0.756
	1.157
	1.586
	0.827
	0.713~0.887



	12
	0.577
	1.224
	1.560
	0.687
	0.567~0.768



	13
	0.671
	1.308
	1.706
	0.787
	0.709~0.841



	14
	0.698
	2.241
	2.772
	0.783
	0.612~0.865



	Mean
	0.630
	1.720
	2.219
	0.681
	-










 





Table 8. Statistical results of a model trained using 30 s of signals as the input data (personalized model).






Table 8. Statistical results of a model trained using 30 s of signals as the input data (personalized model).





	Subject
	Correlation

Coefficient
	MAE
	RMSE
	ICC
	95% Confidence Interval





	1
	0.727
	1.812
	2.313
	0.613
	0.112~0.797



	2
	0.231
	4.715
	6.120
	0.363
	0.191~0.498



	3
	0.626
	2.853
	3.200
	0.590
	0.085~0.783



	4
	0.845
	2.343
	2.939
	0.854
	0.697~0.917



	5
	0.821
	2.837
	3.336
	0.706
	0.376~0.836



	6
	0.440
	1.775
	2.210
	0.428
	0.105~0.617



	7
	0.562
	1.074
	1.445
	0.686
	0.589~0.758



	8
	0.700
	2.412
	3.105
	0.614
	0.423~0.731



	9
	0.759
	0.857
	1.152
	0.840
	0.785~0.879



	10
	0.636
	2.376
	2.638
	0.385
	−0.196~0.707



	11
	0.688
	1.428
	1.766
	0.775
	0.681~0.837



	12
	0.797
	0.676
	0.855
	0.850
	0.790~0.891



	13
	0.618
	3.025
	3.392
	0.505
	−0.215~0.782



	14
	0.828
	1.804
	2.092
	0.831
	0.785~0.867



	Mean
	0.663
	2.142
	2.612
	0.646
	-










 





Table 9. Summary of the oxygen saturation prediction results according to the input data lengths.
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Correlation Coefficient

	
MAE

	
RMSE






	
Integrated Model

	
10 s

	
0.414

	
2.592

	
3.108




	
20 s

	
0.473

	
3.869

	
4.797




	
30 s

	
0.475

	
3.025

	
3.547




	
Personalized Model

	
10 s

	
0.570

	
1.755

	
2.284




	
20 s

	
0.630

	
1.720

	
2.219




	
30 s

	
0.663

	
2.142

	
2.612




	
Previous Research [15]

	
0.680

	
-

	
1.819




	
Previous Research [17]

	
0.496

	
1.18

	
1.4

















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).








Check ACS Ref Order





Check Foot Note Order





Check CrossRef













media/file13.jpg
Absorption(cm-!)

1x10¢

1x108

1x10¢

1x10°

1x10t

Blue Green Red Infrared
—_—— ————

660nm 940nm

20

350

a0 550 650 750 50 950

Wavelength (nm)





media/file4.png
Subject 1 Subject 2 Subject 9 Subject 10
| R R R
| G | G
r | 8 5 S 8
v S Y v Y
| ——— o  —— | &
o] v Co Lo
o @ o - @
H - — H - I . H
s J 5 < il s
v _ v v — v
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
SHAP value SHAP value SHAP value SHAP value
Subject 3 Subject 4 Subject 11 Subject 12
» R » R
c G a1 G
& 8 & 8
v Y v Y
o I ——— o o o
o g o Cg
o | @ o @
H = H # A H
5 5 s 5
v _l ! , , v | : , j | v - i ! | , v | ’ ; | ‘ ‘
0.0 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
SHAP value SHAP value SHAP value SHAP value
Subject 5 Subject 6 Subject 13 Subject 14
R — R L ] R
G G c G
CR | B & B
v . v N | v
o . Cr o o
Co Cg Co Gy
o . @ o o]
H . H H H
s 5 5 F 5
v — v v v
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
SHAP value SHAP value SHAP value SHAP value
Subject 7 Subject 8
» R
- G
& 8
| Y
o . o
Gg Cg
o - o]
e -
s h 5
v v
. . B . . - b ¥ . . v 1
0.0 02 04 06 08 10 00 02 04 06 08 10
SHAP value SHAP value






media/file39.jpg
Subject 2

Subject 1

SHAP value

SHAP value

Subject 4

Subject 3

SHAP value.






media/file18.png
Cr

200 1 152.5 -
s 150.0 -
150 -
L 147.5 1
125 -
145.0 1
100 - Cr
142.5 1
75 E
- 140.0 -
25 4 137.5 4
0 - v - - - - 135.0
0 25 75 100 125 150 175 200 225 110

Cb

112

114 116 118 120 122

Cb

124






media/file21.jpg
SpO2 (%)

5902 (%)
Besrsk

sess8

Original

10s Data_=> average of median

10
g%
%
%
@2
T % 1 ©0 w0 m % T % m ® m o %
Time(s) Time(s)
20sData_=> average of median 10305 D8 => average of median
P
S
g
o
@2

Time(s)

Bo B0 20 %0

ES

T © 10 1 2 o

Time(s)

00





media/file44.png
Subject 6 train

<mIQQQ-(mm::!

cnTFE 0 cmom

0.0 0.2 0.4 0.6 0.8 10
SHAP value
Subject 14 train
0.0 0.2 0.4 0.6 0.8 10

SHAP value

Subject 6 test

cenITBEQ cmo o

0.0 0.2 0.4 0.6 0.8 10
SHAP value
Subject 14 test

cnT B0 como D

0.0 0.2 0.4 0.6 0.8 10
SHAP value





media/file26.png
Sp02 (%)

Sp02 (%)

Subject : 1, corr: 0.430, MAE: 1.738, RMSE: 2.087

- |abel === pred

0 50 00 150 200 250 300
Frame
Subject : 3, corr: 0.559, MAE: 2.059, RMSE: 2.667

- |abel === pred

0 50 00 150 200 250 300

Frame

Sp02 (%)

Sp02 (%)

100

Subject : 2, corr: 0.468, MAE: 2.728, RMSE: 3.181

Frame

- |abel === pred

0 50 100 150 200 250 300





media/file7.jpg





media/file28.png
Sp02 (%)

Sp02 (%)

100

100

Subject: 1, corr: 0.586, MAE: 5.825, RMSE: 6.338

‘F‘ n

|‘,..‘L - '._', Loyt . i
& AN AYER !
| = label ==~ pred \."l ! ‘,_..-' ‘l‘____:
0 50 100 150 200 250 300
Frame

Subject: 3, corr: 0.696, MAE: 1.760, RMSE: 2.373

- |abel

-== pred

0 50 100 150

Frame

Sp02 (%)

Sp02 (%)

Subject : 2, corr: 0.512, MAE: 3.062, RMSE: 3.816

% -
- |abel -=-= pred
0 50 100 150 200 250
Frame
100 Subject: 4, corr: 0.672, MAE: 5.840, RMSE: 6.343
sit\ [ 4\
- |abel -== pred
90 4 + S Ay
\ N
- “l i
85 | L L L] L L L
0 50 100 150 200 250
Frame






media/file10.png
Train

Subject 1

» -

o

3

" I

o .

Oy

o

»

5

-1 032 a4 Py 10

SHAFP value
Subject 2

o m

WX

; PEQ uwmo
|I|I|I‘.I-
&4

ol

a1l

p

o/

=
b |

SHAF value
Subject 3

w0

Ve §

'\l|'|""

v
’ 19
SHAF value
Subject 4
» -
o
o
o
- |
o —
»
s
v
:ra Y 6& . 10 :
SHAP value
Subject 5

=

=0

wEI Ve
-
-

=

SHAP value

Test

Subject 1
T |
|
i
|
o
- |
o ——
g
»
v
.'FJ Jr.'- ."i CFE :‘-'!- 19
SHAP value
Subject 2
o —
.
o .
+ I
o —
- 0000 0|
| ———
v
«
v
'FJ -'.‘r.'-' .'Ii CFE o 10
SHAF value
Subject 3
ol
o
]
v
o
1
ey
v
»
v
.'F:J 2 I-.‘ "l G & -3‘-'! 19
SHAP value
Subject 4
»
-
. ]
.|
o (—
o —
o
.
_
.'F:J I-r.'- ¥

r-
'S
o

SHAF' value
Subject 5

<m0 =

& B .
T e Y

e

&
-

o I
g |

LY
SHAF value

Train

Subject 6
»
o
o
. 1
- |
o
.|
vl
00 & s 10
SHAF' valua
Subject 7
o
o
o
v
o -
Oy
-
i
) Y P 08 10
SHAF" valua
Subject &
2 |
¢
ol
o
o A
by
.
5 .
v .
0 2 o4 0 ] 19
SHAF value
Subject @

e Q ww

.:' —
v
v & Py’ 1 )
SHAF value
Subject 10

=

t T Ve Q o

.'I"- \.‘-I':
SHAF value

o -
vl
.Ln jr_-. Y 10
SHAF value
Subject 7
«
o
¢
7
af
o
b .
CR |
<
v
-P’ 1'.'- .'IA |;'v_. ]—3
SHAF value
Subject 8
2 |
o
o
+
o
Co
ey
g
1
v
" ¥ a4 06 o8 B
SHAF value
Subject &

-

wEz e Q mO®m

O

= _
| I

: IY"
SHAF value

e Q ued

Train

Subject 11

1 u |'I
3

=

50 02 e
SHAF value
Subject 12
8
L
»
o
- |
o -
.
«
v
00 Y Py’
SHAF value

Subject 13
R _
»
v .
o
o
s |
v
v
0 : 4 Y 1 10
SHAF valus
Subject 14

e
. 1
L]
]
e ]
L}
. |
v
1] 032 Py 08
SHAP value

«@ O ®

T S Y

o -

e Qe

-

oT I I Il -
o

&1 | |

&

o

P Quw

Fea Q uadm &

L

| II

=

Test

Subject 11

o

o
=1

@
%
s

Subject 12

o
-

| I
3

SHAF value
Subject 13

SHAFP value
Subject 14

" SHAP value





media/file11.jpg





media/file6.png
Subject 1 Subject 2 Subject 9 Subject 10
e Bt A ;
R R e | R
¢ G ¢ G
& B & N 8
e | Y v Y
 — ® [
ol | @ Co Cg
o (o3 @ o)
+ H H H
< s 5 5
v v vill v
0.0 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
SHAP value SHAP value SHAP value SHAP value
Subject 3 Subject 4 Subject 11 Subject 12
» R » R
o G ¢ G
& - 8 & 8
v Y v Y
o a o Cr
o Cg v Cg
o | @ @ @
+ - H - H
- I 5 s 5
v v v . v
00 02 04 06 08 10 0.0 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
SHAP value SHAP value SHAP value SHAP value
Subject 5 Subject 6 Subject 13 Subject 14
(e | R | r R
c il G G F G
¢ B B 8
v Y v Y
o Cr o Cr
il || @ Co Cg
o oS o @
+ - H v M
s 5 - I T T T 5
v v v v
00 02 04 06 08 10 0.0 02 04 06 08 10 0.0 0.2 04 06 08 10 00 02 04 06 08 10
SHAP value SHAP value SHAP value SHAP value
Subject 7 Subject 8
» R I
o I G
& 8
v Y
o o
-« O =EE
o S @
v H
. | 5
v v
0.0 02 04 06 08 10 0.0 02 04 06 08 10
SHAP value SHAP value






media/file36.png
Sp02 (%)

Sp02 (%)

Subject: 1, corr: 0.727, MAE: 1.812, RMSE: 2.313

—  |abel

-== pred

0 50 100 150 200 250
Frame

Subject: 3, corr: 0.626, MAE: 2.853, RMSE: 3.200

'--\’-q. X
- |abel -== pred
0 50 100 150 200 250

Frame

Sp02 (%)

Sp02 (%)

Subject: 2, corr: 0.231, MAE: 4.715, RMSE: 6.120

"\_/_\\L m—
—  |abel

1 ! B - L
\ ! (P -

0 50 100 150 200 250
Frame
Subject: 4, corr: 0.845, MAE: 2.343, RMSE: 2.939

"
LY
i \
L] )
|| - ‘-' ‘\ |
- - |abel -== pred D,
0 50 100 150 200 250
Frame






media/file15.jpg
R A
ot

Skinsegmentation

Resht based CNN model

RGB signalextraction

4

10D colo space-based
feature extraction (RGB, YCrCgCh, HSV)





nav.xhtml


  applsci-14-04374


  
    		
      applsci-14-04374
    


  




  





media/file2.png
Subject 1 Subject 2 Subject 9 Subject 10
R R R R
G G G G
B B B B
Y Y Y Y
o o o cr
Cg Cg Cg Co
@ @ ® o
H H H H
5 5 5 5
v v v v
0.0 0.2 0.4 06 0.8 10 0.0 0.2 0.4 06 0.8 10 0.0 02 04 0.6 08 10 0.0 0.2 0.4 06 0.8 10
SHAP value SHAP value SHAP value SHAP value
Subject 3 Subject 4 Subject 11 Subject 12
R R R R
G G G G
B B B B
Y Y Y Y
o o o Cr
g Cg Cg Cg
@ @ o b
H H H H
5 5 5 5
v v v v
00 02 04 06 08 10 00 02 04 06 0.8 10 0.0 02 04 06 08 10 0.0 02 04 06 08 10
SHAP value SHAP value SHAP value SHAP value
Subject 5 Subject 6 Subject 13 Subject 14
R R R R
G G G G
B B B B
Y Y Y Y
o o o Cr -
Cg Cg Cg Cg
® ® ® o
5 5 5 5
v v v v
0.0 02 04 06 08 10 0.0 02 04 06 08 10 0.0 0.2 04 0.6 08 10 0.0 02 0.4 06 0.8 10
SHAP value SHAP value SHAP value SHAP value
Subject 7 Subject 8

eI oo

<mIQ|QC'—<mG‘1:=

04 06 0.8
SHAP value

{=]
[=J
(=]
L)
—
(=)

{=]

04 06 08 1
SHAP value

(=]
(=]
(=]
L)





media/file23.jpg
Input

7x7 Cony, 64, /2
b £

Pool, /2

3x3 Cony, 256 |

Y

3x3 Cony, 512 |
v

Average pool

FC layer |





media/file24.png
Input

|

7x7 Conv, 64, /2

l

Pool, /2

3x3 Conv, 64

l

3x3 Conv, 64

3x3 Cony, 128

l

3x3 Cony, 128

3x3 Cony, 256

|

3x3 Convy, 256

3x3 Cony, 512

l

3x3 Cony, 512

l

Average pool

l

FC layer






media/file29.jpg
5002 (%)

& 8 8 §

5902 (%)

5 8 8 §

Subject 1, corr: 0372, MAE: 2635, RMSE: 3.249

‘Subject: 2, cor: 0.506, MAE: 3.772, RMSE: 4.355

)

5 8 8

Eg

e

[ R






media/file1.jpg
Al

23
| .___.___

3

w___ |
L _.__
._________

f
i

______.__<






media/file12.png
Subject 11

Test

Subject 11

Train

Subject &

Test

Train
Subject 6

Subject 1

Test

Subject 1

Train

o
g o s 2 A g
i 28 4 m.m 28
o § z 8 3,
g 38 g w
..ﬁ F L@ 55 _ _ 7
— | ——_. — ..—-.... .-——— — — -—— ——
Tk S5 88Ec% 5 88% 588 %
o2 O .37 {w g3 le @
“3 5 8L "5 % °3
o o u o >
=iy =) W.m. W
3% 5 203 — 153 ¥
~588¢C% &58AC ~S8Aa= - r.._.h.r..
) & o
o ™ ‘.m - 3 o - s o
g cEl "1 | mw. [° 3
5 & o & o 8 * =
% 3 < 3 = .55 £
=T 2 it sE o ek
,n b &
....ﬂ..r.w...u... - ....,N..r.”.h.- “ G B = a88= = 588 S 8Acx
e ta ta e
2 S w B - s W
PR a . s %0
.h.ﬂ% .m .»ﬂpw .m .Llﬂm L.W..I |m
x5 Ig x5 % !
- = - =3 L= =] m_ e T
Toli ¢ _ re A CRALE m% o
— ———— — _ . ——- -.a --— _mml. — —
LR E-F. 1.k s “ LR -F. 1. - LR -T-1- k. - 588c% 888 % )
o o Lo ...J o
te ro to to -
o O =
- - - " “
e 3§ O 3 5 Lo @ N |
EW m .Lﬂuw.m .me E.m.a _r_m
@ & ) L g L o
=T 3 T @ 33 x5 .2
=T : : ek sE
by poe b
.__ | _ _. ___ _,__
.R.-r_n...[ “J. RS- “J. T r....bl nl. g8k La8E - rUl\ = uu
lo o o - a

-

I-'!-

-

@ m_.-a M o
=Y < g
2T . LR~ 2y 3 i
o O o g o, & v.m
< = T 8" =" W = %
T L cHaou.w 2 le
@ SR

1w - | w -
3 - 3 -
Lo
-
S

S RE-F- 1.k S - 1 -1 S RS- T- 1.k &8 88





media/file9.jpg





media/file42.png
Subject 1 Subject 2
R N R
G I G I
B .
y e ——
Cr I Cr I
Coy Ccy |
Cg e CE! .
H I H I
S I S I
Vv I v
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.01 0.02 0.03 0.04 0.05
SHAP value SHAP value
Subject 3 Subject-4
R . R
G I G
g I B
. y I
Cr I Cr I
Cg I Cg I
Cé e Cé e
H I H
S I S I
Vv I VvV I
0.00 002 004 006 008  0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10

SHAP value SHAP value





media/file47.jpg
Subject 5 train

<nz080Q<w0n

Subject 5 test

<wzP80 . von

0s 06 o8 10
SHAP value.
Subject 13 train

00 o0z o8 o8
SHAP value

Subject 13 test

<nzP8Q<w0n

02

0r o6 o8 10
SHAP value





media/file38.png
Subject 1 Subject 2

R N R I
G I G I
g I B
y = y
Ccr N s |
Cog I Co I
Cg ] Cg |
H I H I
S I S T
v I v I
0.000 0025 0050 0.075 0100 0125 0150 0175 0.00 0.05 0.10 0.15 0.20
SHAP value SHAP value
Subject 3 Subject 4
R I R N
G I G I
R — g I
y I y I
Cr I Cr I
D —————— Do —
Ch I Cbhb
H . H I
S I S I
v I v I
0 60 0_61 0_62 0_63 0_64 0_65 0 60 0_65 o_io 0 is 0 '20 0_'25

SHAP value SHAP value





media/file17.jpg
aEEESES

o
AR R

A






media/file30.png
Sp02 (%)

Sp02 (%)

100

100

Subject : 1, corr: 0.372, MAE: 2.635, RMSE: 3.249

- |abel

i G Y
~“d

- - ‘xed

L) L)

0 50 100 150 200 250

Frame

Subject: 3, corr: 0.664, MAE: 2.049, RMSE: 2.370

- |abel -== pred

Sp02 (%)

Subject: 2, corr: 0.506, MAE: 3.772, RMSE: 4.355

- |abel

=== pred

L)

0 50 100 150 200 250
Frame

Subject: 4, corr: 0.748, MAE: 2.066, RMSE: 2.676

==« nred

- |abel

0 50 100 150 200 250

Frame






media/file35.jpg
Sigucri S Gon RIIT. N TR0 DI TINS. g SR L Sl AL WS TR IR S 18

A ER

e
a5

§

e
a5 8






media/file48.png
Subject 5 train Subject 5 test

R R
G G
B B
Y Y
a a
Cg Cg
o o
H H
5 5
v v
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
SHAP value SHAP value
Subject 13 train Subject 13 test
R
G
B
Y
a
Co
o
H
5
v
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
SHAP value

SHAP value






media/file27.jpg
5 8 8 §

902 (%)

@ & 5 §

Subject: 1, COT: 0.586, MAE: 5,825, RMSE: 6.338

Subject : 2, Comr: 0.512, MAE: 3.062, RMSE: 3.816

Fame






media/file3.jpg
__,______
,.,___F=___.

Subject

<1 3!

s, I
__ ____ __“___
._____ _____;_ _______ .____..






media/file22.png
Sp02 (%)

Sp02 (%)

Original

100 100
98 - < 98-
£
96 - N %
(=8
94 Vv 94 -
92 L] Ll I L] Ll LI T 92
0 50 100 150 200 250 300
Time(s)
20s Data => average of median
100 100
98 - -~
&
96 - S 9
(=8
94 - W
92 92

Qd

50

00 150 200 250 300
Time(s)

10s Data => average of median

Q-ﬂ

50 100 150 200 250 300

Time(s)

30s Data => average of median

o

50 100 150 200 250 300

Time(s)





media/file19.jpg
" solaxy Z P
Loghech Ca20e iPhone 14 GelaxyZipd.






media/file40.png
Subject 1
R N
G I
p I
y I
Cr I
Co I
Cg |
H I ——
S I
v I
000 001 002 003 004 005 006 007 008
SHAP value
Subject 3
R N
G I
B I
y I
Cr I
Cqo I
Cg ———
H I
S
v I
0.00 0.05 0.10 0.15 0.20 0.25

SHAP value

Subject 2

R N

G I

B N

y I
cr
Co I,
Cg I

H I

S I

v I

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

SHAP value
Subject 4

R I

G I

g I

y I

cr
Cg e
Cb I

H I

S I

v I

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

SHAP value





media/file33.jpg
502 (%)

2 88 &

5002 (%)

a8 35 &

Subject: 1, corr: 0579, MAE: 1,558, RMSE: 1.922

Subject: 2, corr: 0669, MAE: 2125, RMSE: 3.199






media/file32.png
Sp02 (%)

Sp02 (%)

Subject : 1, corr: 0.498, MAE: 1.487, RMSE: 1.874

=== pred

0 50 100 150 200 250 300
Frame
Subject: 3, corr: 0.693, MAE: 2.212, RMSE: 2.684

00 150 200 250 300

o -
& -

Frame

Sp02 (%)

Sp02 (%)

Subject: 2, corr: 0.513, MAE: 1.774, RMSE: 3.186

- |abel -== pred

0 50 100 150 200 250
Frame
Subject: 4, corr: 0.759, MAE: 3.990, RMSE: 4.510

.‘
0 50 100 150 200 250 300

Frame





media/file14.png
Absorption(cm™)

1 x 10°

1 x 10°

1 x 104

1 x 103

1 x 102

Blue Green Red Infrared

660nm 940nm

250 350 450 550 650 750 850 950

Wavelength (nm)





media/file49.png





media/file41.jpg
Subject 1 Subject 2

£ - @ —
 — ( —
 — - —
i ' —
O — o —
G e — ) —
) — O —
| — | —
- — - —
| — -
SHAP vaue SHAP vale
Subject 3 Subject 4

SHAP valve





media/file37.jpg
Subject 1

SHAP value
Subject 3

Subject 2

SHAP value

Subject 4

<0z882<w0

SHAP value

SHAP value






media/file46.png
Subject 7 test

Subject 7 train

<mIQlQQ-<Uom;:

<mIQQQ-(mmJ:

0.2 0.4 0.6 0.8 10
SHAP value
Subject 8 test

=
o

0.0 0.2 0.4 0.6 0.8 10
SHAP value
Subject 8 train

<mIQlQQ-(Uom;:

' ' ' 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

0.0 02 04
SHAP value SHAP value






media/file45.jpg
Subject 7 test

Subject 7 train
- ——— "

C ——— G

© —— 3

¥ —— Y

o — a

@ @

o J— @

- W

i s

v - v

00 02 o+ 05 o8 10 o0 oz o0s d& 08

SHAP value SHAP value
Subject 8 train Subject 8 test

3] 3

G j— G

ol 6

v — 12

o —— |

o ————— |

© ———— @

 — W

< J— s

v j— v

00 02 o+ 05 05 10 o0 oz o1 de 05 10

SHAP value

SHAP value





media/file16.png
Sp02 (%)

Input

ERIASAS

0 SO 100 150 200 250 300
time (s)

Output

Skin segmentation

ResNet based CNN model

=)

C A Y
g ,WMMMM
B WWWWW

RGB signal extraction

R|G|B]J]Y|Cr]Cg|Cb]lH|S |V
R|G|B|]Y|Cr|Cg|ColH|S ]|V
R|IG|B|]Y]|Cr|CglCblH]|S ]|V
R|G|B|Y|Cr|Cg|Cb]JH]|S |V

E G0 8 3 2 A L

10-D color space-based
feature extraction (RGB, YCrCgCb, HSV)





media/file20.png
B =R+ B

Logitech C920e

iPhone 14

Galaxy Z Flip4

132131 "VW ww\wwmwuw‘»w Loelypns

1325

200 800
107.5
1os‘o| me
102.5

92.5 l "'\.M-L",,n MMWW
90041 ¥ TR R v

0 200 400 600 800
115.0

R e

i3] A e R

14225
200 400 600 800
Cg
120.0
200 400 800
118.00 ]
117,75 AWLN” VNMWNW
201 '
15' !W’W/M WNPMMMMH
0 200 400 600 800
86 _v_n' P '-V‘
st W A A R A
0 200 400 600 800

v
137.5 mn \
135.0' M DA MI»;W Ll A
132.5
0 200 400 600 800

Frame

B =gt - R

R
148 | M .
1471 //\H A oy VWN‘L\,N)\_‘W/‘/"’L"LM
0 200 400 600 800
G
1121
0 200 400
95 { .
™ 4
0 200 400 600 800
X
uoi VF‘
"~
ne| 7 MU VAL M e A L W
0 200 400 600 800
Cr
145,251 "
145.00 ol / g H\J"'L,..»-\r“*"”"’\
144.75 L . 2 %
0 200 400 600 800
Cg
119.0 =5 —
1185" ﬁ—k\“‘! s T W
o 59 A A W i
0 200 400 600 800
Cb
1155 W caasandes 2O ‘W*—J‘*x—_.—’—s-/\f-v S~
nsoe{ . -
0 200 400 600 800
H
1501 x
12 S‘ ha ¥ mﬂ'\r}\( \L.N'w i ¥ 0 \‘JK\N”L
0 200 400 600 800
S
e
90,01
20 Nt
0 200 400 600 800
Vv
148 7 1 —C e S = 1. i
0 200 400 600 800
Frame

(- B —Sug gl -+ FT

R
PP ey
o 200 T a00 600 800

G
:' v AMWMWW‘\
0 200 400 600 800
B
ad WMWW%W
79
o 200 400 600 800
Y
opd vM&\MMWM“\
0 200 400 600 800
: Cr -
143.0; WN\M&—A
12851 D ’ =
0 200 400 600 800
N |
1190 YV
St Bt e Vb st e e
0 200 400 600 800
Cb
e NI RS Py
0 200 400 600 800
-
25] .
00| o " M el M
1 - v
0 200 400 600 800
S
" N /"‘WWWJM‘M
861
0 200 400 600 800
Vv
r e ——ie T
AP TEEN yy y
0 200 400 600 800





media/file5.jpg
i

________.
_________

____ )
_ __ 3

i
SH

H
____._____

Ad

_____ ____

__=____

i






media/file31.jpg
5902 (%)
a5 8

5002 (%)
2

Subject: 1, COmT: 0.498, MAE: 1487, RMSE: 1.874

Subject 2. comr: 0.513, MAE: 1774, RMSE: 3.186

S B =
F s
g =
|
T % % ® ® F W T % e m ® &
Frame
1y SUblct & O 0.759, MAE: 2990, RMSE: 4510






media/file25.jpg
5902 (%)

[ EER

5902 (%)

a8 8 §

‘Subject : 1, CO: 0.430, MAE: 1738, RMSE: 2087

‘Subject : 2. cor: 0.468, MAE: 2.728, RMSE: 3.181

o

tabel gﬂ
= :
e

Subject 3, corr 055, MAE: 2059, RMSE:2.667

E=Te

& 8 8 §






media/file0.png





media/file8.png
Train Test
Subject 1 Subject 1
R
';
Y
o
Cg
o
5
00 02 04 06 o8 10 00 02 Y] 06 08 10
SEHAP value SHAP value
Subject 2 Subject 2

00 02 Y 06 o8
SHAP value
Subject 3

00 b2 04 o6 8 10
SHAP value
Subject 3

06 08

0 02 Y
SHAP value
Subject 4
R
G
B
Y
r
Cg
L
H
5
00 02 04 06 08
SHAF value
Subject 5

00 02 04 a6 10

SHAF value

Subject 4
R
G
B
¥
r
Cg
o
H
5
”

Subject 5

04
SHAF value

Train Test
Subject 6 Subject &
R R
G G
B B
. .
o o
' —— |
o b
H
s
.
04 06 08 10 00 02 04 o6 08 10
SHAP value SHAP value
Subject 7 Subject 7
G -
B B
o T R | —
Co co
- |UI: 1
+ v
s s
00 02 04 06 08 10 ¥ x T ’ ¥ '-
SHAP value e AP vawe
Subject & Subject &
R R
(] G
B B
Y v
r r
b =y |
H h H
5 5
IF' l!‘
00 0z 04 0s 08 10 2.0 Y Y 06 08 10
SHAFP value SHAP value
Subject & Subject @
w r ' : '
x| G
" :
o - o
co N v}
o @
H - M
s M 5
L3 _ v :
Y 02 04 06 o8 10 oo 02 Y a6 o8 10
SHAF value SHAF value
Subject 10 Subject 10

cwz & Qumam

-3
=
o

04 06
SHAF value

=

o 06
SHAF value

-3
=3

zPEQumon
|
e
=
e] |

Train

Subject 11

00 032 04 06 o8 10
SHAP value
Subject 12
-
.
B
o
g
b
5
0.0 02 Y o6 o 10
SEHAP value
Subject 13

cnwzBEQsman
>

o 02 o4 06 a8 10
SHAF value
Subject 14
R
G
B
K
&
L
H
5
v b
0.0 Y Y 06 o8 10
SHAF value

00 2 o o6 o 10
SHAF value
Subject 12
R
G
B
e
g
b
..
5 F
. : : : ;
00 Y o4 o6 10
SHAF value
Subject 13
R
G
B
e
o
b
1
]
00 0z ) o6 10
SHAF value
Subject 14
y
G
B
@ I
cq -
| ———
4]
<
v -
00 o2 o4 Y’ o8 10
SHAP value






media/file43.jpg
‘Subject 6 train

‘Subject 6 test

® R
G 1
6 5
v I
o o
] o
® ®
[ [
s s
v v
00 o2 o+ 06 08 10 o0 02 0+ 06 08 10
SHAP value SHAP value
Subject 14 train Subject 14 test
" ®
o G
6 8
¥ v
o o
] o
@ ®
] [
s s

00 o2 o3 06 o8 10
SHAP value

00 02 o0+ 05 08 10
SHAP value





media/file34.png
Sp02 (%)

Sp02 (%)

100

Subject: 1, corr: 0.579, MAE: 1.558, RMSE: 1.922

- |abel -== pred

0 50 100 150 200 250 300
Frame

Subject: 3, corr: 0.516, MAE: 2.980, RMSE: 3.638

PLY

| -
- \J

-== pred

- |abel

0 50 100 150 200

Frame

S