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Abstract: Red wine is a beverage consumed worldwide and contains suspended solids that cause
turbidity. The study’s purpose was to mathematically model estimated turbidity in artisanal wines
concerning the dosage and types of fining agents based on previous studies presenting positive
results. Burgundy grape wine (Vitis lambrusca) was made and clarified with ‘yausabara’ (Pavonia
sepium) and bentonite at different concentrations. The system was modelled using several machine
learning models, including MATLAB’s Neural Net Fitting and Regression Learner applications. The
results showed that the validation of the neural network trained with the Levenberg–Marquardt
algorithm obtained significant statistical indicators, such as the coefficient of determination (R2) of
0.985, mean square error (MSE) of 0.004, normalized root mean square error (NRSME) of 6.01 and
Akaike information criterion (AIC) of −160.12, selecting it as the representative model of the system.
It presents an objective and simple alternative for measuring wine turbidity that is useful for artisanal
winemakers who can improve quality and consistency.

Keywords: neural network; regression; clarification

1. Introduction

Wine is a beverage obtained from the fermentation of fruit by the action of yeasts [1]; its
vinification process involves several phases, with stability being a parameter that requires
rigorous control [2]. Artisanal wine production is a time-honored craft that combines
traditional methods with a deep understanding of the intricacies of winemaking. The
result is a product that captures the essence of the terroir and reflects the expertise of the
winemaker. One crucial aspect of artisanal wine production is predicting turbidity, which
refers to the cloudiness or haziness of the wine.

Accurate turbidity prediction is vital for wine quality and clarity. Wine turbidity
is formed by suspended particles, such as proteins and phenolics, originating from the
fruit and extracted during ethanol formation [3,4]. Unstable particles participate in many
reactions, causing the loss of their properties and thus bitterness and astringency. The
interaction between polysaccharides and polyphenols in wine can influence the turbidity
of the final product [5]. These interactions affect the formation of complexes that make the
wine stable and sometimes make it cloudy. On the one hand, specific polysaccharides (such
as those of high molecular weight) can bind to polyphenols, forming complexes that can
precipitate and contribute to the formation of turbidity in wine. These complexes can be
visible as suspended particles, affecting the clarity of the wine and its visual presentation [6].

On the other hand, the interaction between polysaccharides and polyphenols can also
stabilize the wine by forming complexes that prevent the precipitation of certain substances
that could cause turbidity. In this sense, the presence and nature of polysaccharides
and polyphenols in wine and their interactions can influence the turbidity and colloidal
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stability of the final product [7]. Polysaccharides can also bind to polyphenols, forming
complexes that can precipitate and contribute to the formation of turbidity in wine. These
complexes can be visible as suspended particles, affecting the clarity of the wine and its
visual presentation [8]. The interaction between polysaccharides and polyphenols can also
stabilize wine by forming complexes that prevent the precipitation of certain substances
that could cause turbidity. In this sense, the presence and nature of polysaccharides and
polyphenols in wine and their interactions can influence the turbidity and colloidal stability
of the final product [5]. Some oenological fining agents can adsorb both polysaccharides
and proteins, which help prevent the formation of complexes between them. These fining
agents can bind and precipitate unwanted molecules, facilitating their elimination during
the wine clarification process [8]. Therefore, clarification is an essential step in the removal
of turbidity prior to bottling. The elimination of these particles is achieved with the addition
of flocculants (clarifying agents) such as ‘yausabara’ (Pavonia sepium) and bentonite [9,10].

‘Yausabara’ is a plant considered a weed that reaches 1 to 2 m in height; due to its
high content of mucilage and gums, it is used in the sugarcane agroindustry, as well as a
clarifier for juices and wines [11], and the amount of solution to be added in the clarification
process corresponds to 1.5 to 3% v/v [10]. On the other hand, bentonite consists of a mineral
clarifier composed of clay particles with a strong absorption capacity, which allows it to
retain aflatoxins and substances produced by fungi due to its negative charge [1]. It is more
widespread due to its low cost, easy application, and remarkable stabilizing action [3].
However, it can negatively affect the sensory properties of the wine due to its high power
to eliminate flavors and compounds, generating a 3 to 10% loss of the total volume [1,12].

There is research on the evaluation of fining agents for stabilization in different types
of wines. Thus, Carrión et al. [2] and Dıblan and Özkan [3] evaluated the physicochemical
composition of wine with different levels of bentonite clays. The results obtained from the
experiments indicated significant variations in turbidity, colorimetry, and pH parameters
based on the concentration of bentonite added to the wine samples. Using bentonite as a
fining agent improved the wines’ clarity, color stability, and pH balance. Lukić et al. [13]
studied the proteins that originated after the fining process and evaluated the efficiency
of different types of bentonites. The results revealed the differential efficiency of various
bentonite types in preserving specific odoriferous esters and antioxidant phenols, pos-
itively impacting the wine sensory quality. This finding is of significant interest to the
wine industry as it highlights the potential benefits of using specific bentonite types in
wine production.

Quezada et al. [11] evaluated different mucilaginous plants for juice clarification
(‘yausabara’ included). The main objective was to reduce or eliminate chemicals in the
clarification process utilizing mucilaginous plants, mainly weeds, as natural clarifying
agents. The study highlights the increasing demand for processed products with natural
and organic characteristics, which has led to the exploration of alternative clarifying agents.
The research concludes that mucilaginous plant extracts, mainly from weed species, have
the potential to be used as natural clarifying agents, reducing the reliance on chemical addi-
tives. Chuma [10] evaluated the clarification process using natural flocculants (‘yausabara’
and papain) in Cabernet Sauvignon wine.

AI has been increasingly applied to the wine industry, revolutionizing various aspects
of wine production, consumer engagement, and fraud detection. AI has been used in wine
production to optimize wine palettes and enhance product quality [14]. AI algorithms can
analyze large data sets to identify patterns and create more nuanced and diverse wine
profiles, catering to a broader range of palates [15,16]. AI-powered cameras and sensors are
also used to monitor every stage of production, from grape sorting to fermentation, identi-
fying subtleties that might be missed by human observation [17,18]. In fraud detection, AI
has been trained to analyze the chemical composition of wines, enabling it to trace a bottle
back to its specific vineyard and vintage with remarkable accuracy [19]. It has also been
used for the prediction, modelling, and optimization of phenolic extraction [20].
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However, few studies currently exist on a mathematical model to estimate turbidity in
wines. Duarte et al. [21] present a wine quality and turbidity approach but consider white
and rosé wines and eight values of turbidity. The approach in the present paper focuses
on the fining agents and a wide dosage range that can predict a more comprehensive
turbidity range. Other study objectives can be found in the article by Galeano-Arias,
Aguirre and Castrillón-Gómez [22], who aimed to determine the most influential variables
in wine’s sensory quality through artificial intelligence techniques. The study focuses
on transforming a subjective method of determining the sensory quality of wine into an
objective one using data mining techniques. This approach was compared with other works
carried out subjectively, and it was concluded that using artificial intelligence techniques
can lead to better innovation, competitiveness, and wine quality. The article also highlights
the importance of the physical–chemical variables of wine and their influences on sensory
quality. A decision tree was built that identified the leading influential causes of the
quality of the wine, demonstrating effectiveness more significant than 95%, and the most
influential variables on wine quality were alcohol, pH, sulfates, citric acid, and the alcohol
and sulfate ratio. Similarly, Jain et al. [23] used different machine learning techniques to
find a suitable model to predict and classify wine quality based on 11 physicochemical
properties and found that the random forest algorithm outperformed other algorithms
because it handles non-linearity, is robust to noise, and is an ensemble learning method,
as it combines multiple decision trees. However, a wine that is not clarified will not be a
reliable product in the customer’s opinion.

Similarly, the study of Mingione et al. [24] aimed to integrate the skills of winemaking
operators into a control framework to enhance the quality control procedure. The research
explores the complex winemaking process and the impacts of various parameters, such
as fermentation temperature, grape quantity, yeast typology, and fermentation time, on
the characteristics of the final wine product. The study outlines the implementation of an
Artificial Neural Network (ANN) with seven inputs, 11 hidden layers, two outputs and
a Levenberg–Marquardt algorithm to model the fermentation process and predict wine
characteristics. The results show a percentage error of around 8% for tonality and 6% for
intensity, indicating the effectiveness and reliability of the ANN. The paper concludes that
the ANN can be an efficient method to evaluate the output of the winemaking process
without expensive and time-consuming cellar experiments, and this approach is the aim of
the present research.

Previous studies have demonstrated that machine learning techniques can enhance
wine predictions over classification. Thus, this study aimed to develop a mathematical
model to estimate the turbidity value in artisanal wines by relating the type and dosage
of the fining agent. This application allows reductions of time and costs by standardizing
and improving the quality of the product. At the same time, it preserves the confidence of
consumers and improves competitiveness in the market by offering an objective method
using artificial intelligence techniques. The study includes an analysis of different represen-
tative models by applying machine learning techniques with the Neural Net Fitting and
Regression Learner applications of MATLAB R2023b software. Performance was evaluated
through statistical indicators such as the coefficient of determination (R2), the mean square
error (MSE), the normalized root mean square error (NRMSE) and the Akaike information
criterion (AIC) based on experimental data acquired using the methodology detailed in
this paper.

2. Materials and Methods
2.1. Winemaking

The raw material used in this research was grapes of the Burgundy variety (Vitis
lambrusca) acquired in the wholesale market in Ibarra, Ecuador. Raw material selection is
the most essential part of the winemaking process since the quality of the raw material
determines the quality of the final product. To this end, the supplier was required to
provide grapes derived from a selected vineyard that maintains all the necessary care, such
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as pruning, optimal harvesting time, packaging, and transportation, that is, during the
entire vine development. The fruit was selected visually, separating damaged or bruised
grapes during packing or transportation, and classifying grape clusters at a low maturity
level. The grapes were washed using abundant water to remove surface bacteria, insecticide
residues, and dirt adhering to the fruit. The grapes were then separated from the stalks
and other contaminating plant particles that may accompany the bunch.

The maceration process was employed to obtain the must, a crucial step in winemaking.
This process involved soaking the grapes without extracting substances from the skins and
seeds, which are the main culprits for the excessive coloration of the wine. The result was
9 L of must, with a soluble solid content initially measuring 13 ◦Brix. To achieve the desired
sweetness, the must was rectified to 22 ◦Brix using a refractometer with the addition of
4.25 kg of sugar and 11 L of water. This careful adjustment of the must’s sweetness is a key
factor in the final taste of the wine.

Fermentation was carried out in two plastic drums of 20 and 6 L with the addition
of 2 mg/L of dry and the activated enzyme Fermivin P21 (Saccharomyces cerevisiae), a
process that lasted 15 days, during which the soluble solid content was recorded with
the refractometer. After this time, the resulting wine was identified as having 9 ◦Brix
and an alcohol content of 12%. It was then filtered through a porous bed of filter paper,
and the wine was racked to eliminate the solid compounds present at the bottom of the
container. Then 0.1 g/L potassium sorbate was added to stop fermentation and prevent the
consumption of sugars by microorganisms in the environment that can be introduced into
the wine. It was then transported in bulk in the morning in a 20 L plastic drum to the site
where the fining process occurred.

2.2. Wine Storage and Clarification

Each experimental unit was 100 mL of cloudy wine contained in 120 mL amber
bottles to which fining agents were added, following the methodology of Chuma [10]. One
hundred samples were made by adding ‘yausabara’ gel from 1.5 to 3% (v/v), with a 0.0152%
dosage increment between each sample, and another 100 samples were made by adding
bentonite from 0.0019 to 0.038% (v/v), with a 0.0002% dosage increment, performing three
measures for each of the 200 samples. Bentonite was previously conditioned to maximize
its effect, making a stock solution. A total of one kg was placed in 10 L of water at 55 ◦C
to soak and hydrate for 24 h. Once the fining agents were added, the samples were left to
settle for 11 days (bentonite clarification) and 25 days (‘yausabara’ clarification). The wine
was stored in a cool, dark place at room temperature to avoid oxidation, as aging occurs
above a temperature of 24 ◦C.

2.3. Theoretical Turbidity Threshold Determination

In total, one ml of clarified wine was taken with a micropipette and placed in a
plastic cuvette to measure the absorbance at 620 nm in a SPECORD 250 PLUS UV/visible
double beam spectrophotometer, using distilled water as a blank [25]. Then, the theoretical
turbidity threshold was calculated with Equation (1):

St = 23.4A620 + 1.43 (1)

where St is the theoretical turbidity threshold, and A620 is the absorbance at 620 nm.

2.4. Data Analysis

The data set was visually analyzed using box plots to identify outliers and avoid
damaging the model with less accurate data [26]. To determine the fining agent efficiency
in wine clarification, the Mann–Whitney U test with an LSD Fisher test for the clarifying
agent factor were carried out. In addition, categorical variables were converted to dummy
variables due to the potential impact of such inconsistency on predictions. For every trained
model, the input variables were the fining agent (dummy variable, ‘yausabara’ or bentonite)
and dosage (1.5 to 3% and 0.0019 to 0.038%), while the theoretical turbidity threshold was
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the output variable. The collected data were saved according to the specific needs of each
technique evaluated and subjected to randomization to prevent possible biases and errors
before partitioning. For the Regression Learner approach, the data were randomly split
into 70% for training and 30% for validation, including inputs and outputs. Meanwhile,
Neural Net Fitting data were randomly divided into 70% for training, 15% for validation,
and 15% for testing. The effectiveness of the developed model was evaluated by statistical
indicators such as the coefficient of determination (R2), the mean square error (MSE), the
normalized root mean square error (NRMSE) and the Akaike information criterion (AIC)
among the different techniques under study [27,28]. The MATLAB Neural Net Fitting and
Regression Learner programs were used because of their capacity to train multiple methods
simultaneously and because architecture parameters can be adjusted until a good result is
obtained without consuming much time and resources.

2.5. Neural Net Fitting Model

MATLAB software with a Neural Net Fitting application using a backpropagation
mechanism was used. The ANN architecture was established using the default setting
of the number of hidden layers with ten neurons as a hint. Finally, the neural network
was trained with the Levenberg–Marquardt, Bayesian Regularization, and Scaled Con-
jugated Gradient algorithms. In training each of these algorithms, the number of neu-
rons was modified by increasing five units for each iteration until reaching 100 neu-
rons [29,30]; in total, 57 different models were trained. The backpropagation mechanism,
Levenberg–Marquardt, Bayesian Regularization, and Scaled Conjugated Gradient algo-
rithms were used because they are suitable for problems with a large amount of data
involving nonlinear relationships. These three algorithms have also been used in several
wine investigations, where good results have been obtained.

2.6. Regression Learner Model

The Regression Learner technique trains various regression models to predict future
data, allowing for a simple exploration with the specification of validation schemes and
evaluation of representative models. The Regression Learner models are classified into
linear regressions, regression trees, Support Vector Machines (SVM), Gaussian Process
Regressions, and Neural Networks; there are 21 different models among them, all of which
were trained, but only the best of each group was considered for the present study. To
avoid model overfitting, the 5-fold cross-validation method was used [26]. Automated
training was performed using linear regression, regression trees, support vector machines,
Gaussian process regression models, and neural networks [31].

2.7. Model Validation

An analysis was performed according to the training and validation metrics presented
by the selected models. As previously mentioned, 30% of the data were used for the
validation, contrasting experimental values with predicted values. Thus, the one with the
lowest MSE, NRSME, and AIC value, and a R2 as close as possible to one was selected [32].
Validation was applied to all the methods studied in this research, but a significant criterion
was applied only to the most representative model to verify reliability, considering the
F-statistic value [33].

3. Results and Discussion
3.1. Turbidity Data Analysis

The turbidity values previously obtained with Equation (1) were found within the
range 2.749 to 3.838, finding greater efficiency with applying the ‘yausabara’; however,
all values were within the range reported by Ibáñez [25]. The Mann–Whitney U test
shows that there is statistical significance between fining agents, as the p-value is lower
than 0.05 (Table 1). It was performed for one factor (clarifying agent) with two levels (‘yaus-
abara’ and bentonite) to determine whether there is a difference in fining agent efficiency.
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Table 1. Mann-Whitney U test for fining agent efficiency.

Factors Square Sum Degrees of Freedom Mean Square F p-Value

Model 16.99 1 16.99 548.84 <0.0001
Clarifying 16.99 1 16.99 548.84 <0.0001

Error 5.91 191 0.03
Total 22.9 192

The data variation coefficient was 5.49, indicating a low degree of variability, and
the p-values in Table 1 show that the fining agent is significant for the theoretical tur-
bidity threshold (p-value < 0.05). It also can be seen that there are two different ranges
(A and B) according to the LSD Fisher factor test (Figure 1), showing that there is a signifi-
cant difference between fining agents.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 14 
 

3. Results and Discussion 
3.1. Turbidity Data Analysis 

The turbidity values previously obtained with Equation (1) were found within the 
range 2.749 to 3.838, finding greater efficiency with applying the ‘yausabara’; however, all 
values were within the range reported by Ibáñez [25]. The Mann–Whitney U test shows 
that there is statistical significance between fining agents, as the p-value is lower than 0.05 
(Table 1). It was performed for one factor (clarifying agent) with two levels (‘yausabara’ 
and bentonite) to determine whether there is a difference in fining agent efficiency. 

Table 1. Mann-Whitney U test for fining agent efficiency 

Factors Square Sum Degrees of Freedom Mean Square F p-Value 
Model 16.99 1 16.99 548.84 <0.0001 

Clarifying 16.99 1 16.99 548.84 <0.0001 
Error 5.91 191 0.03   
Total 22.9 192    

The data variation coefficient was 5.49, indicating a low degree of variability, and the 
p-values in Table 1 show that the fining agent is significant for the theoretical turbidity 
threshold (p-value < 0.05). It also can be seen that there are two different ranges (A and B) 
according to the LSD Fisher factor test (Figure 1), showing that there is a significant dif-
ference between fining agents. 

 
Figure 1. Fining agent ranges according to the LSD Fisher factor test. 

Turbidity values differ between the clarifiers due to their physicochemical interac-
tions. With a greater diversity of minerals, bentonite exhibits varied charges and isoelec-
tric points that attract the proteins in the wine through electrostatic forces [3]. The cation 
exchange capacity of bentonite determines its ability to attract and bind positively charged 
particles in the wine, such as proteins and polyphenols. 

Bentonite with a lower capacity can reduce the remotion of these particles, increasing 
the wine turbidity. The interactions between bentonite and wine components, such as pro-
teins, tannins, and polysaccharides, play a crucial role in clarifying the wine. Different 
types of bentonite may exhibit varying affinities towards these components, leading to 
differences in turbidity reduction; this may affect the results of this study [2]. Additionally, 
the activation process of bentonite can modify its structure and surface properties; these 
alterations can impact the adsorption capacity of bentonite and, consequently, its effec-
tiveness in reducing turbidity. Particle sizes and surface areas affect the wine’s ability to 
interact with suspended solids. Bentonite with a larger surface area can adsorb more par-
ticles, leading to lower turbidity and vice versa. 

A

B

2.87

2.97

3.07

3.17

3.27

3.37

3.47

3.57

Yausabara Bentonite

Tu
rb

id
ity

Figure 1. Fining agent ranges according to the LSD Fisher factor test.

Turbidity values differ between the clarifiers due to their physicochemical interactions.
With a greater diversity of minerals, bentonite exhibits varied charges and isoelectric points
that attract the proteins in the wine through electrostatic forces [3]. The cation exchange
capacity of bentonite determines its ability to attract and bind positively charged particles
in the wine, such as proteins and polyphenols.

Bentonite with a lower capacity can reduce the remotion of these particles, increasing
the wine turbidity. The interactions between bentonite and wine components, such as
proteins, tannins, and polysaccharides, play a crucial role in clarifying the wine. Different
types of bentonite may exhibit varying affinities towards these components, leading to
differences in turbidity reduction; this may affect the results of this study [2]. Addition-
ally, the activation process of bentonite can modify its structure and surface properties;
these alterations can impact the adsorption capacity of bentonite and, consequently, its
effectiveness in reducing turbidity. Particle sizes and surface areas affect the wine’s ability
to interact with suspended solids. Bentonite with a larger surface area can adsorb more
particles, leading to lower turbidity and vice versa.

‘Yausabara’, on the other hand, has a more viscous consistency that disturbs the
forces of attraction between the particles when in contact with the wine, producing more
effective sedimentation and better yield due to its mucilaginous properties. Mucilage
is a sticky substance found in certain plants that can help clarify by binding to impu-
rities and suspended particles in the liquid, making them easier to remove [34]. It is
also known that the ‘yausabara’ mucilaginous properties can enhance enzyme efficiency,
affect starch pasting, and improve light transmittance while preserving flavor and in-
creasing clarification efficiency [35,36], which is probably the reason for the results of the
present research.

The use of bentonite raises several environmental concerns because it can generate soil
degradation and heavy metal leaching, can absorb aroma compounds, and there is a lack of
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recycling options. Knowing that this study shows that ‘yausabara’ gel has a better efficiency
in clarifying wine, it is recommended that this last fining agent should be used [37].

3.2. Neural Net Fitting Turbidity Prediction Model

The results of the training to predict turbidity in wines with Neural Net Fitting
revealed that the Levenberg–Marquardt (LM) and Bayesian Regularization (BR) learning
algorithms presented better performance with an average representativeness of 0.96, as
opposed to the Scaled Conjugated Gradient (SCG) algorithm, which presented an average
representativeness of 0.85 for the system under study (Table 2).

Table 2. Neural Net Fitting performance metrics.

Node
Number

LM BR SCG

R2 MSE NRSME AIC R2 MSE NRSME AIC R2 MSE NRSME AIC

10 0.978 0.005 7.19 −712.6 0.853 0.032 17.93 −465.9 0.876 0.027 16.61 −486.6
15 0.974 0.006 7.74 −692.9 0.866 0.029 17.36 −474.7 0.856 0.031 17.79 −468.1
20 0.984 0.003 5.52 −784.2 0.862 0.031 17.70 −469.4 0.893 0.026 16.08 −495.3
25 0.988 1 0.003 1 5.42 1 −788.8 1 0.979 0.005 7.12 −715.3 0.834 0.034 18.49 −457.7
30 0.982 0.004 6.76 −729.5 0.980 0.004 5.96 −763.4 0.867 0.035 18.92 −451.4
35 0.949 0.014 12.00 −574.4 0.978 0.005 7.19 −712.6 0.773 0.047 21.74 −413.9
40 0.979 0.006 7.67 −695.2 0.981 0.003 5.33 −793.5 0.856 0.031 17.79 −468.1
45 0.973 0.006 7.93 −686.2 0.971 0.006 7.54 −700.0 0.867 0.031 17.67 −469.8
50 0.982 0.005 7.05 −718.0 0.975 0.006 7.60 −697.6 0.850 0.031 17.62 −470.7
55 0.968 0.007 8.60 −664.2 0.978 0.006 7.47 −702.4 0.886 0.033 18.30 −460.5
60 0.976 0.005 7.19 −712.6 0.978 0.004 6.76 −729.5 0.852 0.036 19.14 −448.4
65 0.897 0.019 13.77 −537.2 0.979 0.003 5.87 −767.3 0.841 0.032 18.10 −463.4
70 0.979 0.007 8.12 −679.9 0.979 2 0.002 2 4.93 2 −814.4 2 0.867 0.031 17.76 −468.5
75 0.975 0.006 7.93 −686.2 0.983 0.004 6.37 −745.4 0.830 0.038 19.55 −442.5
80 0.957 0.008 8.95 −653.5 0.984 0.003 5.79 −771.4 0.886 3 0.018 3 13.51 3 −542.3 3

85 0.982 0.004 6.60 −735.6 0.982 0.004 6.60 −735.6 0.789 0.057 24.00 −387.2
90 0.969 0.008 8.89 −655.2 0.982 0.005 6.83 −726.5 0.818 0.048 22.00 −410.8
95 0.941 0.015 12.29 −567.9 0.984 0.003 5.79 −771.4 0.839 0.031 17.73 −469.0
100 0.978 0.006 7.87 −688.4 0.982 0.004 6.37 −745.4 0.835 0.036 19.08 −449.1

1 Best Levenberg–Marquardt performance model. 2 Best Bayesian Regularization performance model. 3 Best
Scaled Conjugated Gradient performance model.

Considering the maximization of R2, the neural network trained with the Levenberg–
Marquardt algorithm with 25 neurons in the hidden layer was selected, which presents an
R2 of 0.988. A similar value was obtained in other investigations that have trained neural
networks with the same algorithm but in different disciplines. In addition, it also presented
some of the lowest values for MSE, RNSME, and AIC, demonstrating the feasibility of
the supervised learning process for estimating turbidity. The actual versus estimated
curve (Figure 2) also displays the efficiency of the neural network model observing a
good fit between predicted and experimental values, as mentioned by Noor et al. [30] and
Sahin et al. [38], which is also explained for the upper value of R2, justifying the selection.

The metrics and the selected algorithm indicate that the model is quite robust be-
cause it updates the weight and bias values at the culmination of each epoch, as stated
by Incio et al. [39]. In addition, since it combines the gradient descent method and the
Gauss–Newton method, it becomes an efficient optimization tool that reduces the sum
of squared errors [40]. Different studies suggest that the Levenberg–Marquardt algo-
rithm and its variations enhance ANN performance by increasing speed, accuracy, and
success while preventing over-fitting, which supports the result of this research [41–43].
Mingione et al. [24] also selected this algorithm to apply and control the grape fermentation
process because it is well-suited for cases with fewer neuron connections. This algorithm
is known for its efficiency in training neural networks and is particularly effective when
dealing with smaller networks. Additionally, the Levenberg–Marquardt algorithm is com-
monly used for nonlinear optimization problems, making it a suitable choice for training
ANNs in scenarios where complex relationships need to be modelled and learned, like the
system studied in the present research.
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Figure 2. Performance of the neural network model trained with the Levenberg–Marquardt algorithm
with 25 neurons in the hidden layer to predict turbidity in wines.

ANN has been demonstrated to be a suitable technique when wine prediction is
needed; Astray et al. found that ANN can predict the age of wine with an average absolute
percentage deviation below 1% [44]. Support Vector Machines (SVM) and random forest
models were compared in the study, but the random forest model with one tree and the
ANN model with a logistic function in the output neuron demonstrate accurate predictions
of aging time values. The study highlights the effectiveness of computational models in
predicting the aging time of red wines, offering valuable insights for quality control and
certification in the wine industry.

Hosu et al. found that ANNs can predict valuable properties of wine and reveal
different wine classes based on total phenolic, flavonoid, anthocyanin, and tannin con-
tents [45]; according to Baykal et al., ANNs have been used to classify and predict wine
process conditions in wine technology [46]. ANN was compared with other methods like
decision trees, demonstrating its effectiveness in classifying and predicting yeast fermen-
tation kinetics and chemical properties, such as the final ethanol content, color, or pH.
Even when forecasting the demand for red wine in Australia, SARIMA models showing
the most superior performance as ANNs have been used [47]. It is evident that ANN has
been effectively applied in the prediction of different wine properties; however, for this
research, it has not been applied, but it still reflects a reliable method for the prediction of
wine turbidity.

3.3. Turbidity Prediction Model with Regression Learner

Using the Regression Learner approach, different regression machine learning models
were trained. The performance of the best models (Figure 3) showed an R2 within the range
of 0.5 to 1 for the estimation of wine turbidity wine prior to bottling, which is considered
a high representation [48]. However, the exponential Gaussian process regression (GPR)
model presented better performance metrics than the other models, with an R2 of 0.973
and an MSE of 0.003. Even though the MSEs are closer for every model, there is more of a
difference when NRSME and AIC are compared because the exponential GRP model’s AIC
is the only one lower than −900, and the lower the AIC, the better the model. For NRSME,
only two models are lower than six, and the lowest one is exponential GRP; this is why
this model was selected as the best one among all the 22 models trained with a Regression
Learner for the training step; in the next section, it is compared with the best model from
the Neural Net Fitting program. In contrast, between the models of Figure 3, the one with
the lowest performance was the fine Gaussian support vector machine (SVM) with an R2 of
0.770, an MSE of 0.026, and higher values of NRSME and AIC.
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In the exponential GPR model, the performance values obtained resemble those found
by Cerna et al. [49], who, in their research, trained Gaussian process models to predict solid
residues, finding values of 0.982 and 0.007 for R2 and MSE, respectively. Those results were
obtained because they established non-linear relationships between the data used in the
training (dose and type of clarifier) using a probability distribution in a function space. On
the contrary, the fine Gaussian SVM model presented a lower R2 and higher MSE than the
other models, obtaining similar values to those found by Dahal et al. [26], who revealed
an R2 of 0.77 and MSE of 0.276 to predict wine quality. The performance obtained in this
study is because this model type is not flexible to abrupt changes in the turbidity data by
assigning the non-linear values in a higher space using the kernel function [26].

In contrast to this study, researchers have found that SVM method is the most suitable
technique for predicting the quality of red wine from data generated over 1000 years [50],
but in another study in the same field where different methods were compared, the Gradient
Boosting Regressor (GBR) and its variants surpassed all other models [26,51]. Atasoy and
Er [52] found that when the quality classification of red and white wine is needed, the most
successful method was the random forest algorithm with a 99.5% accuracy, which is the
same as Patkar and Balaganesh [53], who found more than 90% accuracy in the wine quality
prediction. These two last studies worked with previous data sets taken from repositories
and with more than 10 features of physicochemical data. All those studies focused on
classifying wine over its quality, but in this research, the obtained model can predict the
turbidity value of wine, and even though machine learning principles were used in both
cases, the aims of the studies are different, which is why different methods were found to
be suitable between this study and the literature.



Appl. Sci. 2024, 14, 4416 10 of 14

3.4. Mathematical Model Validation

Overfitting can become a prevalent issue while training machine learning models. It
happens when a model becomes too complex and starts to fit the training data too closely,
resulting in poor generalization performance on new data. Validation is performed to
ensure optimal reliability and prevent overfitting of the models that are selected for further
analysis. In the current study, validation was conducted on several different models, but
the two more relevant models are outlined in Table 3. The validation results revealed that
the exponential GPR model was the least robust for this system, and so the model could
not generalize to new data and likely overfitted the training set. It is important to note that
the validation process is a crucial step in developing machine learning models. Selecting
the most robust model can ensure that results are reliable and can be applied to new data
confidently. Overall, the validation process is a vital component of any machine learning
workflow and should be given careful consideration when developing new models [54].

Table 3. Validation metrics of the selected models during training.

Model R2 MSE NRSME AIC

ANN 0.985 0.004 6.01 −160.12
Exponential

GPR 0.943 0.008 8.14 −283.02

Considering the model with the best validation metrics, it can be inferred that ANN
represents a forecasting performance with high accuracy (Figure 4). It can be justified
because it models complex and nonlinear processes based on a data set using high self-
adaptive learning without requiring a normal distribution like conventional methods [55].
Exponential GPR can face challenges in normative modelling due to its assumptions and
complexities. These limitations can impact the accuracy and reliability of predictions,
especially in scenarios like turbidity prediction, where precise modelling is crucial [56].
While both ANN and GPR have advantages and disadvantages, ANN represents a highly
accurate and adaptable approach to complex forecasting tasks. This technology will
likely provide valuable insights and predictions that can drive improved decision-making
and performance.
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Figure 4. Validation performance of the selected models: (a) neural network and (b) exponential GPR.

Good model reliability is observed when the estimated values are on the diagonal
line of the performance graph [57]; the only one that complies, as shown in Figure 4, is
the neural network because all the data are scattered close to the solid line. Therefore, it
is considered reliable for estimating turbidity in artisanal wines and efficiently represents
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the estimation of turbidity in artisanal wines. Applying the significance criterion to the
selected model, it was found that it is representative with an F of 57.38 and a critical
F of 1.44, and so it can be concluded that this model represents the studied system [33].
Even though statistical indicators and error measures indicate that the model obtained in
this research can predict wine turbidity, it is highly recommended to continue studying
this system so it can be applied to other varieties of grapes or a greater range of variable
values, even including more features.

4. Conclusions

The study aimed to determine the best method for measuring wine turbidity using
machine learning techniques. According to the Mann–Whitney U test (p-value < 0.05), the
‘yausabara’ fining agent is the most efficient in clarifying Burgundy variety grape wine,
as there was a statistical difference between fining agents. Although almost all models
trained with MATLAB’s Neural Net Fitting program had a good performance (R2 from
0.773 to 0.988, MSE from 0.002 to 0.057, NRSME from 4.9 to 24 and AIC from −387.2
to −814.4), it was found that the Artificial Neural Network (ANN) with 25 neurons and
Levenberg–Marquardt algorithm presented not only a good training performance but a
good validation performance too (R2 of 0.985, MSE of 0.004, NRSME of 6.01 and AIC
of −160.12). The SVM model was the only visible method that did not fit the system’s
data from those trained with MATLAB’s Regression Learner app. However, among all the
other models, the exponential generalized regression prediction (GPR) also yielded good
training performance metrics, especially in NRSME and AIC, which have values under 5.5
and −900, respectively.

Furthermore, during the validation of the models, it was discovered that the ANN
trained using MATLAB’s Neural Net Fitting technique provided the most accurate repre-
sentation of the study system, having better validation performance metrics (three of four).
This is because the Levenberg–Marquardt algorithm is particularly effective in dealing
with smaller networks and is suitable for scenarios where complex relationships must
be modelled and learned. The system studied in this research required such complex
modelling. Hence, the algorithm was chosen; however, further research is necessary to
expand the sampling spectrum and validate the results so the model can be applied to a
broader range of wines and the results can be validated more confidently. The results of
this research provide a valuable tool for winemakers and researchers and can be used to
improve wine quality and consistency.
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