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Abstract: To enhance the security of vehicular software systems, inversely identifying the underlying
function types of binary files plays a key role in threat discovery. However, existing function-type
inference (FTI) methods can only provide a suboptimal performance because of splitting binary
files into multiple sub-blocks as inputs, which results in breaking the program context logic and
complete data dependency. To solve this problem, we propose a novel representation-fused function-
type inference (RepFTI) framework for secure vehicular software systems. First, the RepFTI learns
semantic representations of assembly codes and then extracts node representations in the function
call graph by the multi-head attention mechanism of Graph-Attention Transformer (GAT) models.
Second, the RepFTI fuses these representations to accurately infer the function type. With RepFTI,
the specific limits of in-vehicle software will be bypassed, which proposes a promising direction for
other work that relies on reverse engineering to improve software security.

Keywords: function-type inference; mutli-representation; code semantic learning; deep learning

1. Introduction

Vehicular software systems have been undergoing major disruptive structural transfor-
mations. The major transformation is the vehicle–road–cloud collaboration, which causes
many applications with many new features, and many sensitive data are introduced [1].
Furthermore, compared with the previous vehicular software system, these new features
make the vehicular software design have many service interfaces, which greatly expand the
attack surfaces of the vehicular software [2–6]. And, the threat of risks to in-vehicle software
systems is gradually increasing [7–9]. The available format of in-vehicle software often
appears in binary code to meet the security required by in-vehicle software manufacturers.

Binary code is often available for the software in vehicles. At the same time, the
compiler does not have enough language-level semantic information, such as the function
type, the original data structure, and so on, in the process of compilation. More specifi-
cally, recovering the semantics of the function is important for applications, such as bug
searching [10–12], code clone detecting [13,14], patching and repairing [15–17], and patch
analysis [18–20]. And, the function-type inference task is a classic research direction in
recovering the semantics of the function. The function-type inference methods often use
the reliable disassembly of instructions to recover the control flow, the data structure, or the
function semantics to recognize the function type. Additionally, this recovered information
with higher-level semantic descriptions can provide more specialized analysis tasks.

To ensure the availability and security of vehicular software systems, software security
engineers need to make different decisions during the software life cycle. The two classic
phases need the function-type inference to improve the security of the software in vehicles.
In the test phase of software in vehicles, due to the rapid iteration of the software, the
software engineers need a more accurate tool or strategy to find the target function that
matches the semantics of vulnerability or the key function. Similarly, in the software
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operating, the vulnerability or the code defects of the software make the vehicles lose
connection or control, so a function-type inference tool is needed to detect suspicious
functions in the execution process early. In the field of in-vehicle software, since the
new modules of software and the new protocols of the platform level are proposed, the
service-oriented architecture (SOA) that has abstractions and standardized service interfaces
decouples the application development and underlying platform support [1]. However, the
different vehicle manufacturers have a heterogeneous abstraction level and standardized
interfaces, which cause a new SOA to map a new function-type inference strategy. More
specifically, the service functions in the underlying platform are packaged, which causes the
detailed semantics of the function of software in vehicles to be lost. With the function-type
inference (FTI), software engineers can not only implement reverse engineering but can
also promote the development of other related fields (etc., function boundary detection,
code-similarity detection, and vulnerability detection). An accurate FTI model can improve
the efficiency of bug searching, the values set inferring, and fuzzing.

Deep learning has been perceived as a promising technique to implement intelligent
FTI tasks. It usually needs to complete two following steps. The first step is to determine
the analysis granularity (e.g., the dataset organization mode). For example, Shin et al. [21]
proposed to use natural language processing methods to learn the semantics of assembly
codes under static analysis scenarios. The second step aims to determine representation
methods according to the application requirements. Existing representation methods
can be mainly divided into two categories: (1) text-based methods [22–25], which mainly
extract features from assembly codes and control flow information that are reserved from
binary files, and (2) graph-based methods [26–29], whereby software engineers can build
graph-representation models at the function, basic block, instruction, and other levels. For
example, a control flow graph-based embedding method is proposed in [28] for efficient
binary code-similarity detection. And also, the authors in [30] model the call relationship
between basic blocks as a graph network to detect software vulnerabilities. But, they do not
fuse text semantic features and graph features, which leads to the absence of global data
dependencies [31].

In the software of vehicles, the function-type inference has two sub-problems: recov-
ering the semantics within the function and the control flow between functions. At first,
the abstract-level functions are often met when we try to trace the execution process of
in-vehicle software, but the general dynamic binary analysis tools are hardly useful to iden-
tify the abstract-level interface. And then the semantic feature can only find the similarity
execution process within functions, but how can we filter some similarity local execution
processes with different global dependency relationships? These are mainly problems in
existing works. In this work, we extract the features of functions and recognize the function
type by the semantics and the control flow of functions. Our starting point is a list of assembly
instructions at the function level, and the goal is to produce the observable function type
without any compilation information to obtain early and clear findings of the vulnerabilities
and code defects.

Our Approach. In this paper, we propose a novel representation-fused function-type
inference (RepFTI) framework, which focuses on using multi-representation fusion to re-
cover global data dependencies that were destroyed during the model-training process. The
RepFTI mainly consists of the following two parts: (1) generating semantic representations
and graph representations, and (2) fusing multiple representations to reconstruct the whole
data dependency. For semantic representations, we generate word embeddings by refining
the token classification and modifying the embedding model. For node representation,
we traverse each node in the function call graph and extract the call relationship feature
between the target node and its neighbor nodes as the node representation. Corresponding
to the reconstruction process of complete data dependency, short-span data dependencies
are recovered using a Bidirectional Long Short-Term Memory (Bi-LSTM) network, and
long-span data dependencies are recovered with a GAT model.
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2. Related Work

In this section, we introduce the roles of FTI in improving the security of decision
making during the vehicular software system lifecycle, as shown in Figure 1. By comparing
representation strategies, we also clarify the current challenges and unsolved problems of
existing FTI approaches.

Figure 1. Due to the heterogeneous execution environment, various compilers, and frequent code
reusing, a large-scale software system becomes more and more unobservable. With RepFTI, the
whole lifetime of a software will be more transparent, controllable, and trustworthy.

2.1. FTI for Software Design Security

Due to the birth of new technologies of vehicles (e.g., service-oriented architecture)
and software modularity, the design and implementation of vehicular software looks more
like a process of compositing various types of functions, which causes the loading of
reusable binary files to be a popular method during software implementation. Automated
FTI strategies can help improve the efficiency of the software design and implementation
from three main directions, including code-similarity detection, a reliability analysis of
third-party libraries, and executable program recommendations. The main principle of
automated FTI is choosing one type of representation for the target binary file and design-
ing neural-network-based high-dimensional feature analysis strategies. Therefore, it can
utilize the high-dimensional space to significantly optimize the inference efficiency and
precision of complex software. For example, InnerEye [31] takes the assembly code as
the representation and the basic block as the analysis granularity. The pre-trained model
transforms key semantic features of the assembly code as feature vectors, which helps the
neural network understand the logic between instructions. But, a significant amount of
code comparison operations and logical analysis tasks will take too many resources.

2.2. FTI for Software Security Testing

Prior to software deployment, many testing samples are required to detect vulner-
abilities in mitigating the threat behaviors of software. Existing testing methods in the
industry majorly relying on string matching require manually preparing specific test sam-
ples, which may overlook some errors or be bypassed by malicious codes. Different from
these methods, deep-learning-based FTI methods mainly focus on extracting implicit features to
identify specific functions in target vehicular software systems [32]. For instance, Asm2Vec [22]
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made progress in analyzing the relationships among semantic features of assembly code and
assigning different weights to these features, taking the instruction as a minimum analysis unit.

2.3. FTI for Secure Software Deployment

Both users and software developers focus on the security and stability of software
during the deployment phase. Service providers hope to have a deep understanding of
the specific operating procedures within the software to further improve the software-
execution efficiency. However, vehicular software developers do not want to open the
source code because they cannot guarantee that the users who obtain the open source
code are trustworthy to ensure the security of the software. Therefore, software developers
mostly release software systems in the form of packed executable programs. But, the packed
executable program needs a lot of manual analysis to recognize the threat behaviors and
understand the program code logic. To address this issue, many methods have introduced
multi-representation neural network models into FTI. For instance, Z. Yu et al. [33] not
only capture assembly code features but also adopt a convolutional neural network on
adjacency matrices to extract sequential information that improves the model’s power for
graph-similarity detection, which can provide more insights for understanding the function
logic of binary files. Similarly, PalmTree [34] mainly utilizes control flow and data flow to
train an accurate instruction-embedding model for downstream tasks.

2.4. FTI for Software Maintenance Security

In the real service environment, it is difficult for executing vehicular software to
interrupt the execution in order to detect threatening behavior, and existing software
maintenance methods mainly depend on performance testing records and user feedback.
However, large-scale software has various internal packaging components and numerous
execution paths. Only individual vulnerabilities can be repaired based on testing records
and user feedback, and it is impossible to comprehensively and continuously observe the
software status. A dynamic analysis refers to monitoring all operations of the target binary
code, observing the code-execution process, and collecting various data during the code-
execution process when running a software program in a controlled environment. Training
the neural-network-based FTI model based on a dynamic analysis has great potential
to provide more real-time and accurate software maintenance services. For example,
the BINGO-E [35] uses a dynamic analysis-based strategy to capture complete semantic
representations that include the target function’s semantics, code semantics of the called
libraries, and user-defined functions’ semantics. But, due to the unsettled challenges of
dynamic analysis technologies, like incomplete code coverage and an unreliable execution
path track, this kind of method is not yet taken seriously.

2.5. Motivation and Challenges

Although the application of FTI has significantly improved the security of software
design and implementation, software testing, software deployment, and software main-
tenance, it also faces many challenges and unsolved problems. Specifically, in the envi-
ronment of in-vehicle software, these problems and challenges can be amplified by some
new features of in-vehicle software. Table 1 summarizes and compares existing approaches
based on the representation types, the splitting granularity of target binary files, the encod-
ing schemes, and the model architecture.
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Table 1. Comparisons between existing FTI strategies.

Name Raw
Byte

Information
Graph

Assembly
Code

Number of
Representations Granularity

ClearView [36] % % " Single representation Basic block
Tough call [37] % % " Single representation Function

TIE [38] % % " Single representation Function
EKLAVYA [39] % % " Single representation Function

Order matters [33] % " " Double representations CFG, basic block

2.5.1. Incomplete Data-Dependency Reconstruction

Assembly code is the closest high-level language to machine code and displays various
low-level information about a software program in a fine-grained way. However, when
the analysis target is a complex software system, the corresponding assembly language
sequences are very long and chaotic so that its data dependencies may be broken up and
hard to completely reconstruct using FTI models. To address these issues, existing FTI
strategies tend to use neural networks to extract high-dimensional features from the chaotic
assembly code and recognize function types. But, to fit the fixed input size of neural
network models, a long assembly code has to split into multiple code fragments, leading
to losing data-dependency issues and unreliable FTI. To the best of our knowledge, there
are no studies that focus on quantifying the impact of data dependency on the security of
software systems. To bring out the problem of data-dependency loss, we provide a real case
as follows. The simple print f function with the C-language style involves executing the
print f function as well as the write function and the system call of write. This case relates
to many kinds of data dependencies, including a storing process of system call numbers, an
executing process of an interrupt instruction (int 0X80) for transiting the user state to the
kernel state, a finding process of the system call entry address sys_print f , and an interrupt
return process. When we train a neural network to generate an FTI model, all data samples
are loaded in a random way rather than in a sequential way, which means that the native
order of the assembly code will be disorganized. Therefore, the data dependency during
the execution process of print f can not be learned completely by the FTI model.

2.5.2. High Dynamic Tracking Loss Rate

Dynamically tracking the binary file’s execution path often leads to encountering some
hidden function calls (such as system calls, function pointers, and inline functions), which
have not been linked to the instruction being executed using the pointers. Meanwhile,
to improve the software-execution speed, some specific jump pointers that can alter the
CPU control permission may have been redirected to obscure the entry points and even
the overall structure of the function. These factors increase the difficulty of accurately
calculating target function boundaries. But, to construct function-type labels, it is necessary
to design a strategy to discover the boundaries of each function as clearly as possible when
tracking the target software-execution process. The hidden function calls and the jump
pointers may bring a high dynamic tracking loss rate.

3. Proposed RepFTI Framework

In this section, we will introduce the proposed RepFTI framework in detail, as shown
in Figure 2, which mainly includes a novel dataset-generation method, a semantic learning
model, and a graph-learning model. With RepFTI, more function types can be accurately
identified because the data dependencies of target vehicular software systems can be
reconstructed more completely.
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Figure 2. The RepFTI is divided into two parts: (1) extracting the multi-representation features, and
(2) inferring the function types. In the first part, a novel dynamic tracking strategy is proposed to
obtain the semantic representation within functions and the node representation in function call
graphs at one-time execution, respectively. And then the semantic learning model extracts short-span
data-dependency features within a function, while the graph-embedding model extracts long-span
data-dependency features among functions. In the second part, the multi-representation feature
fusion model fuses the above two kinds of data dependencies.

3.1. Dataset Generation

In this section, we begin to solve the challenges of the high dynamic tracking loss rate
from Section 2.5.2. To reduce the risk of losing the pointer that is linked to the currently
executed instruction, we propose an innovative approach that uses a stack and queue data
structure to record the program stack. The queue stores function attributes with the address
as the key and the full-function call order. The stack simulates the program stack-execution
process, which records the _ebp and _esp register values, and target addresses of a call
instruction to closely track the target binary execution process. When calling the %ret
instruction, the tracker compares the most recently recorded _ebp, _esp register value in the
stack with the address to which the return is jumping. If the two values are equal or the
difference between the two values falls within 15 bytes (the maximum instruction length),
that value is recorded. Otherwise, the jump target address is recorded. Similarly, when
calling the %call instruction, the tracker compares the most recent _ebp and _esp register
value with the address to which the %call instruction jumps and follows the same rules as
above. Through the above rule, all adopted values are recorded in the dictionary. This rule
ensures that the tracked call and return addresses are accurate and removes some factors
that affect the construction of the function call graph.

To meet the requirements of RepFIT for constructing function labels, the mapping of
the function name and assembly is the next problem that must be solved. Typically, the
initial preference is to dynamically obtain the function name. However, the process of
querying the plt and got table makes dynamic analysis obtain the function names complexly.
Subsequently, we found that Pintools [40] refers to Routine Object : RTN [41] (a kind of
granularity defined by Pin) during both static analysis and dynamic analysis, and it assigns
a unique symbol to RTN. By our verification, RTN is an equivalent function (we compare
RTN assembly codes with assembly codes of functions of the same symbolic name at static
analysis). The unique symbol of the RTN can be used as an index for function names and
function assembly codes. After finding a unique symbol of the function, the function call
graph can integrally be constructed with steps (b) and (e), as shown in Figure 2. When
calling a call instruction, a directed edge is generated from the node of the calling function
to the called function. When calling a ret instruction, in order to find the call instruction
corresponding to the return instruction, the adopted address is traversed through the
dictionary. If there is no corresponding value, the return instruction is discarded. The
above is the complete process of mapping function names and function assembly codes.
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3.2. Semantic Learning Model

To solve the challenge that was introduced in the incomplete data-dependency recon-
struction sub-section, we propose a multi-representation fusion strategy that combines
semantic representation within functions with function call graph representation. Steps (c),
(d), (f), and (g) in Figure 2 illustrate the design of the fusing multi-representation process,
which consists of four main components: extracting semantic features from the assembly
code semantic representation divided into extracting semantic features within instructions
and extracting semantic features between instructions (c) (d), extracting function call graph
features from function call graph representation (f), fusing semantic representation and
network graph representation (g), and inferring the target function type. The embedding
model of RepFTI is based on the PalmTree [34], and it adds the following important design
considerations. We first introduce the extract assembly code semantic feature vector from
semantic representation.

The process of extracting semantic features from assembly code semantic representa-
tions can be divided into two parts: (1) extracting semantic features within instructions,
and (2) extracting semantic features between instructions. In the first part, it is necessary to
design an accurate instruction-embedding model, where the instruction should be treated
as a sentence and the operands and operators are treated as words. Step (c) describes the
instruction-embedding process that transforms each assembly instruction into a feature
vector. On the basis of PalmTree, our embedding model can efficiently learn the semantic
feature within instructions for more operators and operand tokens to be added. New tokens
are refined as the operand part and the operator part. Given an operand, it will be consid-
ered as an address with a special token [constant] if its length is longer than three digits;
otherwise, it will be considered an immediate number. Meanwhile, the mentioned address
can be further divided into the absolute address and relative address, with [ab_addr] and
[re_addr], based on the approximate address segment in the memory layout where the data
are stored. For the operator part, we focus on jump instructions that can change the control
flow and have a great impact on the data dependencies of the target software. In this case,
the current address, target address, and function name of these instructions are recorded to
extract semantic features. This enhancement contributes to the refinement of learning data
dependencies within functions.

To achieve an effective embedding model, RepFTI randomly masks the tokens and
uses the improved PalmTree model to predict the real token, in which the context re-
lationship in the assembly code is learned. The improved PalmTree model, built upon
BERT, is characterized by bidirectional connectivity and is structured into multiple layers
(e.g., encoder and decoder) within transformer units. Therein, the encoder is trained to
predict the masked token. The whole training task consists of two sub-tasks. The first
sub-task is to obtain a Masked Language Model (MLM), which understands the internal
structure and data flow of assembly instruction [42]. The second sub-task aims to jointly
adjust the embedding model and the instruction order prediction model to learn the data
dependencies between instructions.

In the second part, we use an advanced Bi-LSTM model based on [43] to extract
the semantic feature between instructions. To prepare standard inputs for the advanced
Bi-LSTM model, the assembly code is transformed into a feature matrix using pre-trained
word embeddings. Moreover, step (d) compresses the feature matrix into a unified vector
to infer function types.

3.3. Graph-Learning Model

The short-span data dependency is reconstructed by assembly code semantic learn-
ing, but the complete data dependency of target vehicular software systems needs long-
span data dependency between functions. However, the long-span data dependency has
a significant difference from the short-span data dependency. Subsequently, we intro-
duce the strategy of leveraging the function call graph features to reconstruct long-span
data dependencies.
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The function call graph of an execution path views the data-processing logic that
displays a group of states around the target function. In other words, a function is denoted
as the node, and the call relationship between different functions is denoted as an edge.
The depth-first searching algorithm for a basic graph analysis focuses on retrieving the
upstream and downstream information of the target function, but it can only find the
source of the data related to the target function for higher-dimension features of function
call graphs that can not be extracted. Therefore, we create a special GAT model based
on [44] to extract the high-dimensional features of these function call graphs. For the
specially designed model, the GAT layer generalizes the attention model on the function
call graph and other attributes of the function node. By stacking layers, nodes gain the
ability to attend to the features of their neighboring nodes. When we analyze a function,
the relationship between the target node and neighbor nodes is the key feature. Then, each
node of the function call graph represents functions, and the edge stands for the directed
call relationship.

Thus, the graph-learning process combines the call relationship with the execution
states (e.g., the call address, call depth, and so on) of target binary files, which improves
the long-span data-dependency feature between functions. A real example is shown in
Figure 3, whereby we consider a single-node training process that extracts the long data-
dependency feature of the target function node. Each function node stores five attributes
in the nodes, including node_id, node_ f eature, head_node, tail_node, and edge_ f eature, in
a matrix way. Specifically, node_ f eature is the main attribute of the node, and others are
assistant attributes. These matrices are GAT stand input. The learning process of GAT
through build-the-block layers and stack-block layers constructs a graph-attention layer
that produces each node, like n3, which are feature vectors according to graph structure
matrices and neighbor node attributes. Then, to improve the generalization ability of the
learning graph model, we use the multi-head attention mechanism of GAT to join the
independent nodes featured above, in which this mechanism uses random sampling node
features from the graph-attention layer and joins them to obtain target node features as the
long-span data dependency of target functions.

Figure 3. Graph structure for the call relationship of a single target function. Each node includes five
kinds of attributes, while each edge stands for the call relationships between different functions.

The semantic representation’s feature vectors are produced by the semantic learning
model, while the graph representation’s feature vectors are generated by the graph-learning
model. With these two kinds of representation features, both shot-span and long-span data
dependencies are extracted, which is essential to improve the accuracy and robustness of
FTI. The representation fusion is shown as step (g) in Figure 2.
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To fuse the above two kinds of representation features, we concatenate them into the
same vector instead of mathematical operations to avoid the feature loss problem. Then, to
obtain the complete data dependency of each function and reliable prediction results, we
use a cascaded Long Short-Term Memory (LSTM) model to cyclically learn the concatenated
feature vector. In this model, the first LSTM network reconstructs the concatenated feature
vector as an implicit variable that contains complete data dependency. The second LSTM
network cyclically updates the implicit variable according to a well-labeled function call
order. Through the above design, function-type inference results with high confidence can
be achieved.

4. Evaluation

To check that the RepFTI can improve the observability of the target software, we
develop and implement a comprehensive evaluation framework, encompassing both
intrinsic and extrinsic assessments. This section introduces our evaluation framework
and outlines the experimental configurations, followed by detailed discussions about
experimental results.

4.1. Experimental Setup

Datasets. We select four mainstream tool libraries (these libraries are common on
vehicular computers) of vehicular software systems to make a benchmark dataset for our
model and promote the evaluation results’ generalizability. This dataset includes different
versions of Openssl, Curl, and Busybox on the x86-64 platform, as well as binary files
compiled with different optimization levels (O0, O2, and O3). The whole dataset consists
of 3100 executable paths, 40 million functions, and 2.1 billion instructions in total. This
dataset has code coverage above 80%.

Hardware Configuration. Due to a lack of various vehicles, to test as many vehicle
environments as possible, we build a virtualized host-based android for the CAN commu-
nication. All the experiments of the train phase and inference phase are conducted on the
virtualized E/E architecture of vehicles based on android cars (X86 architecture) that are
run on a Xeon(R) 8259CL CPU 2.50 GHz × 16, one GTX 1060 GPU, 6 GB memory.

4.2. Evaluation Methodology

We utilize the intrinsic evaluation to prove the observability of each representation
feature and the extrinsic evaluation to validate the effectiveness of the RepFTI. In the
evaluation of word-embedding methods, the intrinsic evaluation involves comparing
the generated embeddings with human assessments [45]. Similarly, for assembly code
semantics and function call graphs, the intrinsic evaluation depends on the observation
dimension of the analysis objectives.

4.2.1. Intrinsic Evaluation

Since each function possesses an immutable data-processing logic, the given function
has great immutability. This provides the possibility of observing the accuracy of the
semantic representation. By calculating the similarity between the target function’s semantic
features and the given baseline, we can evaluate the observability of RepFTI in accurately
extracting semantic features. For the key step of selecting the evaluation baseline, the
testing set of ReliFTSI is to divide a function into 10 instruction fragments, and we calculate
the mean of 10 instruction fragment feature vectors. Note that the split functions belong to
the same function identification and come from different execution paths. Then, we select
several feature vectors with a better clustering effect in these mean values as evaluation
baselines in a target function.

The cosine distance measures the difference between two vectors in direction, not in
real distance. When a pair of texts have a large length difference in similarity but similar
content, if the word frequency or word vectors are used as features, their Euclidean distance
in feature space is usually large. If cosine similarity is used, the angle between them may
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be small, so the similarity is identified as high. So, the similarity of text tasks is often
determined by cosine distance. In Figure 4, we calculate the cosine distance between these
functions and these baselines separately. In accurate detection, we design 200 different
execution paths for each tool library to be tested and display accurate detection results to
build box plots. Figure 4 shows the accurate detection result of some main functions. The
X-axis represents the index of batches in this test (each batch contains 64 functions) and the
Y-axis represents the cosine distance values. More specifically, each cosine distance signifies
the proximity between the unknown function and the baseline eigenvector. The widths
indicate the number of functions meeting this criterion, with red arrows highlighting the
broadest location within the box. The results of the sample show that the cosine distance of
more than 83.7% of the instruction sequence pairs in the test set can be controlled below 0.6.
This can prove that there is a strong accuracy when extracting the semantic representation
within functions.

Based on the immutableness of functions, they can also fit the function call relationship.
To observe the reliability of the function call graph representations, this primary detection
strategy is observing the clustering performance of representation that comes from the
same executable file and different execution paths, as shown in Figure 5. This figure is a
TSNE graph that displays the clustering result between function call graph-representation
features. The different color dots in Figure 5 are two-dimensional representations of
high-dimensional vectors that are function node features in function call graphs. And,
the different colors of the dots map to a kind of function-calling type. The dots with
the same color are clustered together, and the dots with different colors have distinct
boundaries, which proves that the function-calling type can be recognized according to the
function node feature clearly. The bivectors in Figure 5 come from the transformation of
the feature vectors of a function call graph representation. As shown in Figure 5, nodes of
different colors represent distinct representation features, and they show a great clustering
performance among nodes of the same representation feature. And then we show the
calling addresses and the called addresses of part nodes, which prove that there are call
relationships between these nodes.

Figure 4. Immutability of data-processing logic under semantic presentation scenarios. Four kinds
of tool libraries and random execution paths are used in our experiments. Each sub-figure corre-
sponds to one tool library, which displays the cosine distance between the semantic feature vector
of the same function in different execution paths and baseline feature vector. The sub-figure con-
tains 640 functions per batch. The x coordinate indicates the index of batches (each batch contains
64 functions). The y coordinate represents the cosine distance values. The width of a y coordinate
across the box plot indicates the amount of instruction segment pairs that have this cosine distance.
The wider the distance, the more functions there are.
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Figure 5. The observability of function call relationship. We construct a TSNE figure for each
tool library according to the feature vector of function node representation. The framed parts are
explicitly labeled with the range of source addresses for there is a direct or indirect call relationship
between their corresponding functions. Dots with different colors represent different function call
relationships, and it can be found that learning the difference between these function call relationships
is easy.

4.2.2. Extrinsic Evaluation

To show the effectiveness of RepFTI, we assess the performance of RepFTI alongside
other similar methods using a dataset generated from dynamic analyses of four tool
libraries under compilation optimization level O2. At the same time, we also use completely
different execution paths from the training set as the test set. Other execution parameters
are consistent with common Settings. In Figures 6 and 7, we compare the impact of
two execution paths, high compilation optimization and no compilation optimization,
on RepFTI and can see that the execution path that retains more information has better
recognition accuracy. At the same time, it shows that RepFTI has high accuracy and strong
stability when detecting different software or tool libraries with the same test set as the
input. Compared with the existing work, the recognition accuracy is significantly improved.

Due to the limited computing resources of vehicles, the in-vehicles software requires
high transparency for deployed security modules. We check the time consumption of
the two main parts of RepFTI, as shown Figure 8, including the semantic-representation-
recognizing module and the graph-representation-recognizing module. We record a query
of a single module of RepFTI 1000 times and calculate their average values. And then
these time-consumption recordings of related current works are collected as baseline
data to clearly compare the time efficiency, which includes GMNs [29], HGMN [46], and
HGNN [47] as graph-representation-based function-type inference and InnerEye [31],
Asm2Vec [22], and EKLAVYA [39] as semantic-representation-based function-type inference.
Regarding the results of the evaluation, they basically met our expectations. Since the
graph-representation recognizing takes on auxiliary work, the structure of the function-
calling graph does not include more complex data. The graph-representation module of
RepFTI does not consume much time, but the semantic-representation module needs to
learn and recognize most assembly instructions, which makes the result of the semantic-
representation module similar to other existing works.

To further test the effectiveness of the single representation of RepFTI, we close
the semantic-representation model and the graph-representation model to record the
corresponding accuracy of the function-type inference. To test the effectiveness of function-
type inference based on the semantic-representation model, we select current works as a
baseline to clearly show the performance of the semantic-representation model of RepFTI.
Therein, these current works also use semantic representation to recognize the different
parameters of the function, like the input type, the core logic, and so on. Therein, we
select 1000 execution paths that can cover most codes in each library, which are used as
input parameters for this evaluation experiment. Then, in the same way, we also find
similar current works about using a graph-representation model and complete RepFTI
(semantic + graph) to infer the function type, which helps us test the effectiveness based
on graph representation and the effectiveness based on RepFTI. As shown Table 2, the
experiment result is as expected. Using graph representation to recognize the function type
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does not have excellent results, because the functions with a similar call graph structure
could be different functions with high probability. Although using semantic representation
to recognize function type has promising accuracy, the standard deviation is higher than
other current works. This status shows that the recognition of function types only by the
semantic-representation model has high instability.

(a) (b)
Figure 6. Comparisons to existing methods on ROC curves. (a) The left shows that our pro-
posed RepFTI outperforms existing methods in the case of low compilation optimization levels:
O0. (b) When the compilation optimization level is raised up to O2, the RepFTI can still keep its
advantages against existing methods.

(a) (b)
Figure 7. Comparisons to existing methods on loss values. (a) The left shows that our proposed
RepFTI outperforms existing methods in the case of low compilation optimization levels: O0.
(b) When the compilation optimization level is raised up to O2, the RepFTI can still keep its ad-
vantages against existing methods.
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(a) (b)
Figure 8. Comparison of single module on the time efficiency. To show the transparency of RepFTI,
in 1000 queries, the averaged time consumption of the semantic representation recognizing and
the graph-representation recognizing are recorded. At the same time, these semantic-recognizing
strategies (GMNs [29], HGMN [46], HGNN [47]) and graph-recognizing strategies of current works
become baseline in this ablation study. (a) The module of recognizing semantic representation is shut
down. (b) The module of recognizing graph representation is shut down.

Table 2. The effectiveness of function-type inference under single representation and multi-
representation model. The results of the single semantic-representation model, the single graph-
representation model, and both representation models are shown. Therein, the single representation
model of RepFTI tests four libraries, and the DDFSI_B, DDFSI_C, DDFSI_F, and DDFSI_Z denote the
Bison, Curl, Findutils, and Zlib on the single representation model.

Opt Target Accuracy Standard
Deviation

Opt Target Accuracy Standard
Deviation

Opt Target Accuracy Standard
Deviation

Semantic

RepFTI_B 0.71 0.281

Graph

RepFTI_B 0.69 0.252

Semantic + Graph

RepFTI_B 0.85 0.059

RepFTI_C 0.62 0.335 RepFTI_C 0.62 0.248 RepFTI_C 0.85 0.067

RepFTI_F 0.79 0.258 RepFTI_F 0.60 0.254 RepFTI_F 0.89 0.039

RepFTI_Z 0.83 0.191 RepFTI_Z 0.60 0.142 RepFTI_Z 0.87 0.061

InnerEye 0.45 0.186 HGNN 0.20 0.148 Structure2Vec 0.19 0.098

Asm2Vec 0.86 0.246 HGMN 0.64 0.265 Order
matters 0.83 0.053

EKLAVYA 0.83 0.226 GMNs 0.66 None PalmTree 0.80 0.049

5. Discussion

It is worth noting that the proposed RepFTI utilizes a multi-representation fusion
technology to reconstruct the whole data dependency of target functions to infer their types.
We break down the limitations of independent representation by concatenating semantic-
representation features and graph-representation features, which effectively adapts the
environment of vehicular software systems. To evaluate the intra-functional semantic
learning capacity, we establish a baseline by attempting to restore the features of the
actual target function. We measure the feature vector of the filled execution path and the
key reference feature vector. The results demonstrate the effective control of the cosine
distance within 0.6, thereby increasing the accuracy of the downstream model evaluation
for the pre-trained model. These results align with our expectations and indicate that the
recovery of data dependence within the function meets the target requirements. To evaluate
the recognition capability of the function-calling relationship, we analyze the structural
characteristics of function calls for the target node based on the call structures between the
target function node and its adjacent nodes across all execution paths. Using all nodes of
the execution paths related to the target function under the condition of achieving 90% code
coverage for the same software, we evaluate the data. We use a TSNE graph to visualize the
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clustering of the same function, and the final results demonstrate a good clustering effect
for the same function across different execution paths. Since the RepFTI comprehensively
uses MLM, Bi-LSTM, and GAT models, a new research route is exploited, which is scalable
toward pre-trained language models. The experimental evaluation of the immutability of
data-processing logic, the accuracy of RepFTI, and the reliability of RepFTI under different
compilation optimization levels demonstrates the advantages of our methods.

6. Conclusions

In this paper, the immutability of data-processing logic under semantic presentation
scenarios is validated for the cosine distance fluctuation that is less than 0.2. And then, by
reducing high-dimensional data to two dimensions, we can observe that different functions
are distinguishable on the TSNE plot, which is crucial to improving the security of com-
plex vehicular software systems. Motivated by this, we propose the representation-fused
function-type inference (RepFTI) to enhance the security of vehicular software systems.
The RepFTI fuses semantic features within functions and call relationships of functions
to repair long-span data dependencies of the target function. By comparing the true and
false positive rates to existing methods, the effectiveness of RepFTI is demonstrated. To
enable the real-time monitoring and analysis of software-execution states, we additionally
employ a novel dynamic tracking strategy to simultaneously capture instruction sequences
and function call graphs, obtaining the corresponding function type. Experimental results
show that the RepFTI significantly enhances the accuracy and stability of function-type
recognition compared to existing methods.

However, there is still room for improvement. The graph representation and semantic
representation can be adaptively adjusted based on the analysis objective. Furthermore,
annotating a large volume of data is a complex task, and improvements can be made in the
annotation process for a wide range of function types.
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6. Ebrahimi, M.; Marksteiner, S.; Ničković, D.; Bloem, R.; Schögler, D.; Eisner, P.; Sprung, S.; Schober, T.; Chlup, S.; Schmittner, C.;
et al. A Systematic Approach to Automotive Security. In Proceedings of the International Symposium on Formal Methods,
Lübeck, Germany, 6–10 March 2023; pp. 598–609.

http://doi.org/10.1109/MDAT.2018.2863106
http://dx.doi.org/10.1016/j.dcan.2020.04.007


Appl. Sci. 2024, 14, 4502 15 of 16

7. Haney, J.M.; Lutters, W.G. “It’s {Scary. . . It’s}{Confusing. . . It’s} Dull”: How Cybersecurity Advocates Overcome Negative
Perceptions of Security. In Proceedings of the Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018 Baltimore,
MD, USA, 12–14 August 2018; pp. 411–425.

8. Jing, P.; Tang, Q.; Du, Y.; Xue, L.; Luo, X.; Wang, T.; Nie, S.; Wu, S. Too good to be safe: Tricking lane detection in autonomous
driving with crafted perturbations. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Virtual,
11–13 August 2021; pp. 3237–3254.

9. Jing, P.; Cai, Z.; Cao, Y.; Yu, L.; Du, Y.; Zhang, W.; Qian, C.; Luo, X.; Nie, S.; Wu, S. Revisiting Automotive Attack Surfaces: A
Practitioners’ Perspective. In Proceedings of the 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA,
20–22 May 2024; pp. 80–80.

10. Saxena, P.; Poosankam, P.; McCamant, S.; Song, D. Loop-extended symbolic execution on binary programs. In Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis, Chicago, IL, USA, 19–23 July 2009; pp. 225–236.

11. Song, D.; Brumley, D.; Yin, H.; Caballero, J.; Jager, I.; Kang, M.G.; Liang, Z.; Newsome, J.; Poosankam, P.; Saxena, P. BitBlaze: A
new approach to computer security via binary analysis. In Proceedings of the Information Systems Security: 4th International
Conference, ICISS 2008, Hyderabad, India, 16–20 December 2008; pp. 1–25.

12. Chipounov, V.; Kuznetsov, V.; Candea, G. S2E: A platform for in-vivo multi-path analysis of software systems. ACM Sigplan Not.
2011, 46, 265–278. [CrossRef]

13. Hemel, A.; Kalleberg, K.T.; Vermaas, R.; Dolstra, E. Finding software license violations through binary code clone detection. In
Proceedings of the 8th Working Conference on Mining Software Repositories, Honolulu, HI, USA, 21–22 May 2011; pp. 63–72.

14. Sæbjørnsen, A.; Willcock, J.; Panas, T.; Quinlan, D.; Su, Z. Detecting code clones in binary executables. In Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis, Chicago, IL, USA, 19–23 July 2009; pp. 117–128.

15. Ghormley, D.P.; Rodrigues, S.H.; Petrou, D.; Anderson, T.E. SLIC: An Extensibility System for Commodity Operating Systems. In
Proceedings of the USENIX Annual Technical Conference, New Orleans, LA, USA, 15–19 June 1998; Volume 98.

16. Friedman, S.E.; Musliner, D.J. Automatically repairing stripped executables with cfg microsurgery. In Proceedings of
the 2015 IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, Cambridge, MA, USA,
21–25 September 2015; pp. 102–107.

17. Schulte, E.M.; Weimer, W.; Forrest, S. Repairing COTS router firmware without access to source code or test suites: A case study
in evolutionary software repair. In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and
Evolutionary Computation, Madrid, Spain, 11–15 July 2015; pp. 847–854.

18. Christodorescu, M.; Jha, S.; Seshia, S.A.; Song, D.; Bryant, R.E. Semantics-aware malware detection. In Proceedings of the 2005
IEEE Symposium on Security and Privacy (S&P’05), Oakland, CA, USA, 8–11 May 2005; pp. 32–46.

19. Kruegel, C.; Robertson, W.; Vigna, G. Detecting kernel-level rootkits through binary analysis. In Proceedings of the 20th Annual
Computer Security Applications Conference, Tucson, AZ, USA, 6–10 December 2004; pp. 91–100.

20. Kruegel, C.; Kirda, E.; Mutz, D.; Robertson, W.; Vigna, G. Automating mimicry attacks using static binary analysis. In Proceedings
of the USENIX Security Symposium, Baltimore, MD, USA, 1–5 August 2005; Volume 14, pp. 161–176.

21. Shin, E.C.R.; Song, D.; Moazzezi, R. Recognizing functions in binaries with neural networks. In Proceedings of the USENIX
Security Symposium, Washington, DC, USA, 12–14 August 2015; pp. 611–626.

22. Ding, S.H.; Fung, B.C.; Charland, P. Asm2vec: Boosting static representation robustness for binary clone search against code
obfuscation and compiler optimization. In Proceedings of the IEEE S&P, San Francisco, CA, USA, 20–22 May 2019; pp. 472–489.

23. Eschweiler, S.; Yakdan, K.; Gerhards-Padilla, E. discovRE: Efficient Cross-Architecture Identification of Bugs in Binary Code. In
Proceedings of the NDSS, San Diego, CA, USA, 21–24 February 2016; pp. 58–79.

24. Guo, W.; Mu, D.; Xing, X.; Du, M.; Song, D. {DEEPVSA}: Facilitating Value-set Analysis with Deep Learning for Postmortem
Program Analysis. In Proceedings of the USENIX Security Symposium, Santa Clara, CA, USA, 14–16 August 2019; pp. 1787–1804.

25. Jin, X.; Pei, K.; Won, J.Y.; Lin, Z. SymLM: Predicting Function Names in Stripped Binaries via Context-Sensitive Execution-Aware
Code Embeddings. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los
Angeles, CA, USA, 7–11 November 2022; pp. 1631–1645.

26. Sun, X.; Wei, Q.; Du, J.; Wang, Y. HEBCS: A High-Efficiency Binary Code Search Method. Electronics 2023, 12, 3464. [CrossRef]
27. Liu, S. A unified framework to learn program semantics with graph neural networks. In Proceedings of the 35th IEEE/ACM

International Conference on Automated Software Engineering, Virtual, 21–25 December 2020; pp. 1364–1366.
28. Xu, X.; Liu, C.; Feng, Q.; Yin, H.; Song, L.; Song, D. Neural network-based graph embedding for cross-platform binary code

similarity detection. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX,
USA, 30 October–3 November 2017; pp. 363–376.

29. Li, Y.; Gu, C.; Dullien, T.; Vinyals, O.; Kohli, P. Graph matching networks for learning the similarity of graph structured objects. In
Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 3835–3845.

30. Li, Z.; Zou, D.; Xu, S.; Jin, H.; Zhu, Y.; Chen, Z. Sysevr: A framework for using deep learning to detect software vulnerabilities.
IEEE Trans. Dependable Secur. Comput. 2021, 19, 2244–2258. [CrossRef]

31. Zuo, F.; Li, X.; Young, P.; Luo, L.; Zeng, Q.; Zhang, Z. Neural machine translation inspired binary code similarity comparison
beyond function pairs. In Proceedings of the 26th Annual Network and Distributed System Security Symposium, NDSS, San
Diego, CA, USA, 24–27 February 2019.

http://dx.doi.org/10.1145/1961296.1950396
http://dx.doi.org/10.3390/electronics12163464
http://dx.doi.org/10.1109/TDSC.2021.3051525


Appl. Sci. 2024, 14, 4502 16 of 16

32. Gao, J.; Yang, X.; Fu, Y.; Jiang, Y.; Sun, J. Vulseeker: A semantic learning based vulnerability seeker for cross-platform binary.
In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, Montpellier, France,
3–7 September 2018; pp. 896–899.

33. Yu, Z.; Cao, R.; Tang, Q.; Nie, S.; Huang, J.; Wu, S. Order matters: Semantic-aware neural networks for binary code similarity
detection. In Proceedings of the AAAI, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 1145–1152.

34. Li, X.; Qu, Y.; Yin, H. Palmtree: Learning an assembly language model for instruction embedding. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, Virtual, 15–19 November 2021; pp. 3236–3251.

35. Xue, Y.; Xu, Z.; Chandramohan, M.; Liu, Y. Accurate and scalable cross-architecture cross-os binary code search with emulation.
IEEE Trans. Softw. Eng. 2018, 45, 1125–1149. [CrossRef]

36. Perkins, J.H.; Kim, S.; Larsen, S.; Amarasinghe, S.; Bachrach, J.; Carbin, M.; Pacheco, C.; Sherwood, F.; Sidiroglou, S.; Sullivan, G.;
et al. Automatically patching errors in deployed software. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, Big Sky, MT, USA, 11–14 October 2009; pp. 87–102.

37. Van Der Veen, V.; Göktas, E.; Contag, M.; Pawoloski, A.; Chen, X.; Rawat, S.; Bos, H.; Holz, T.; Athanasopoulos, E.; Giuffrida, C. A
tough call: Mitigating advanced code-reuse attacks at the binary level. In Proceedings of the 2016 IEEE Symposium on Security
and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; pp. 934–953.

38. Lee, J.; Avgerinos, T.; Brumley, D. TIE: Principled reverse engineering of types in binary programs 2011. In Proceedings
of the NDSS on Network and Distributed System Security Symposium, San Diego, California, USA, 6 February–9 February
2011. Available online: https://www.ndss-symposium.org/ndss2011/tie-principled-reverse-engineering-of-types-in-binary-
programs (accessed on 5 July 2021).

39. Chua, Z.L.; Shen, S.; Saxena, P.; Liang, Z. Neural nets can learn function type signatures from binaries. In Proceedings of the
USENIX Security Symposium, Vancouver, BC, Canada, 16–18 August 2017; pp. 99–116.

40. intel. Pintools. 2007. Available online: https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-
binary-instrumentation-tool.html (accessed on 5 July 2021).

41. intel. RTN. 2007. Available online: https://software.intel.com/sites/landingpage/pintool/docs/98484/Pin/html/group__RTN.
html (accessed on 5 July 2021).

42. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

43. Yi, X.; Wu, J.; Li, G.; Bashir, A.K.; Li, J.; AlZubi, A.A. Recurrent Semantic Learning-driven Fast Binary Vulnerability Detection in
Healthcare Cyber Physical Systems. IEEE Trans. Netw. Sci. Eng. 2022, 10, 2537–2550. [CrossRef]
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