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Abstract: Floods and landslides cause continuous damage to ecosystems, infrastructures, and popula-
tions. Particularly, the occurrence and the existence of different natural hazards in the same territory
highlight the need to improve risk mitigation strategies for local authorities and community resilience
solutions for inhabitants. Analyzing and mapping social vulnerability provides information about
the main features of a specific community to deal with natural events. Specifically, the interaction
between multi-hazards and the socio-economic environment suggests multidisciplinary assessments
that merge the physical and the socio-economic features of the affected territories, providing a useful
approach to support multi-risk reduction planning. In this context, the article focuses on integrating
landslide and flood hazard scenarios with social vulnerability in the Basilicata Region (southern
Italy) at the census tract level. Thirteen municipalities were chosen as multi-hazard hot spots, while
open-source platforms were selected for hazard and social vulnerability data collection and analyses.
A geographic information system (GIS)-based approach was applied to combine different hazard
scenarios with social vulnerability distribution among 1331 census tracts to detect the most vulnerable
sub-municipality areas that need special attention in multi-risk reduction strategies. The results are
presented in the form of maps, which provide a relevant suitable tool in local emergency planning.

Keywords: social vulnerability; multi-hazard; GIS; multidisciplinary approach; disaster risk reduction

1. Introduction

Disasters are strictly correlated to the negative effects of significant natural events on
the vulnerable elements exposed, which require interdisciplinary analyses for risk reduction
strategies. According to the disaster risk reduction (DRR) school of thought, risks result
from interactions between the hazard with the exposure and the vulnerability of the affected
territory [1]. A hazard is “the potential occurrence of a natural or human-induced physical
event or trend or physical impact that may cause loss of life, injury or other health impacts,
property damage, social and economic disruption or environmental degradation” [2,3].
Exposure refers to the number of elements (human beings, livelihoods, and assets) located
in a hazardous area [1,4]. Vulnerability is the susceptibility of these exposed elements to
the impact of a hazard [5]. As disaster risk depends on the severity of the hazard, the
number of elements exposed and the susceptibility of these elements to suffering loss and
damage, the correlation between natural hazards and the socio-economic conditions of the
potentially affected territory implies the necessity of multidisciplinary analyses. In this
context, interdisciplinary investigation combines the assessment of the hazard component
and evaluates the socio-economic features in terms of exposure and vulnerability.

Natural hazards include floods, ground instabilities, wildfires, typhoons, earthquakes,
volcanic activity, extreme temperatures, and drought. Among them, floods and landslides
are two of the most dangerous events, as in recent years, both phenomena have occurred
regularly as a consequence of heavy rainfall events and deforestation [6], causing continu-
ous damage to ecosystems, infrastructures, and population. Floods occur most commonly
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due to heavy rainfall, when natural watercourses lack the capacity to convey excess water,
but they can also result from storm surges associated with tropical cyclones, tsunamis, or
high tides in coastal areas [7]. Among the hydrological phenomena, various types of floods
can be distinguished, such as riverine floods, flash floods, urban floods, and coastal floods.
Landslides are “almost all varieties of mass movements on slope including some such as
rock falls, topples, and debris flows that involve little or no true sliding” [8], and they are
mainly distinguished by rapid (rockfalls, rock avalanches, debris flows, mud flows, rock
slides, and soil slides) and slow processes (earth flows, soil slips, rototranslational slides,
and rock slides). According to the Emergency Events Database (https://www.emdat.be/
accessed on 10 April 2024), floods have been the most frequently occurring events in Europe
(460), with 260 riverine floods, 69 flash floods, 3 coastal floods, and 128 general floods in
the last twenty years, causing USD 192,059,583 worth of damage and 2112 deaths. At the
same time, nine landslides, eight avalanches, two mudslides and one rockfall have caused
damage worth a total of USD 707,837 and 2387 deaths.

Flooding and landslide phenomena are often connected to or coexist in a specific
geographic area, producing multi-hazard scenarios. These events, whether concatenated
or not, and with no chronological relationship, threaten the same elements at risk in a
given geographic area [9]. Generally, multi-hazard contexts include three types of scenarios:
aggregate (where hazard events may be unrelated, occurring sequentially in the same
location or simultaneously in different locations with concurrent impacts), cascading
(events in which one hazard triggers another hazard) and compound (where events are
correlated in terms of space and/or time but result from distinct causal pathways [10]).

Due to the complexity of such phenomena, different dimensions of vulnerability (so-
cial, physical, environmental, economic, and institutional) need to be taken into account
in disaster risk studies. However, a multi-hazard social vulnerability approach represents
a significant aid for DRR policy as it provides insights into actions to reduce population
vulnerability, improve mitigation, enhance resilience, and promote disaster risk manage-
ment [11]. Over the past few years, several studies have focused on social vulnerability to
multi-hazard scenarios [12–14], especially considering landslide and flood hazards [15–18].
However, only a few studies have been developed in Italy, which is considered the most
naturally hazardous area in Europe.

In this study, we implemented a multi-hazard social vulnerability approach at the
census tract level considering landslide and flood hazards in the Basilicata Region (southern
Italy). We looked at the coexistence of these phenomena in a given geographic area, showing
a methodological framework that can be applied to analyze multi-hazard scenarios. The
main aim was the development of a cartographic methodology that provides part of the
specific risk information useful to construct emergency plans at the local level by using
available open data. Indeed, one of the most significant challenges that the scientific
community deals with risk analysis is the method of data integration between hazard and
vulnerability, as it requires different competences and various types of investigations. For
this reason, we integrated two of the main components influencing a multi-risk context by
constructing a social vulnerability index (SVI) and relating to with multi-hazard assessment.
The present research followed a semi-quantitative and open-data-driven methodology
by exploiting the use of a geographic information system (GIS). The social vulnerability
assessment was based on a deductive approach [19] that is strictly correlated to a few
socio-economic variables available on open platforms at the census tract level and useful to
construct a composite index. The choice to work at the census tract (sub-municipality) level
is an advantage in risk management strategies and emergency planning, as many studies
were developed at the municipality level that were lacking in detailed socio-economic
information. The cartographic outputs presented in this study offer valuable instruments
for civil protection agencies, facilitating precise identification of areas with heightened
vulnerability within the possible affected territories. Moreover, one of the novelties of this
research is linked to the use of open national hazard data that have never been used to
investigate specific multi-hazard context at the local level.

https://www.emdat.be/
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The structure of the manuscript is organized as follows: Section Multi-Hazard Con-
text in the Basilicata Region presents an overview of the multi-hazard context within the
Basilicata region. Section 2 delineates the analytical framework employed in this research.
Section 3 is dedicated to presenting the outcomes associated with the multi-hazard assess-
ment, the evaluation of social vulnerability, and the synthesis of hazard and vulnerability
findings. Section 4 offers a critical examination of these results. The manuscript concludes
with a discussion of limitations and proposes directions for future research.

Multi-Hazard Context in the Basilicata Region

The Basilicata Region (40◦38′35.077′′ N 15◦58′11.957′′ E) is located in southern Italy
(Figure 1) and covers a total area of 10,073 km2, including 131 municipalities and host-
ing 578,036 inhabitants, 187,254 buildings, 30,043 enterprises and 2028 cultural heritages
(https://idrogeo.isprambiente.it/app/pir/r/17, accessed on 19 March 2023). The region
is one of the most hazard-prone areas of the Italian territory, as nearly 50% of Basilicata
towns are exposed to a high risk of landslides or floods [20]. Basilicata is known for its
high frequency of extreme hydrogeological events as several landslides and floods have
extensively affected the region because of its geological characteristics and the dynamics
of precipitation producing extensive damage to urban areas and infrastructures [21]. Ac-
cording to Lazzari and Piccarreta [22], the region has the highest density of landslides,
with more than 27 landslide areas every 100 km2, mostly related to predisposing condi-
tions, such as prevailing clay materials [23], the morphological setting of the slopes, and
conditions concerning extreme rainfall events or human activity. Moreover, the region
has been affected by recurrent flooding events, not exceptionally intense on an absolute
scale [24], which have caused significant economic damage to infrastructures, agricultural
and tourist activities, and archeological heritage. Examples of significant events with a
declared state of emergency that occurred in the Basilicata Region in the last ten years are
listed in Table 1. These events led the scientific community to develop relevant research
for landslide characterization [20,22,25,26] and flood monitoring, vulnerability and risk
mapping [24,27–33].

In terms of national and regional hazard data, Figure 1 shows the spatial distribution
of the landslide and flood hazard in the Basilicata Region, derived from Italian Institute for
Environmental Research and Protection (ISPRA) 2020–2021 mosaic layers. The national mo-
saics of landslide and flood hazards are created by ISPRA on the basis of the data provided
by the District Basin Authorities and are related to the Hydrogeological Management Plan
(PAI), which aims toward soil conservation, defense, and valorization in the areas at risk
due to geomorphological processes.

Table 1. List of major flood and landslide events that have occurred in the past ten years. Data were
collected from Emergenza Basilicata, Protezione Civile (http://www.emergenza.regione.basilicata.it/
emerg_alluv_2011/section.jsp?sec=100215, accessed on 20 March 2023).

Event Time Period Location

Flood 7–8 October 2013
Municipality of Bernalda,
Montescaglioso, Pisticci,

Scanzano Jonico

Flood 1–3 December 2013 Several municipalities located in
Matera and Potenza province

Landslide 3 December 2013 Municipality of Montescaglioso

Landslide
Triggered in February 2014 and

declaration of the state of
emergency in December 2017

Municipality of Stigliano

Landslide 29 January 2019 Municipality of Pomarico
Flood 11–12 November 2019 Basilicata Region

https://idrogeo.isprambiente.it/app/pir/r/17
http://www.emergenza.regione.basilicata.it/emerg_alluv_2011/section.jsp?sec=100215
http://www.emergenza.regione.basilicata.it/emerg_alluv_2011/section.jsp?sec=100215
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Figure 1. (a) Spatial distribution of landslide and flood hazard in the Basilicata Region (the attention 
areas (AA) correspond to portions of the territory characterized by possible instability to which no 
hazard class has yet been associated [34]); (b) geographic location of the Basilicata Region within 
the national context. Data were collected from the IdroGEO website (https://idrogeo.isprambi-
ente.it/app/page/open-data, accessed on 20 March 2024). Basemap: Google Satellite. 

2. Materials and Methods 
A GIS-based approach was applied to conduct a multidisciplinary analysis based on 

three main operational steps: a multi-hazard assessment, a social vulnerability evaluation, 
and the combination of the results. The investigation was carried out with an open-data-
driven and semi-quantitative approach at the census tract level. The semi-quantitative ap-
proach allowed us to combine results derived from the different types of analyses (quali-
tative and quantitative) in a single classification, providing an overview of the main find-
ings. As regards the data used, the ISPRA dataset was selected to collect hazard data (Sec-
tion Multi-Hazard Context in the Basilicata Region), the ISTAT open platform was used to 
extract geographic and administrative boundaries (https://www.istat.it/it/ar-
chivio/104317#accordions, accessed on 6 March 2024), with census socio-economic data 
(https://www.istat.it/it/archivio/285267, accessed on 6 March 2024), and the repository of 
the Department of Civil Protection (DCP) was consulted for building data 
(https://github.com/pcm-dpc/DPC-Aggregati-Strutturali-ITF-Sud/tree/master/Sud/Basili-
cata/Matera, accessed on 6 March 2024). All the data collected from these sources refer to 
the year 2021, while the cartographic bases refer to 2011.  

Figure 2 depicts the methodological workflow that, starting from the selection of the 
municipalities to be investigated, leads to the integration process at the census tract level 
through GIS-based analysis. Almost all the steps represented in Figure 2 were carried out 
via the use of GIS a part from the social vulnerability evaluation, which was based on a 

Figure 1. (a) Spatial distribution of landslide and flood hazard in the Basilicata Region (the attention
areas (AA) correspond to portions of the territory characterized by possible instability to which no
hazard class has yet been associated [34]); (b) geographic location of the Basilicata Region within the
national context. Data were collected from the IdroGEO website (https://idrogeo.isprambiente.it/
app/page/open-data, accessed on 20 March 2024). Basemap: Google Satellite.

In the case of flood hazards, the informative layer defines the extension of the floodable
areas for each of the probability scenarios envisaged in art. 6 of the European Union Floods
Directive (2007/60/EC): High-Probability Hazard (HPH—a high probability of floods);
Medium-Probability Hazard (MPH—a medium probability of floods); Low-Probability
Hazard (LPH—a low probability of floods). According to Legislative Decree 49/2010, these
scenarios correspond to the areas that can be flooded following flood events, with return
periods between 20 and 50 years (HPH—high probability of or frequent floods), between
100 and 200 years (MPH—medium probability of or infrequent floods), and with a return
period exceeding 200 years (LPH—low probability of extreme event scenarios).

Concerning the landslide hazard, the informative layer contains information about
landslides that have already occurred and the portion of territories potentially susceptible
to new landslide events [34]. In this case, the landslide hazard classification is distin-
guished into four main classes (P1, P2, P3, and P4) on the basis of interventions that can
be implemented. According to ISPRA [34], class P4 covers areas characterized by a “very
high landslide hazard” (P4), where building demolition and vulnerability reduction, mass
movement reclamation, and maintenance of mass movement areas are permitted. In areas
classified as having a “high landslide hazard” (P3), in addition to the interventions included
in P4 areas, expansion interventions in existing buildings for hygienic–sanitary adaptation
and the construction of new waste treatment plants are generally considered. In areas
classified as having a “medium landslide hazard” (P2), the interventions are those provided

https://idrogeo.isprambiente.it/app/page/open-data
https://idrogeo.isprambiente.it/app/page/open-data
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via territorial and urban planning and are generally subject to safety checking for instability
conditions and geomorphological process changes. Finally, in areas classified as having a
“moderate landslide hazard” (P1), any type of general intervention envisaged via territorial
and urban planning is authorized.

More detailed information about the national landslide inventory and the kinematics
linked to these events can be found in the IFFI project (https://idrogeo.isprambiente.it/
app/iffi/r/17?@=40.520557401702234,16.101003400000003,5, accessed on 20 March 2024),
whereas regional data can be collected from the landslide inventory map created by
Lazzari et al. [20].

The delimitation of flood and landslide hazard areas has led to the calculation of
exposure indicators (2021), which are shown in Table 2, with a general focus on the multi-
hazard context in the Basilicata region.

Table 2. Exposure data linked to flood and landslide hazards. Data were collected from the Idro-
Geo website (https://idrogeo.isprambiente.it/app/pir/r/17, accessed on 20 March 2024) to give
information about the inventory of elements exposed to multi-hazard conditions.

Hazard Type Class Territory
(km2)

Population
(%)

Household
(%)

Buildings
(%)

Business
(%)

Cultural Heritage
(%)

Flood
HPH 264.06 0.7 0.7 1 0.8 2.8
MPH 349.25 1.1 1.1 1.4 1.3 2.9
LPH 378.91 1.2 1.2 1.5 1.5 3.1

Landslide

P4 268.07 3.3 3.4 4.3 2.9 8.3
P3 334.23 3.7 3.9 4.4 3.7 4.8
P2 549.82 4.4 4.5 5 4.2 5
P1 212.35 2.4 2.4 2.5 2.4 3

2. Materials and Methods

A GIS-based approach was applied to conduct a multidisciplinary analysis based
on three main operational steps: a multi-hazard assessment, a social vulnerability eval-
uation, and the combination of the results. The investigation was carried out with an
open-data-driven and semi-quantitative approach at the census tract level. The semi-
quantitative approach allowed us to combine results derived from the different types of
analyses (qualitative and quantitative) in a single classification, providing an overview of
the main findings. As regards the data used, the ISPRA dataset was selected to col-
lect hazard data (Section Multi-Hazard Context in the Basilicata Region), the ISTAT
open platform was used to extract geographic and administrative boundaries (https:
//www.istat.it/it/archivio/104317#accordions, accessed on 6 March 2024), with census
socio-economic data (https://www.istat.it/it/archivio/285267, accessed on 6 March 2024),
and the repository of the Department of Civil Protection (DCP) was consulted for building
data (https://github.com/pcm-dpc/DPC-Aggregati-Strutturali-ITF-Sud/tree/master/
Sud/Basilicata/Matera, accessed on 6 March 2024). All the data collected from these
sources refer to the year 2021, while the cartographic bases refer to 2011.

Figure 2 depicts the methodological workflow that, starting from the selection of the
municipalities to be investigated, leads to the integration process at the census tract level
through GIS-based analysis. Almost all the steps represented in Figure 2 were carried
out via the use of GIS a part from the social vulnerability evaluation, which was based
on a mathematical operation (Section 2.2). Currently, the census tract level represents the
smallest statistical area at the sub-municipality level in Italy and can be useful for building
high-resolution maps for risk management strategies.

https://idrogeo.isprambiente.it/app/iffi/r/17?@=40.520557401702234,16.101003400000003,5
https://idrogeo.isprambiente.it/app/iffi/r/17?@=40.520557401702234,16.101003400000003,5
https://idrogeo.isprambiente.it/app/pir/r/17
https://www.istat.it/it/archivio/104317#accordions
https://www.istat.it/it/archivio/104317#accordions
https://www.istat.it/it/archivio/285267
https://github.com/pcm-dpc/DPC-Aggregati-Strutturali-ITF-Sud/tree/master/Sud/Basilicata/Matera
https://github.com/pcm-dpc/DPC-Aggregati-Strutturali-ITF-Sud/tree/master/Sud/Basilicata/Matera
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2.1. Study Area Selection and Hazard Assessment

After an extensive literature search focused on the hazard context in the Basilicata
Region (Section Multi-Hazard Context in the Basilicata Region), the municipalities choice
was based on the results obtained via the flood hazard mapping performed in previous
works [31] coupled with the neighboring municipalities affected by significant landslide
events in the past (Section Multi-Hazard Context in the Basilicata Region) and intersected
by the landslide hazard layer in GIS environment (Figure 1). In particular, the intersection
tool allowed us to conduct both qualitative and quantitative investigations based on
the percentage of the territory potentially affected by landslide, flood, and multi-hazard
scenarios for each census tract. The cartographic methodology was specifically explained in
Lapietra et al. [31]. However, the landslide hazard layer was also included in this analysis
in order to construct a multi-hazard map.

As regards the qualitative investigation, a specific hazard classification was provided
to show the combination of different hazard types found within each census tract (Table 3).
As shown in Table 3, the column “Scenario” includes a set of alphanumeric codes derived
from the specific hazard classes provided in Section Multi-Hazard Context in the Basilicata
Region. Census tracts only intersected by the landslide hazard layer fell into the LH
(landslide hazard) classification, census tracts only characterized by flood hazard were
related to the FH (flood hazard) classification, whereas census tracts potentially affected by
both hazards were associated with the MH (multi-hazard) scenario. Therefore, the letters
included in each scenario provide the type of hazards located in each census tract, whereas
the numbers represent the count of the combinations. In total, 13 scenarios were detected
in census tracts only affected by LHs, 3 scenarios were detected for the case of FHs and
15 scenarios were detected for census tracts intersected by MHs. The advantage of this
qualitative methodology is that is provides specific hazard information for each census
tract, avoiding cartographic overlap in the final maps.

In terms of quantitative analysis, the percentage of the territory potentially affected
was determined by calculating the extent of the LPH, MPH, HPH, P1, P2, P3, and P4
scenarios, in km2, in each census tract. Since P1, P2, P3, and P4 (Section Multi-Hazard
Context in the Basilicata Region) covered different areas within a single census tract, each
extent was summed up to obtain a unique value for the LH scenario. On the contrary, since
the LPH flood scenario often included census tract areas characterized by MPH and HPH,
the extent of each scenario was treated separately in order to preserve the different return
period scenarios.
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Table 3. Codification process for multi-hazard qualitative analysis. The “Hazard type” column
represents the type of hazard combination found within each of the census tracts. Each combination is
summarized in the “Scenario” column. LH codes (green color) are associated with census tracts only
intersected by landslide hazards, FH codes (blue color) are associated with those only intersected by
flood hazards, and MH codes (violet color) are associated with those affected by floods and landslides
and falling in multi-hazard scenarios.

Landslide Flood Multi-Hazard
Hazard_Type Scenario Hazard_Type Scenario Hazard_Type Scenario
P1 LH1 LPH FH1 MPH LPH P1 P2 MH1
P2 LH2 MPH HPH FH2 MPH LPH P2 P3 MH2
P3 LH3 HPH MPH LPH FH3 MPH LPH P1 P2 P3 P4 MH3
P4 LH4 HPH MPH LPH P1 MH4
P1 P2 LH5 HPH MPH LPH P2 MH5
P1 P3 LH6 HPH MPH LPH P3 MH6
P2 P3 LH7 HPH MPH LPH P4 MH7
P2 P4 LH8 HPH MPH LPH P1 P2 MH8
P3 P4 LH9 HPH MPH LPH P2 P3 MH9
P1 P2 P3 LH10 HPH MPH LPH P2 P4 MH10
P1 P2 P4 LH11 HPH MPH LPH P1 P2 P3 MH11
P2 P3 P4 LH12 HPH MPH LPH P1 P2 P4 MH12
P1 P2 P3 P4 LH13 HPH MPH LPH P2 P3 P4 MH13

HPH MPH LPH P1 P2 P3
P4 MH14

MPH LPH P2 MH15

The extent of each scenario was then compared with the total extent of the census
tracts in order to measure the percentage of the territory potentially affected by LH, HPH,
MPH, and LPH. The percentage of the territory affected ranged between 0% and 100%.
Census tracts with no part of the territory affected were excluded from the classification,
whereas the others were classified into five hazard levels: Level 1 (very low), Level 2
(low), Level 3 (medium), Level 4 (high), and Level 5 (very high). This type of analysis
led us to build a single-hazard map for the LH and FH scenarios. Moreover, in order to
include census tracts affected by the multi-hazard scenario, a hazard matrix (Figure 3) was
constructed to combine different hazard classes through the use of the raster calculator in
the GIS environment.
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2.2. Social Vulnerability Evaluation and Hazard Integration

Since this work was based upon an open data-driven approach, the identification of
socio-economic indicators was facilitated by the availability of the socio-economic variables
already provided by ISTAT at the census tract level and the building data from DPC. Within
the ISTAT dataset and according to the literature, 9 variables that play a crucial role in
incrementing social vulnerability were chosen to construct the composite index. Table 4
shows the indicator list with the relative proxy variables used for the social vulnerability
analysis. Each variable corresponds to a specific value explained in the “Description”
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column, whereas information about indicators and variables can be found in the papers
listed in “Reference”. This column represents the justification of the variables chosen for
this investigation.

Table 4. Selection of indicators that influence social vulnerability. The variables were extracted from
the open dataset ISTAT’s available at the census tract level.

Indicator Variable Description References

Population density Pop_density Number of inhabitants/km2 [35–41]

Build up density Build_density Number of buildings/km2 [37,42,43]

Age
Eld % of inhabitants with age > 65 [16,44,45]

Child % of inhabitants with age < 15 [43,46]

Gender Wom % of women residents [34,44,47]

Education Low_ed % of illiterate residents or
with low education [38,47–49]

Employment Unemp % of unemployed residents [38,50–52]

Foreign For % of foreign people [16,39,47,53]

Household House6+ % of households with 6 or
more family members [54,55]

Once the variables were standardized, they were aggregated to provide a unique
number score for each census tract through Equation (1):

SVI = Σ(Pop_dens, Build_dens, Eld, Child, Wom, Low_ed, Unemp, For, House6+) (1)

where SVI represents the social vulnerability index and the equation components refer to
the variables explained in Table 1. The results obtained were then classified into five classes
(Class 1 = very low social vulnerability; Class 2 = low social vulnerability; Class 3 = medium
social vulnerability; Class 4 = high social vulnerability; and Class 5 = very high social
vulnerability) and distributed through GIS spatial analysis tools.

As a final step, the different hazard levels were combined with SVI classes through a
GIS-based raster analysis tool to obtain the final map. The raster analysis was conducted by
using the risk formula provided in Section 1, and the census tracts were spatially distributed
between low and high levels.

3. Results
3.1. Municipality Selection

The flood hazard map provided by Lapietra et al. [31] detects the municipalities located
on the Ionian coast as the most exposed to flood hazard in the case of the LPH scenario.
These municipalities are Bernalda, Pisticci, Scanzano Jonico, Policoro, Rotondella, and Nova
Siri. In order to include municipalities intersected by the landslide hazard layer (Figure 1)
and affected by past significant events (Section Multi-Hazard Context in the Basilicata
Region), seven neighboring municipalities were also selected: Montescaglioso, Pomarico,
Craco, Montalbano Jonico, Tursi, Colobraro, and Valsinni. As shown in Figure 4 and Table 5,
thirteen municipalities in total were identified for the investigation. In particular, the study
area is characterized by 1391.95 km2 and 1331 census tracts.
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Figure 4. Maps showing the geographic location of the study area (yellow color) within the regional
context (a) and an indication of the municipalities and the census tracts affected by flood and landslide
hazards (b). Basemap: Google Satellite.

Table 5. Table showing the 13 municipalities belonging to the study area with the number of
inhabitants registered in 2021 and the number of census tracts.

Municipality Population 2021 (N.) Census Tract (N.)

Bernalda 11,964 179
Colobraro 1070 42

Craco 644 51
Montalbano Jonico 6.796 59

Montecaglioso 9.247 108
Nova Siri 6.708 87

Pisticci 16.836 305
Policoro 17.685 148

Pomarico 3.832 86
Rotondella 2.448 44

Scanzano Jonico 7.525 96
Tursi 4.753 93

Valsinni 1.373 33

3.2. Hazard Assessment
3.2.1. Qualitative Evaluation

The qualitative hazard distribution highlights the presence of 755 census tracts char-
acterized by single hazard (flood or landslide) and 127 covered by multi-hazard (MH)



Appl. Sci. 2024, 14, 4503 10 of 24

sectors (flood + landslide). Apart from Policoro, all municipalities are characterized by
single-hazard and MH scenarios.

In the first case, 470 census tracts are intersected by flood hazard (FH), mostly located
within the Ionian coast in the municipalities of Bernalda, Pisticci, Scanzano Jonico, Policoro,
Rotondella, and Nova Siri (Figures 5 and 6), and along the Bradano river within the
municipality of Montescaglioso (Figure 6b). On the contrary, 287 census tracts are affected
by landslide hazard (LH) in the municipalities of Tursi, Pisticci, Pomarico, Montescaglioso,
Montalbano Jonico, and Craco (Figure 5). An extended territory characterized by the
MH scenario is located in the central and southern sectors of the study area across the
municipalities of Pisticci, Montalbano Jonico, Scanzano Jonico, Tursi, Rotondella, Nova Siri,
Colobraro, and Valsinni (Figure 6c,d).
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According to Figures 5 and 6, almost all census tracts belonging to the FH scenario
are associated with FH3 (417), whereas 31 census tracts are related to FH2 and 22 are
related to FH1, especially in the municipality of Policoro (Figure 6d). As shown in Figure 6,
scenarios with more variety are highlighted in census tracts affected by LH and MH.
Starting from the northern sector (Figure 6c), the central part of Montescaglioso, where
the town center is located, is represented by 47 census tracts classified as having LH with
scenarios corresponding to LH3, LH4, LH5, LH8, LH9, and LH12, whereas 5 census tracts,
located in the north-eastern part of the municipality, are characterized by them H4, MH7,
MH9, MH10, and MH12 scenarios. Along the border with this municipality, Bernalda only
shows 2 census tracts associated with MH (MH5 and MH8), while it shows 34 census tracts
associated with LH2, LH4, LH5, LH7, LH8, and LH12, also corresponding to the town
center. In the municipality of Pomarico, 34 census tracts are found in LH2, LH3 LH4, LH5,
LH7, LH9, LH10, LH11, LH12, and LH13 scenarios, while 9 census tracts fall in MH5, MH9,
MH11, MH13, and MH14 scenarios. The town center is also located in an LH area in this
case. Moving to the central sector of the study area (Figure 6c), 68 census tracts are covered
by LH1, LH2, LH3, LH4, LH5, LH8, LH11, and LH13 scenarios, and 46 are covered by
the MH4, MH5, MH8, and MH14 hazard combinations within the municipality of Pisticci.
Most of the census tracts located in the municipality of Craco (25) are intersected by LH2,
LH3, LH4, LH5, LH7, LH9, LH10, LH11, LH12, and LH13 scenarios, whereas 15 census
tracts are characterized by MH5, MH8, MH9, and MH11 scenarios. The municipality of
Montalbano Jonico is represented by 19 census tracts in LH2, LH5, LH7, LH8, and LH12
scenarios, including the town center, and 8 census tracts in the MH4, MH5, MH8, MH11,
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and MH14 hazard combinations. Moving towards the south, Scanzano Jonico shows only
three census tracts located in MH5 scenario, bordering Montalbano Jonico.
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Lastly, within the southern sector (Figure 6d), the municipality of Tursi is represented
by 33 census tracts in the LH2, LH4, LH5, LH6, LH7, LH8, LH9, LH10, LH12, and LH13
scenarios (including the city town area) and 13 census tracts belonging to MH1, MH5, MH8,
MH9, MH12, and MH15; Colobraro shows 12 census tracts related to LH2, LH3, LH4, LH5,
LH6, LH7, LH8, and LH12 and 9 census tracts related to MH3, MH6, MH7, MH9, MH10,
and MH13; Valsinni is characterized by 11 census tracts falling into LH2, LH7, LH12, and
LH13 and 9 census tracts corresponding to MH7, MH10, MH13, and MH14; Rotondella is
represented by one census tract associated with LH1 and two census tracts associated with
MH11 and MH14 scenarios; Nova Siri has three census tracts intersected by the LH4, LH7,
and LH12 landslide hazard combinations and six census tracts characterized by the MH5,
MH9, and MH13 scenarios.

As shown in the qualitative investigation and looking at the hazard spatial distribution,
the central and southern sector of the study area is the most exposed to multi-hazard scenarios.

3.2.2. Quantitative Investigation

The hazard quantitative assessment results in four hazard maps showing the single-
hazard classification at the census tract level (Figure 7) based on the percentage of the
territory potentially affected by LH and FH (HPH, MPH, and LPH). In the case of the LH
scenario (Figure 7a), 32 census tracts fall in the very-high-hazard class (Level 5), 25 fall in
the high-hazard class (Level 4), and 45 fall in the medium-hazard class (Level 3), mostly
included in the municipalities of Pomarico, Pisticci (northern area), Craco, Montalbano
Jonico, Colobraro, Valsinni, and Nova Siri. In total, 65 census tracts are associated with
the low-hazard class (Level 2), whereas 231 are related to the very-low-hazard class (Level
1), spatially distributed across all the municipalities apart from Policoro. As a main result
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of landslide hazard quantitative analysis, the central sector of the study area (Figure 6a)
coupled with the municipalities of Pomarico and Valsinni are the most exposed to LH.
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According to Figure 7b–d, all the municipalities intersected by FH show similar
characteristics in the case of LPH, MPH, and LPH scenarios in terms of spatial distribution.
The slight difference between these scenarios is the increments of the flood hazard classes
from HPH to MPH and LPH in some census tracts mostly located on the Ionian coast. The
municipalities of Bernalda, Scanzano Jonico, Pisticci, Policoro, and Nova Siri show the
highest number of census tracts (296) and therefore represent the maximum percentage
of the territory potentially affected by FH (Classes 4 and 5) in the case of HPH, MPH,
and LPH.

Figure 8 depicts the main outcome of the multi-hazard investigation, derived from
the overlap between LH and FH (LPH, MPH, and HPH) scenarios. In this case, the spatial
distribution of census tracts affected by multi-hazards is similar. Table 6 represents an
example of the results derived from the application of the multi-hazard matrix (Section 2.1),
showing the number of census tracts exposed to different multi-hazard classes in the case
of LH + FH in the MPH scenario. Moreover, information about the qualitative multi-hazard
classification is also provided to give information about the specific multi-hazard associated
with the different classes. As a result, the majority of census tracts fall in low-multi-hazard
classes (77), 7 census tracts belong to the medium multi-hazard level, and 23 are classified
as having high multi-hazard. The municipalities with the highest number of census tracts
affected by multi-hazard are Pisticci and Tursi. However, Pisticci shows the highest level of
multi-hazard exposure.
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Figure 8. Classification of the census tracts affected by multi-hazards, derived from the overlap
between the landslide hazard layer (LH) and the flood hazard layer (FH) in high- (a), medium- (b),
and low- (c) probability hazard scenarios. The class ranges between 2 (very, very low) and 8 (very,
very high). Basemap: Google Satellite.

3.3. Social Vulnerability Evaluation

According to Section 2.2, the socio-economic variables were aggregated trough Equa-
tion (1) to obtain a “synthetic” score for each census tract and to evaluate the SVI. In
Figure 9, the spatial distribution of the SVI is provided, whereas Figure 10 depicts the
social vulnerability context in each municipality under investigation. Looking at the gen-
eral distribution of social vulnerability classes in the study area, most of the census tracts
fall into Class 1 (N. = 899), showing a very low SVI, followed by Class 3 (medium level,
N. = 181), Class 4 (high level, N. = 154), Class 2 (low level, N. = 84) and Class 5 (very high
level, N. = 13). A similar trend is depicted in each municipality, where Class 1 of SVI repre-
sents the majority of socio-economic conditions at census tract level succeeded by medium
and high classes of the SVI (Classes 3 and 4), especially in relation to census tracts located
in town centers areas (Figure 9, yellow circle). As shown in Figure 10, most of the census
tracts fall into the class with very low social vulnerability; however, Bernalda, Pisticci,
Motescaglioso, Montalbano Jonico, Scanzano Jonico, Policoro, Colobraro, Rotondella, Tursi,
Valsinni, and Nova Siri show extended territories affected by medium, high, and very high
social vulnerability.
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Table 6. Table showing the number of census tracts exposed to different multi-hazard classes in the
case of LH + FH (MPH) for each municipality affected by MH. The columns related to “MH Code”
show the type of multi-hazard derived from the qualitative investigation for each semi-quantitative
level. The shades of violet represent the different levels of multi-hazard, in correlation with Figure 8.

Municipality Low MH
(Class 2–4) MH Code Medium MH

(Class 5) MH Code High MH
(Class 6–8) MH Code

BERNALDA 2 MH5, MH8 0 0

COLOBRARO 5 MH3, MH6,
MH9, MH13 0 3 MH7, MH10

CRACO 6 MH5, MH9,
MH11 0 7 MH5, MH8,

MH9
MONTALBANO

JONICO 4 MH4, MH8,
MH11, MH14 0 3 MH5

MONTESCAGLIOSO 5
MH4, MH7,

MH9, MH10,
MH12

0 0

NOVA SIRI 4 MH5, MH9,
MH13 0 0

PISTICCI 20 MH5, MH8,
MH14 3 MH5, MH8,

MH14 19 MH4, MH5,
MH8,

POMARICO 5 MH9, MH11,
MH14 2 MH11, MH13 1 MH5

ROTONDELLA 2 MH11, MH14
SCANZANO

JONICO 2 MH5 0 0

TURSI 17

MH1, MH5,
MH8, MH9,

MH12, MH14,
MH15,

0 1 MH5

VALSINNI 5 MH14 2 MH7, MH10 2 MH7, MH13

3.4. Integration between Social Vulnerability, Single-Hazard, and Multi-Hazard Classes

As a final result, Figure 11 represents the outcomes derived from the combination of
SVI classes (Figure 9) and hazard classes (Figures 7 and 8) at the3 census tract level. In
particular, the maps provide information about the product between LH and SVI (green
scale), FH and SVI (blue scale), and MH and SVI (violet scale). Census tracts falling in
the green scale represent areas with different levels of social vulnerability only exposed to
different levels of landslide hazard, census tracts related to the blue scale outline areas with
different levels of social vulnerability only exposed to different levels of flood hazard, and
census tracts associated corresponding to the violet scale show areas with different levels
of social vulnerability exposed to different levels of multi-hazard (flood and landslide).
The details of this type of classification are presented in Table 4, where quantitative and
qualitative information derived from the entire analysis are provided for each municipality.

Looking at the general final map (Figure 11) and Table 7, 14 census tracts correspond
with the population with the high class of social vulnerability to landslide hazards in the
municipalities of Craco, Montescaglioso, Pisticci, and Tursi; 16 census tracts are related
to flood hazards in the municipality of Bernalda and Nova Siri; 6 census tracts fall in the
multi-hazard context within the municipality of Craco, Montalbano Jonico, Montescaglioso,
and Pisticci.
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Figure 11. Spatial distribution of the census tracts based on the overlap between the SVI and landslide
hazard (LH), the SVI and flood hazard (FH), and the SVI and multi-hazard (MH) events in different
return period scenarios: 20–50 years (a), and 100–200 and 500 years (b). Basemap: Google Satellite.

Table 7. Final outcome of the integration of the SVI and FH, LH, and MH, with an indication of the
number of census tracts in the different overlap classes for each municipality under investigation.
The columns related to “LH Code”, “FH Code”, and “MH Code” show the type of hazard derived
from the qualitative investigation (Table 2) for each semi-quantitative level. Each color represents the
type of hazard considered in the integration process, whereas the shade represents the integration
level. L = low; M = medium; H = high.

Municipality Level SVI x LH LH Code SVI x FH FH Code SVI x MH MH Code

Bernalda
L 24

LH2, LH5,
LH7, LH8,

LH10, LH11
86 FH2, FH3 2 MH5, MH8

M 4 FH2, FH3
H 15 FH2, FH3

Colobraro

L 12

LH2, LH3,
LH4, LH5,
LH6, LH7,
LH8, LH12

9 FH2, FH3 2 MH6, MH13

M 1 LH12 6
MH3, MH7,

MH9, MH10,
MH13

Craco

L 18

LH2, LH3,
LH5, LH7,

LH10, LH12,
LH13

7 FH3 4 MH5, MH9,
MH11

M 4 LH9, LH13 7 MH5, MH8,
MH9

H 1 LH4 2 MH11

Montalbano
Jonico

L 15
LH2, LH4,
LH5, LH8,

LH12
11 FH2, FH3 3 MH5

M 4 LH7, LH8,
LH12 3 MH5, MH8,

MH9
H 1 MH14

Montescaglioso
L 34

LH3, LH4,
LH5, LH8,
LH9, LH12

26 FH2, FH3 3 MH4, MH7,
MH12

M 4 LH4, LH8 2 MH9, MH10
H 8 LH4, LH9 1 MH14
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Table 7. Cont.

Municipality Level SVI x LH LH Code SVI x FH FH Code SVI x MH MH Code

Nova Siri
L 6 LH4, LH7,

LH12 40 FH2, FH3 1 MH5

M 2 LH7, LH8 3 FH2, FH3 2 MH9, MH13
H 1 FH2

Pisticci

L 59

LH1, LH2,
LH4, LH5,

LH8, LH13,
LH11, LH12,

LH13

77 FH2, FH3 17 MH5, MH8,
MH14

M 10
LH2, LH4,
LH5, LH8,

LH13
4 FH3 27 MH4, MH5,

MH8

H 4 LH4, LH5,
LH8 2 MH5, MH14

Policoro
L 46 FH3

M 3 FH1, FH2,
FH3

Pomarico
L 30

LH2, LH4,
LH5, LH7,

LH10, LH11,
LH12, LH13

17 FH3 19 MH11,
MH13, MH14

M 4 LH2, LH7,
LH9 3 MH5, MH11,

MH14
Rotondella L 1 LH1 18 FH3 2 MH11, MH14

Tursi

L 29

LH2, LH4,
LH5, LH6,

LH7, LH10,
LH12, LH13

19 FH3 8 MH1, MH5,
MH8, MH12

M 3 LH4, LH8,
LH9 5 MH4, MH5,

MH8
H 1 LH2

Valsinni
L 9 LH2, LH7,

LH8, LH13, 8 FH2, FH3 2 MH7, MH10

M 2 LH7, LH12 7 MH7, MH13,
MH14

Scanzano
Jonico

L 56 FH2, FH3 8 MH1, MH5,
MH8, MH12

M 1 FH3 3 MH5

Lastly, in order to present a detailed description of the overall results at the local level,
Figures 12–14 depict a magnified view of the different study area sectors by integrating the
outcomes derived from the overall quantitative analysis (Figure 11) with those from the
hazard qualitative investigation (Figure 8). The codes represent the specific hazard (Table 1)
to which the different levels of social vulnerability are exposed.
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Figure 12. Spatial distribution of the different overlaps at the census tract level in the northern sector, 
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Figure 13. Spatial distribution of the different overlaps at the census tract level in the central sector,
with an indication of the specific hazard scenario derived from the hazard qualitative investigation.
FH refers to the MPH scenario. The red circle represents the location of the town center. Basemap:
Google Satellite.
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Figure 14. Spatial distribution of the different overlaps at the census tract level in the southern sector, 
with an indication of the specific hazard scenario derived from the hazard qualitative investigation. 
FH refers to the MPH scenario. The red circle represents the location of the town center. Basemap: 
Google Satellite. 
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Google Satellite.

4. Discussion and Conclusions
4.1. Integration Studies at the Sub-Municipality Level as a Tool for Emergency Planning

From a physical landscape perspective, the selection area (Section 3.1) falls in the
marine terrace territory of the Basilicata Region [23], characterized by a variety of hazards
and providing a multi-hazard hotspot for the application of methodological processes
useful for risk management strategies. As shown from the main results, these hazards are
spatially distributed as follows: Flood probability is mostly limited across census tracts
located in the coastal zone and intersected by the main rivers (Bradano, Basento, Cavone,
Agri, and Sinni). Census tracts influenced by landslide process and multi-hazard scenarios
belong to landward municipalities. In particular, the most frequently occurring hazard
scenarios related to the census tract investigated are LH2, FH2, and MH5. This implies
that most of the census tracts intersected by single hazards correspond to areas classified
as having a medium landslide hazard (P2) and areas that can be flooded due to flood
events with a return period between 20 and 50 years (HPH), between 100 and 200 years
(MPH), or exceeding 200 years (LPH). In terms of landslide hazards, our results confirm
the outcomes linked to the Basilicata region, which is mostly characterized by having the
highest percentage of the territory affected by medium landslide hazard [34]. Consequently,
most of the census tracts belonging to MH5 scenarios are characterized by the coexistence
of three main probabilities: P2 + HPH, P2 + MPH, and P2 + LPH (Section Multi-Hazard
Context in the Basilicata Region). Considering the single-hazard context, the municipality
of Bernalda shows the highest number of census tracts affected by flood hazards, while
Craco, Montescaglioso, and Pisticci are mostly affected by landslide hazards. However,
as shown in Section 3.2.2, Pisticci represents the highest multi-hazard hotspot at the sub-
municipality level. Excluding the municipalities of Rotondella, Policoro, and Nova Siri,
looking at the location of the city centers (Figures 12–14), the majority of them are limited
in areas characterized by landslide hazard.

As regards social vulnerability, most of the census tracts fall in classes with very low
social vulnerability. However, the majority of the municipalities are characterized by ex-
tended territories affected by medium, high, and very high social vulnerability, particularly
in the city centers (Figure 9). This result is strictly correlated with the methodology used
for the construction of the social vulnerability index. Firstly, the application of Equation (1)
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(Section 2) on the socio-economic conditions of the Basilicata Region highlights the different
contexts between rural/hilly areas, mostly characterized by classes with very low social
vulnerability, and city centers, represented by higher-social-vulnerability classes, as the
variables used have the highest values in the most populated areas, contributing to the
composite index. Moreover, the city centers are characterized by higher census tract densi-
ties compared with those of rural areas, showing substantial differences in socio-economic
features between these two areas.

Another consideration concerns the integration process (Sections 2 and 3.4), particu-
larly the significance of the application of the risk formula (the product between hazard
scenarios and social vulnerability). This study demonstrates the influence that the physical
(hazard) and the socio-economic components have on each other in risk investigation.
Examples are the census tracts located in the municipality of Bernalda and Montalbano
Jonico. The former municipality is characterized by a high level of flood hazard and social
vulnerability, resulting in higher classes of raster combination (Figure 12). The latter de-
picts census tracts affected by medium classes of multi-hazards and a high level of social
vulnerability, leading to the higher exposure of this territory to hazards. Furthermore, the
integration process applied in this work via the use of a cartographic approach conveys
a clear spatial distribution of the socio-economic aspects based on the hazard exposure
(Section 3.4). This could be a fundamental tool for emergency planning in the hands of civil
protection that needs detailed information at the sub-municipality level. These final maps
can let local authorities know the detailed risk context of their competence territories, and
also allow them to construct plans capable of protecting the most vulnerable populations.

Looking at the general distribution of the multi-hazard context (Figure 11), the study
area could be divided into three main areas based on the integration processes that high-
light the type of vulnerability under different hazard scenarios. The population living
along the Ionian coast is the most vulnerable to flood hazard scenarios, marking the
first zone. Moving from the coast towards the northern direction, the second area is rep-
resented by inhabitants vulnerable to multi-hazards, followed by people vulnerable to
landslide hazards.

In this respect, different risk management strategies can be implemented at the local
level in order to reduce damages and impacts. The application of physical measures such as
barriers, dikes, embankments for floods [56], or soil reinforcements and erosion-prevention
strategies in the case of landslides [57] can also be supported by citizen participatory
activities such as workshops, information campaigns, education courses, and strategic
tools for disaster preparedness [58–60]. Considering Figure 11, these strategies can be
implemented on the basis of the integration level between hazard and social vulnerability,
considering only citizen science measures in areas characterized by low integration levels
and including physical and non-physical strategies in the highest-risk areas. In both cases,
the application of cost-based analyses or multicriteria investigations is highly recommended
in order to provide monetary estimations and define various alternative strategies in
different scenarios [61–63].

In addition, the present research points out a relevant outlook on the multidisciplinary
methodologies that adopt the co-production of knowledge [64,65] and different techniques
belonging to various study fields in order to promote risk reduction strategies. In this
context, the use of “open-data” that can be accessed and re-used for research studies [66] is
essential for accumulating knowledge and collecting information about the current state of
our territories affected by any threats.

4.2. Limitations and Suggestions

The results of this study are strictly linked to the application of census tracts as a
measure and geographic units. Although the use of this cartographic base is essential for
research developed at the local level, many limitations need to be clarified. The census
tracts show significant differences in terms of extension. Some of them limit inhabited
centers, while others only cover portions of roads or special areas made up of particular
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geomorphological entities, such as lakes, maritime islands, marshes or ponds, lagoons,
fishing valleys, lakes, and uninhabited mountains [67]. As a consequence, relative or
comparative analyses become complex within the same territory as the low frequency of
census tracts falling in the same class would not correspond to low values of extension
and therefore low exposure. In order to overcome this issue and to work on the same
cartographically extended units, it would be useful to include grid cells of the same
resolution [68–70]. Another limitation is the lack of open census data at the sub-municipality
level. As shown in this research, only a few variables, that increment social vulnerability,
were available from national datasets. Therefore, it is highly recommended that researchers
provide and collect more socio-economic data for detailed vulnerability analyses, allowing
the application of rigorous statistics, which form the basis of quantitative investigation.
Another improvement, in terms of socio-economic features, could be the inclusion of land
use data that can highlight the main characteristics of the territory exposed to hazards and
that could help in the interpretation of the different types of vulnerability among the census
tracts, as carried out in other studies conducted at the municipality level [71].

Concerning the development of this research, more effort should be put into hazard
calculation. Results connected to flood return periods that range between 100 and 500 years
could provide information about extreme events that have rarely occurred during human
life. Indeed, one of the greatest challenges in risk studies is the understanding of the
methods that are needed to combine periods related to natural and social processes. This
is a key point in developing a climate change perspective that highlights the increase in
the frequency and intensity of extreme events and will require high-resolution hazard
assessments characterized by shorter return periods than those considered in the European
Directive. As regards the landslide hazard assessment, a detailed susceptibility analysis
could also be applied in risk analysis and integrated with social vulnerability [72,73]. In
this context, physical vulnerability, related to the structural features of buildings and
infrastructures, such as construction age, material, and the state maintenance of buildings,
could be introduced as a development tool for landslide management strategies [74–76].

The last suggestion concerns the multi-hazard concept. In this study, we consider the
coexistence of different hazards in the same territory. However, a challenging perspec-
tive would include the relationship between different hazards that provide more detailed
information for multi-risk emergency planning. In this respect, improvements in quanti-
tative correlations between multi-hazard scenarios could be achieved through stochastic,
empirical, and mechanistic approaches [77]. This could help the scientific community and
local authorities to increase their knowledge about multi-hazard contexts and implement
adequate management strategies.
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49. Armaş, I. Multi-Criteria Vulnerability Analysis to Earthquake Hazard of Bucharest, Romania. Nat. Hazards 2012, 63, 1129–1156.

[CrossRef]
50. Flanagan, B.E.; Gregory, E.W.; Hallisey, E.J.; Heitgerd, J.L.; Lewis, B.A. Social Vulnerability Index for Disaster Management. J.

Homel. Secur. Emerg. Manag. 2011, 8, 0000102202154773551792. [CrossRef]
51. Fekete, A. Validation of a Social Vulnerability Index in Context to River-Floods in Germany. Nat. Hazards Earth Syst. Sci. 2009,

9, 393–403. [CrossRef]
52. Schmidtlein, M.C.; Deutsch, R.C.; Piegorsch, W.W.; Cutter, S.L. A Sensitivity Analysis of the Social Vulnerability Index. Risk Anal.

2008, 28, 1099–1114. [CrossRef] [PubMed]
53. Chen, W.; Cutter, S.L.; Emrich, C.T.; Shi, P. Measuring Social Vulnerability to Natural Hazards in the Yangtze River Delta Region,

China. Int. J. Disaster Risk Sci. 2013, 4, 169–181. [CrossRef]
54. Tasnuva, A.; Hossain, M.R.; Salam, R.; Islam AR, M.T.; Patwary, M.M.; Ibrahim, S.M. Employing Social Vulnerability Index to

Assess Household Social Vulnerability of Natural Hazards: An Evidence from Southwest Coastal Bangladesh. Environ. Dev.
Sustain. 2021, 23, 10223–10245. [CrossRef]

55. Fatemi, F.; Ardalan, A.; Aguirre, B.; Mansouri, N.; Mohammadfam, I. Social Vulnerability Indicators in Disasters: Findings from a
Systematic Review. Int. J. Disaster Risk Reduct. 2017, 22, 219–227. [CrossRef]

https://doi.org/10.1007/s11069-016-2293-1
https://doi.org/10.1080/17445647.2018.1454349
https://doi.org/10.3390/w14030364
https://doi.org/10.1016/j.scitotenv.2022.156736
https://doi.org/10.3390/w15061175
https://doi.org/10.3390/jmse10070888
https://doi.org/10.3390/drones7020070
https://doi.org/10.1111/1540-6237.8402002
https://doi.org/10.1016/j.econmod.2022.106165
https://doi.org/10.1016/j.envsci.2018.10.001
https://doi.org/10.1016/j.apgeog.2016.06.014
https://doi.org/10.1080/00291951.2010.550167
https://doi.org/10.1080/00330124.2012.681509
https://doi.org/10.1007/s11069-012-0084-x
https://doi.org/10.1007/s13753-023-00517-7
https://doi.org/10.1061/(ASCE)1527-6988(2005)6:1(23)
https://doi.org/10.25303/1509da08015
https://doi.org/10.1016/j.eiar.2013.08.002
https://doi.org/10.1016/j.gloenvcha.2008.07.013
https://doi.org/10.1007/s13753-016-0090-9
https://doi.org/10.1007/s12665-013-2689-0
https://doi.org/10.1007/s11069-012-0209-2
https://doi.org/10.2202/1547-7355.1792
https://doi.org/10.5194/nhess-9-393-2009
https://doi.org/10.1111/j.1539-6924.2008.01072.x
https://www.ncbi.nlm.nih.gov/pubmed/18627540
https://doi.org/10.1007/s13753-013-0018-6
https://doi.org/10.1007/s10668-020-01054-9
https://doi.org/10.1016/j.ijdrr.2016.09.006


Appl. Sci. 2024, 14, 4503 24 of 24

56. Goltermann, D.; Marengwa, J. SAWA Final Report Summary, Hamburg. 2012. Available online: http://archive.northsearegion.
eu/files/repository/20130814132256_SAWA_Final_Report_Summary.pdf (accessed on 22 May 2024).

57. Andersson-Sköld, Y.; Lars, N. Effective and sustainable flood and landslide risk reduction measures: An investigation of two
assessment frameworks. Int. J. Disaster Risk Sci. 2016, 7, 374–392. [CrossRef]

58. Ramesh, M.V.; Thirugnanam, H.; Mohanan, N.K.; Singh, B.; Ekkirala, H.C.; Guntha, R. Community Scale Landslide Resilience:
A Citizen-Science Approach. In Progress in Landslide Research and Technology 2023; Alcántara-Ayala, I., Arbanas, Z., Huntley,
D., Konagi, K., Arbanas, S.M., Mikš, S., Ramesh, M.V., Sassa, S., Eds.; Springer: Cham, Switzerland, 2023; Volume 2, Issue 2.
[CrossRef]

59. Kocaman, S.; Anbaroglu, B.; Gokceoglu, C.; Altan, O. A review on citizen science (CitSci) applications for disaster management.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 301–306. [CrossRef]

60. Paul, J.D.; Buytaert, W.; Allen, S.; Ballesteros-Cánovas, J.A.; Bhusal, J.; Cieslik, K.; Supper, R. Citizen Science for Hydrological Risk
Reduction and Resilience Building. Wiley Interdiscip. Rev. Water 2018, 5, e1262. [CrossRef]

61. Mechler, R.; Czajkowski, J.; Kunreuther, H.; Michel-Kerjan, E.; Botzen, W.; Keating, A.; McQuistan, C.; Cooper, N.; O’Donnell, I.
Making Communities More Flood Resilient: The Role of Cost Benefit Analysis and Other Decision-Support Tools in Disaster
Risk Reduction 2014. Available online: https://pure.iiasa.ac.at/id/eprint/11193/1/Mechler%20et%20al%20White%20paper%
20Making%20communities%20more%20flood%20resilient%20-%20the%20role%20of%20cost-benefit%20analysis%20and%20
other%20decision-support%20tools%202015.pdf (accessed on 21 May 2024).

62. Galve, J.P.; Cevasco, A.; Brandolini, P.; Piacentini, D.; Azañón, J.M.; Notti, D.; Soldati, M. Cost-based analysis of mitigation
measures for shallow-landslide risk reduction strategies. Eng. Geol. 2016, 213, 142–157. [CrossRef]

63. Lyu, H.-M.; Yin, Z.-Y. An improved MCDM combined with GIS for risk assessment of multi-hazards in Hong Kong. Sustain.
Cities Soc. 2023, 91, 104427. [CrossRef]

64. Righi, E.; Lauriola, P.; Ghinoi, A.; Giovannetti, E.; Soldati, M. Disaster Risk Reduction and Interdisciplinary Education and
Training. Prog. Disaster Sci. 2021, 10, 100165. [CrossRef]

65. Lahiri, S.; Snowden, B.; Gu, J.; Krishnan, N.; Yellin, H.; Ndiaye, K. Multidisciplinary Team Processes Parallel Natural Disaster
Preparedness and Response: A Qualitative Case Study. Int. J. Disaster Risk Reduct. 2021, 61, 102369. [CrossRef]

66. Murray-Rust, P. Open Data in Science. Nat. Preced. 2008. [CrossRef]
67. Istat. Atti del 9◦ Censimento Generale Dell’industria e dei servizi e Censimento Delle Istituzioni Non Prot. Le Sezioni di Censi-

mento 2016. Available online: https://www.istat.it/it/files//2016/02/Atti-CIS_Fascicolo_5.pdf (accessed on 12 April 2024).
68. Raduszynski, T.; Numada, M. Measure and Spatial Identification of Social Vulnerability, Exposure and Risk to Natural Hazards in

Japan Using Open Data. Sci. Rep. 2023, 13, 664. [CrossRef] [PubMed]
69. Karanja, J.; Lawrence, M.K. Scale Implications and Evolution of a Social Vulnerability Index in Atlanta, Georgia, USA. Nat.

Hazards 2022, 113, 789–812. [CrossRef]
70. Tate, E.; Rahman, M.d.A.; Emrich, C.T.; Sampson, C.C. Flood Exposure and Social Vulnerability in the United States. Nat. Hazards

2021, 106, 435–457. [CrossRef]
71. Lapietra, I.; Colacicco, R.; Capolongo, D.; La Salandra, M.; Rinaldi, A.; Dellino, P. Unveiling Social Vulnerability to Natural

Hazards in the EEA and UK: A Systematic Review with Insights for Enhanced Emergency Planning and Risk Reduction. Int. J.
Disaster Risk Reduct. 2024, 108, 104507. [CrossRef]

72. Rizzo, A.; Vandelli, V.; Buhagiar, G.; Micallef, A.S.; Soldati, M. Coastal Vulnerability Assessment along the North-Eastern Sector
of Gozo Island (Malta, Mediterranean Sea). Water 2020, 12, 1405. [CrossRef]

73. Batista, E.F.; De Brum Passini, L. Development and Application of a Social Vulnerability Index (SOVI) to Landslide Risk Analysis
in Ribeira Medium Valley, Brazil. Obs. Econ. Latinoam. 2023, 21, 2801–2829. [CrossRef]

74. Guillard-Gonçalves, C.; Zêzere, J. Combining Social Vulnerability and Physical Vulnerability to Analyse Landslide Risk at the
Municipal Scale. Geosciences 2018, 8, 294. [CrossRef]

75. Bera, S.; Balamurugan, G.; Oommen, T. Indicator-Based Approach for Assigning Physical Vulnerability of the Houses to Landslide
Hazard in the Himalayan Region of India. Int. J. Disaster Risk Reduct. 2020, 50, 101891. [CrossRef]

76. Chen, Q.; Chen, L.; Gui, L.; Yin, K.; Shrestha, D.P.; Du, J.; Cao, X. Assessment of the Physical Vulnerability of Buildings Affected
by Slow-Moving Landslides. Nat. Hazards Earth Syst. Sci. 2020, 20, 2547–2565. [CrossRef]

77. Tilloy, A.; Malamud, B.D.; Winter, H.; Joly-Laugel, A. A review of quantification methodologies for multi-hazard interrelationships.
Earth-Sci. Rev. 2019, 196, 102881. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://archive.northsearegion.eu/files/repository/20130814132256_SAWA_Final_Report_Summary.pdf
http://archive.northsearegion.eu/files/repository/20130814132256_SAWA_Final_Report_Summary.pdf
https://doi.org/10.1007/s13753-016-0106-5
https://doi.org/10.1007/978-3-031-44296-4_8
https://doi.org/10.5194/isprs-archives-XLII-3-W4-301-2018
https://doi.org/10.1002/wat2.1262
https://pure.iiasa.ac.at/id/eprint/11193/1/Mechler%20et%20al%20White%20paper%20Making%20communities%20more%20flood%20resilient%20-%20the%20role%20of%20cost-benefit%20analysis%20and%20other%20decision-support%20tools%202015.pdf
https://pure.iiasa.ac.at/id/eprint/11193/1/Mechler%20et%20al%20White%20paper%20Making%20communities%20more%20flood%20resilient%20-%20the%20role%20of%20cost-benefit%20analysis%20and%20other%20decision-support%20tools%202015.pdf
https://pure.iiasa.ac.at/id/eprint/11193/1/Mechler%20et%20al%20White%20paper%20Making%20communities%20more%20flood%20resilient%20-%20the%20role%20of%20cost-benefit%20analysis%20and%20other%20decision-support%20tools%202015.pdf
https://doi.org/10.1016/j.enggeo.2016.09.002
https://doi.org/10.1016/j.scs.2023.104427
https://doi.org/10.1016/j.pdisas.2021.100165
https://doi.org/10.1016/j.ijdrr.2021.102369
https://doi.org/10.1038/npre.2008.1526.1
https://www.istat.it/it/files//2016/02/Atti-CIS_Fascicolo_5.pdf
https://doi.org/10.1038/s41598-023-27831-w
https://www.ncbi.nlm.nih.gov/pubmed/36635379
https://doi.org/10.1007/s11069-022-05324-9
https://doi.org/10.1007/s11069-020-04470-2
https://doi.org/10.1016/j.ijdrr.2024.104507
https://doi.org/10.3390/w12051405
https://doi.org/10.55905/oelv21n5-024
https://doi.org/10.3390/geosciences8080294
https://doi.org/10.1016/j.ijdrr.2020.101891
https://doi.org/10.5194/nhess-20-2547-2020
https://doi.org/10.1016/j.earscirev.2019.102881

	Introduction 
	Materials and Methods 
	Study Area Selection and Hazard Assessment 
	Social Vulnerability Evaluation and Hazard Integration 

	Results 
	Municipality Selection 
	Hazard Assessment 
	Qualitative Evaluation 
	Quantitative Investigation 

	Social Vulnerability Evaluation 
	Integration between Social Vulnerability, Single-Hazard, and Multi-Hazard Classes 

	Discussion and Conclusions 
	Integration Studies at the Sub-Municipality Level as a Tool for Emergency Planning 
	Limitations and Suggestions 

	References

