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Abstract: Depth map estimation is crucial for a wide range of applications. Unfortunately, it often
presents missing or unreliable data. The objective of depth completion is to fill in the “holes” in a
depth map by propagating the depth information using guidance from other sources of information,
such as color. Nowadays, classical image processing methods have been outperformed by deep
learning techniques. Nevertheless, these approaches require a significantly large number of images
and enormous computing power for training. This fact limits their usability and makes them not
the best solution in some resource-constrained environments. Therefore, this paper investigates
three simple hybrid models for depth completion. We explore a hybrid pipeline that combines a
very efficient and powerful interpolator (infinity Laplacian or AMLE) and a series of convolutional
stages. The contributions of this article are (i) the use a Texture+Structuredecomposition as a pre-filter
stage; (ii) an objective evaluation with three different approaches using KITTI and NYU_V2 data
sets; (iii) the use of an anisotropic metric as a mechanism to improve interpolation; and (iv) the
inclusion of an ablation test. The main conclusions of this work are that using an anisotropic metric
improves model performance, and the ablation test demonstrates that the model’s final stage is a
critical component in the pipeline; its suppression leads to an approximate 4% increase in MSE. We
also show that our model outperforms state-of-the-art alternatives with similar levels of complexity.

Keywords: depth completion; depth map interpolation; infinity Laplacian; convolutional neural
networks; Texture+Structure decomposition; anisotropic metric; KITTI data set; NYU_V2 data set

1. Introduction

Depth data have become a key source of information for a wide variety of applications,
such as robotics and augmented reality. Notably, a depth map is an image whose pixels
represent the distance from the object’s surface to a fixed point in the scene (typically a sen-
sor capturing the data). There are many sensors to acquire depth data, including structured
light and RealSense sensors, ToF (Time-of-Flight) cameras, LiDAR (Light Detection and
Ranging), and stereo vision. Regardless of the sensor type, depth data are characterized
by low quality in terms of missing data, noise, and errors. Missing data are particularly
dramatic, since in some cases the depth maps present large areas with no information or
“holes”. Completing depth information in those cases becomes an extremely challenging
interpolation problem.

Hence, we can define the depth completion problem as the problem of interpolating
or filling in the missing gaps in a depth image. It was originally tackled using classical
interpolation techniques in image processing and later using more sophisticated inpainting
methods. These last methods performed well in simple scenarios at high computational
costs. Unfortunately, they presented limitations in more complex real-world situations.
For that reason, researchers explored other approaches, such as bilateral filtering and non-
local means filtering, which leverage local image features and image statistics to propagate
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depth information across empty regions. These models achieved significant improvement
but still performed poorly in some real-world situations, for instance, in the presence of
large holes corresponding to portions of the reference (color) image without significant
texture. It was not until the arrival of deep learning that depth completion experienced
a breakthrough, leading to high-quality maps. Nevertheless, despite the success of deep
learning algorithms, classical approaches remain relevant in some applications, mainly
due to their explainability, computational efficiency, and ability to operate on resource-
constrained platforms.

In this work, we explore a non-deep-learning approach that provides good-quality
depth maps in constrained environments. We propose a simple and flexible model that
requires few images for training and can, consequently, run on a laptop with only one GPU;
thus, it represents a low-cost implementation alternative. This paper extends the work
presented at the 14th International Workshop on Parallel and Distributed Algorithms and
Applications, PDAA [1]. The contributions of this manuscript are as follows:

1. We employ a balanced metric, which considers a balance term between spatial and
photo-chromatic distance.

2. We evaluate the impact of an additional Texture+Structure decomposition stage.
3. We propose two variations of the previous interpolation model.
4. We apply an ablation test to our model in the NYU_V2 data set.

1.1. Examples of Incomplete Depth Maps

Here, we illustrate some examples of incomplete depth maps (Figure 1) caused either
by sensor misinterpretations, estimation errors, or other factors. Some of these errors may
be due to occlusions, transparency, or reflections, among other reasons.

(a) (b) (c) (d)

Figure 1. Examples of depth maps containing large areas of missing data. (a) Reference color
image. (b) Depth map, holes (in black) due to occlusions. (c) Color reference image; a white square
indicates reflections. (d) Depth map with holes in areas of high reflection due to uncertainty in the
stereo-matching process.

1.2. Organization of This Manuscript

In the next section, we present a brief state of the art and discuss relevant approaches
in the field. Next, Section 3 presents our approach, including the underlying mathematical
model and the data set employed for training and evaluation. Section 4 details the process
for estimating the model parameters. Section 5 presents the performance evaluation. Finally,
the conclusion is stated in Section 6.

2. State of the Art

Many image interpolation-related problems have used a scene’s color information to
guide the propagation of some other type of information, such as depth inpainting and
image enhancement [2]. Depth completion is not an exception. Similarly, the geometry of
color images has been used to drive a diffusion process completing sparse depth maps [3].
A bilateral filter is one of the most classic examples of a guided method. This image-domain
filter considers regional color characteristics, such as edges and smooth areas, to slow or
accelerate depth propagation, respectively.
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More recently, deep learning techniques have taken the lead. For instance, Lu et al. [4] pro-
posed completing a sparse depth image jointly by reconstructing a gray-level scene image,
using convolutional neural networks. They evaluated this method using the KITTI [5] data
set, which is a publicly available data set and one of the most popular databases for perfor-
mance evaluation in the field. Another deep learning approach by Yang et al. [6,7] utilizes
a CNN-based model to interpolate depth data from a Kinect sensor database.

Another example is the work of Imran et al. [8]. Their proposal focused on preventing
the generation of mixed-depth pixels, that is, pixels that are neither background nor
foreground, which are typical in object discontinuities. They proposed a new and interesting
representation of pixels called Depth Coefficients (DCs). Hence, the loss function used to
train the network is based on the DC representation, leading to a depth interpolation that
tries to make more accurate decisions on the image edges. Zhang et al. [9] additionally
proposed a model to complete depth maps based on an RGB image and a sparse depth map.
Using the RGB image and a deep neural network, the authors estimated the normals of the
surfaces in the scene. Using this information and the raw depth data acquired by a sensor,
the authors minimized a depth estimation error for the whole image. They evaluated their
proposal using their own data set. The results show that it outperforms classical models
such as TGV [10] and bilateral filters.

In the work of [11], the authors proposed a model to complete depth data. Their pro-
posal used a unified CNN framework incorporating two features: (a) a model considering
the relation between normals and surfaces in the depth value, and (b) a model predicting
the confidence of the depth data. In this way, this model predicts surface normals, depth,
and depth confidence values simultaneously. These estimations are inputs for a refinement
module in order to obtain the final depth estimation. Evaluations of the model in the KITTI
and NYU_V2 data sets show that the model presents state-of-the-art performance.

The work in [12] presents a non-local depth completion model, which is different
from other non-local models because the proposal dynamically selects more informative
neighbors. The depth completion is iteratively refined using confidence values assigned
to the depth data. The model also incorporates learned affinity to improve the accuracy
of depth estimation, avoiding the “mixed depth” in the edges of the objects in the scene.
Experiments show that the proposal outperforms DeepLidar and FuseNet [13] in the KITTI
data set.

In [14], a CNN model that fuses sparse depth data and color information to complete
a depth map is presented. The model uses two approaches: one processes the color image,
and the second refines the depth completion. The outputs from both approaches are
combined in order to improve the depth completion. Furthermore, the 3D information
of the scene is used to improve the depth estimation. The model achieves state-of-the-art
performance in the KITTI data set, outperforming contemporary models.

Lin et al. [15] proposed a model using Dynamic Spatial Propagation Networks. This
type of network dynamically estimates the parameters of an affinity. The authors proposed
a diffusion suppression procedure to stop diffusion close to the edges of the color image.
The most relevant feature of this model is its rapid convergence compared to models with
similar architectures.

The paper in [16] presents a deep learning model for depth completion that creates
content-dependent and spatially variant kernels. The authors proposed a new convolutional
factorization to store the large amount of data associated with these kernels’ parameters.
This new factorization reduces the computational cost of the model. The proposed model
outperforms others in the NYU_V2 and KITTI data sets.

Nevertheless, one of the most well-known limitations of deep learning depth com-
pletion models is their huge number of parameters (requiring millions of parameters).
Researchers are aware of this drawback, and some improvements have been explored in
this direction, for instance, in the work of Bai et al. [17]. Their proposal can reduce the
number of parameters by up to 96% compared to similar approaches. Thanks to that, the au-
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thors can deploy their model on an FPGA, achieving real-time performance (interpolating
11.1 images per second).

Although these are relevant advances, there is still a need to develop more computa-
tionally efficient (non-deep-learning) solutions capable of providing relatively high-quality
depth maps with much less computational effort. In this paper, we follow this direction,
presenting a simple interpolator based on the infinite Laplacian. This model has already
been successfully applied in other image interpolation problems, such as the interpolation
of optical flow on video in Lazcano et al. [3].

The origins of this interpolator trace back to the foundational work of Caselles et al. [18].
The authors applied an axiomatic approach to data interpolation, stating a set of properties
that a well-behaved interpolator should hold. One of the interpolators holding the full set
of axioms was the infinity Laplacian.

More recently, Lazcano et al. [19] also proposed a practical implementation of the
infinity Laplacian and the biased infinity Laplacian models. One of the most relevant
contributions was the proposal of a Euclidean metric that included a spatial and a color
term. The infinity Laplacian provided the best results for upsampling images in the context
of the Middlebury data set.

In addition to the infinity Laplacian, there is a panoply of computationally efficient
techniques in the literature. For instance, in [20], the authors segmented the reference
color image using superpixels and the SLIC algorithm. A 2D linear interpolation approach
was used to generate a depth-value plane using the depth information in each superpixel.
The model incorporated heuristics and simple rules to tackle depth estimation when
segmentation errors occurred. The results outperformed the bilateral filtering approach.

A more recent and interesting approach is the work by Saidi et al. [21]. The authors
proposed a real-time algorithm capable of estimating up to 111 depth maps per second.
Unfortunately, the estimated depth maps presented missing or low-confidence data.

Table 1 summarizes the number of parameters, GPUs, and images in the training set
reported in the literature of cited methods.

Table 1. Model training comparison table.

Order Number Model Number of
Parameters

Number of
GPUs

Number of
Images in the
Training Set

1 Eldesokey et al. [22] 330.000 - -
2 Lu et al. [4] - 2 85,898
3 Bai et al. [17] 134.000 1 85,898
4 Lin et al. [15] - 4 50,000

5 Morpho
Networks [23] - 1 4300

6 Chen et al. [24] - 8 -

Table 1 shows that most models use thousands of images for training and more than
one GPU, and two report thousands of parameters to be estimated.

Last but not least, it is important to mention that some consensus has been reached
by the depth completion community regarding performance evaluation. Researchers used
well-established data sets, which include clear evaluation protocols, to benchmark their
solutions. This article will use two popular data sets: KITTI [5] and NYU_V2 [25].

3. Materials and Methods

In this section, we present the use of the infinity Laplacian, or AMLE (Absolutely
Minimizing Lipschitz Extension), for the interpolation of sparse depth maps. We selected
the infinity Laplacian because it is (i) simple to solve, (ii) fast to compute, and (iii) easy to
implement. As we will explain in Section 3.7, the infinity Laplacian has several parameters,
requiring a small training set to estimate them.
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We embedded the infinity Laplacian in a pipeline, considering convolutional stages to
enforce features or filter noise. In the following subsections, we explain the interpolation
model and the pipeline.

3.1. Depth Interpolation Models

We used the infinity Laplacian to interpolate or complete the available depth data.
The infinity Laplacian model was initially proposed by Aronsson in the 1960s, and it is
the simplest interpolator that satisfies a set of axioms [18]. We will explain the infinity
Laplacian in Section 3.7.

3.2. Pipeline

Figure 2 shows the proposed pipeline to complete depth maps. The input to the
pipeline is a CIE-Lab reference image. The pipeline includes a feature-extraction convolu-
tional stage, an interpolation stage, and a noise-removal convolutional stage.

L-CONVOLUTION-MAXPOOL

a-CONVOLUTION-MAXPOOL

b-CONVOLUTION-MAXPOOL (CS1)

FINAL CONVOLUTION (CS2)

INTERPOLATOR

,

,

Figure 2. Proposed pipeline structure. It consists of three steps. CS1 extracts color features from the
reference image using Gabor filters. Then, the algorithm propagates the acquired available depth
data, with the guidance of the color image, to all regions of the sparse depth map by solving the
infinity Laplacian equation (interpolator). Finally, we use a convolution stage (CS2) to eliminate
outliers and noise from the completed depth map.

3.2.1. Convolutional Stage (CS1)

We processed each color component (L, a, b) of the reference image with a certain
number of Gabor filters, NFilt (NFilt = 1, ..., 8), to extract the color features. The Gabor
filters and their parameters are as follows:

fodd(x′, y′) = e
(
− ∥x∥

2σ2

)
sin
(
wx′

)
feven(x′, y′) = e

(
− ∥x∥

2σ2

)
cos
(
wx′

)
,

(1)
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where
x′ = x cos(θ) + y sin(θ)

y′ = −x sin(θ) + y cos(θ).
(2)

x = (x′, y′), θ is the rotation angle, and w =
2π

λ
is the spatial frequency.

Then, we max-pooled the output of the filters in each color component and normalized
the output to the range 0–255. Finally, we concatenated the normalized color components
to create a color feature image. Figure 3 shows some examples of processed images.

(a) (b) (c)

(d) (e) (f)

Figure 3. Examples of color reference images processed by the first convolutional stage. Figures
(a–c) show the color reference image extracted from the KITTI data set. In (d–f), we present their
respective output after being processed by the first convolutional stage (color feature images). We
observe in (d–f) that the processing mainly emphasizes horizontal edges in order to improve the
diffusion process.

For the examples shown, the first stage enforces horizontal edges due to the character-
istics of the images. These images were acquired by a horizontal laser scan using a LiDAR
sensor, which is why the horizontal edges were particularly relevant to drive diffusion.

The parameters used for each one of the Gabor filters were estimated through a
training process. We will detail this process in Section 4.

3.2.2. Interpolator (Infinity Laplacian)

As shown in Figure 2, the central element of the proposal is the infinity Laplacian
interpolator. The infinity Laplacian takes two inputs: a color reference image and a sparse
depth map. The model interpolates the available depth data, guided by the color reference
image. This interpolation is achieved by solving the degenerated second-order partial
differential equation, the infinity Laplacian, using the available depth data. The solution of
the infinity Laplacian propagates the available data to the empty regions. This propagation
is performed through a diffusion process based on an anisotropic metric, which is explained
in Section 3.7.

3.3. Final Convolutional Stage (CS2)

In this stage, we process the output of the infinity Laplacian by a bank of average
filters, eliminating noise and outliers. The eight parameters of the filters are estimated in
the training stage (see Section 4).

3.4. Pipeline with a Variable Structure

The proposed pipeline can dynamically change the order in which the stages process
the images (processing sequence). As mentioned earlier, the order depicted in Figure 2 is
CS1–Interpolator–CS2, but depending on a boolean parameter, the processing sequence can
be CS2–Interpolator–CS1. The dimensions and number of filters in each stage are adjusted
to allow the processing sequence to be inverted. The idea behind this operation is that the
structure of the model switches during training. Once the parameters of the model are
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determined, they are set into the pipeline, and after that, the model is used to process the
validation set.

3.5. Variable Number of Filters

The Gabor and average filters in our proposal are variable, ranging from 1 to 8 and 1 to
9, respectively. Only two parameters define the number of used filters (NFilt and NFilt2).
These parameters are estimated during the training and set after that.

3.6. Texture+Structure Decomposition

An image I(x) can be decomposed into its structural (IS(x)) and textural (IT(x)) compo-
nents using the Rudin–Osher–Fatemi (ROF) total variation denoising model. The structural
component is obtained by solving for the intensity values of the image I(x):

min
IS

∫
Ω

{
(|∇IS(x)|+

1
2θ

|IS(x)− I(x)|2
}

dx (3)

where I(x) is the original image, Ω ⊂ R2 its domain, and θ ∈ R. We remark that IT(x) =
I(x)− IS(x) ∀x ∈ Ω.

We used the Texture+Structure decomposition to pre-process the color reference image.
This way, the texture components (high spatial variations) and the structure of the image
(low spatial variations) were extracted from the reference image. Figure 4 shows an example
of the Texture+Structure decomposition.

(a) (b) (c)

Figure 4. Example of Texture+Structure decomposition. (a) Original color reference image. (b) Low
spatial variation part of the image. (c) High spatial variation part of the image (texture component).

In Figure 4a, we show the original image; in Figure 4b, the structure component; and
in Figure 4c, the texture component.

3.7. Infinity Laplacian

The interpolator used to complete the sparse depth maps is the infinity Laplacian,
or AMLEhows. The infinity Laplacian is the simplest model that holds a set of axioms for
interpolators [18]. Suppose Ω ⊂ R2 is the image domain. For each incomplete depth map
u, we solve the following problem:

∆∞,gu = 0 ∈ Ω, (4)

where ∆∞,gu is the infinity Laplacian, g is the metric, and u is the interpolated depth data.
Let us consider the image domain Ω as a rectangle, let Ω be a domain in a smooth compact
two-dimensional manifold M embedded in R3. The interpolated surface u, or manifold,
is obtained by solving the infinity Laplacian, Equation (4), in the Ω domain. Considering
solving the infinity Laplacian in this 2D surface M, the infinity Laplacian is stated as

∆∞,gu := D2
Mu

( ∇u
|∇u| ,

∇u
|∇u|

)
, (5)

which is a degenerated elliptic PDE. Let us consider the depth map u as u : Ω ⊂ R2 → R,
and the available data are located in O ⊂ Ω, i.e., u|∂O = θ. Considering the boundary
condition for the infinity Laplacian, we set the available depth data to a constant value θ on
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the domain’s boundary. This fact ensures that the completed depth map agrees with the
available data at the boundary.

As a proof of concept, we will show an example of data interpolation using the infinity
Laplacian. Figure 5 shows a simple example of depth completion using the infinity Laplacian.

(a) (b) (c)

Figure 5. Example of depth completion by the infinite Laplacian. We show the reference image in
(a). The image consists of a white rectangle, and in its center, there is a black circle. We show the
depth data in (b). The orange region represents a constant depth of 0.5; in the center, the circle in blue
represents the lack of data. In the center of the blue circle, there is only a single value equal to 0.68.
We show the interpolated depth map in (c). The infinity Laplacian generates a cone, connecting the
circular contour with the point in the circle’s center.

Figure 5 shows a depth map in (a) with a circular hole to be completed. Furthermore,
the circle has a unique depth data point in its center. Let 0⃗ be the coordinates of the depth
data point in the center of the circle, and let C be the circular contour of radius 60 centered
at 0⃗. Then, we state that u

∣∣⃗
0 = 0.68 and u

∣∣
C = 0.5. We solve the infinity Laplacian in

Equation (4), obtaining the cone shown in Figure 5c.
In Figure 6, we show a second simple example where we complete a two-level depth

image given random depth samples.

(a) (b) (c)

Figure 6. Example of depth map completion. (a) shows a two-color reference image. (b) shows
random samples of a two-level depth map. White values represent the value 1, and orange values
represent the depth value 0.5. Figure (c) shows a 3D representation of the completed depth map. We
observe the two-level surface.

Figure 6a shows the reference color image of this second toy example. Figure 6b
shows the sampled depth map. We sampled 2% of the depth data image, which is around
1300 samples. The completed two-level depth data are plotted in 3D in Figure 6c.

Equation (4) was discovered by Aronsson in the nineteen-sixties as an Euler–Lagrange
equation for the problem of the Absolutely Minimizing Lipschitz Extension (or AMLE):

min
u

lim
p→∞

{∫
Ω
|∇u|pdx

}
, (6)

where u is the extension of the available data. Computing the Euler–Lagrange equation of
Equation (6), we have

∇ · (∥∇u(x)∥p−2∇u(x)) = 0, (7)
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that is to say,
∥∇u(x)∥p−2(∆u(x) + (p − 2)∆∞u(x)) = 0, (8)

and when p → ∞, we have
∆∞u(x) = 0, (9)

where ∆∞u(x) is the Laplacian of u computed in the gradient direction.
The infinity Laplacian model enables the creation of cones and soft surfaces, which

could be more suitable for completing urban scenes.

3.8. Variations in the Infinity Laplacian

The biased infinity Laplacian is a variation of the original in Equation (9) used in [19].
This operator additionally considers the modulus of the gradient of u:

∆∞u(x) + c|∇u(x)| = 0, (10)

where the c parameter is a positive real value. For the value c = 0, we recover the infinity
Laplacian. We state variations in the biased infinity Laplacian, namely the balanced biased
infinity Laplacian adding a balance term γ(x):

γ(x)∆∞u(x) + (1 − γ(x))c|∇u(x)| = 0, (11)

The balance term γ : Ω ⊂ R2 → [0, 1] can be explicitly computed as

γ(x) =
1

1 + eβγ(|∆∞u(x)|−τγ |∇u(x)|) , (12)

where βγ and τγ are real positive parameters that will be estimated in the training stage.
γ(x) is a balanced map ∀x ∈ Ω; depending on the necessity of the completion process,
the model balances between infinity Laplacian and the eikonal operator. A second variation
of this proposal is called the double balanced infinity Laplacian, which considers the infinity
Laplacian using the eikonal operators in Equation (11):

γ(x)
2

(
ϕ(x)∥∇u(x)∥+ξ + (1 − ϕ(x))∥∇u(x)∥−ξ

)
+ (1 − γ(x))c|∇u(x)| = 0, (13)

where ϕ(.) is a similar mechanism to γ(x), defined as

ϕ(x) =
1

1 + eβϕ(|∥∇u(x)∥+ξ |−τϕ |∥∇u(x)∥−ξ |) , (14)

with βϕ and τϕ ∈ R+. We remark that if ϕ(x) = γ(x) = 0.5, we recover the biased
infinity Laplacian.

3.9. Metric

Let us consider the reference color image as a function from the Ω domain to the color
space, i.e., I : Ω ⊂ R2 → R3, and the metric dxy : Ω ⊂ R2 → R, conforming to the manifold
M = (Ω, dxy). Considering M, we solve Equation (4). We explored different metrics to
estimate the shape of the manifold in order to better approximate the geodesic distance.
In a preliminary work [19], we tested the following metric:

dx,y = κx∥x − y∥2 + κc ∑
i∈L,a,b

|I(x)− I(y)|2.

where the constants κx and κc ∈ R are estimated in the training stage. This metric comprises
two terms: a spatial distance term ∥x − y∥2 and a photo-chromatic distance term ∥I(x)−
I(y)∥2. The first term is the spatial distance of pixels x and y in the image domain Ω.
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The second term is the photo-chromatic distance in the CIE-Lab color space between I(x)
and I(y). To give more flexibility to this metric, we relaxed the exponents as follows:

dx,y =

[
κx∥x − y∥s + κc ∑

i∈L,a,b
|I(x)− I(y)|p

]q

where p, q, s ∈ R+. We also estimated the exponent values in the training stage.
We stated (in our work presented in [1]) the following metric:

dx,y =
(

κx[(x − y)T A(x − y)]s + κc

[
(I(x)− I(y))TC(I(x)− I(y))

]p)q
, (15)

where A and C are positive definite matrices, and dx,y is called the positive definite metric.
In this work, we propose an anisotropic metric, which considers a balance term θ(x)

between spatial distance and photo-chromatic distance,

dx,y =
[
κxθ(x)[(x − y)T A(x − y)]s + κc(1 − θ(x))

[
(I(x)− I(y))TC(I(x)− I(y))

]p]q
, (16)

where θ(x) is defined by

θ(x) =
1

1 + eβθ(Dσ(x)−τθ Dϕ(x))
,

where Dσ(x) = ∥x − y∥s is the spatial distance, Dϕ(x) = log

(
1 + ∑

i∈L,a,b
|I(x)− I(y)|p

)
is the photo-chromatic distance, and βθ , τθ ∈ R+. On the one hand, if Dσ(x) ≫ Dϕ(x),
the difference between Dσ(x) − τθ Dϕ(x) should be large, and positive. It means that
eβθ(Dσ(x)−τθ Dϕ(x)) should be also large, and finally θ(x) should be small, i.e., θ(x) ≈ 0.
The metric is more confident in the photo-chromatic term.

On the other hand, if Dσ(x) ≪ Dϕ(x), the difference between Dσ(x)− τθ Dϕ(x) should
be negative. It means that eβθ(Dσ(x)−τθ Dϕ(x)) should be small, ≈ 0, that is to say, that

1

1 + eβθ(Dσ(x)−τθ Dϕ(x))
≈ 1, meaning that the metric is more confident in the spatial term.

As a proof of concept of θ(x), we show estimation examples of the balance term considering
a color reference image in Figure 7.

(a) (b) (c)

(d) (e) (f)

Figure 7. Example of θ(x) map in three example images. Figures (a–c) show considered reference
color images. Figures (d–f) show color-coded values of θ(x) balance map. In magenta, we show
largest values of θ(x) ( 0.60 ≤ θ(x) ≤ 0.7). In blue and cyan, we show intermediate values of
0.43 < θ(x) < 0.60. In green, we show lowest values of θ(x) ( 0.33 < θ(x) < 0.43).

Figure 7 shows color-coded values of the θ(x) map. Figure 7a–c are reference color
images already shown in Figure 3. In Figure 7d–f, we color-coded the values of the map
θ(x). The metric is more confident in the spatial term in magenta regions. Magenta
regions represent objects with shadows and highly textured regions. In blue, we represent
0.43 < θ(x) < 0.6, which means that the metric is confident in the spatial term. We can see
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that the θ(x) values are less than 0.5 in cyan areas, which is the sky in the reference color
image, which means that the metric is confident of both the photo-chromatic and spatial
term. In light-green regions, θ(x) has the smallest values, which means that the metric is
more confident in the photo-chromatic term.

3.10. Geodesic Metric Approximation

Let us consider the discrete image domain Ω ⊂ R2 as a grid, and let x and y be two
points in the grid. We defined a metric dxy in Equation (16) between consecutive points.
The geodesic distance between two points in the grid represents the shortest path joining x
and y, i.e.,

dg(x, y) = min
L

{L : the length of the path joining x and y}, (17)

that is to say, considering a curve {γ(i)}m
i=0 joining x and y in the grid, the length of γ is

given by

Lg(γ) =
m

∑
i=0

dγ(i),γ(i+1). (18)

The geodesic distance dg(x, y) should be computed using Dijkstra’s algorithm. To in-
crease the efficiency of computing the geodesic distance, we approximated the geodesic
distance directly with the following metric:

dg(x, y) ≈ dxy.

This approach offers efficient computation while keeping an acceptable level of ap-
proximation.

3.11. Solving the AMLE Model

For the sake of completeness, we briefly explain the numerical solution of the infinity
Laplacian model as already presented in [26,27]. We remind the reader that the infinity
Laplacian is equivalent to

∆∞,gu =
1
2
(
∥∇u(x)∥+x + ∥∇u(x)∥−x

)
= 0. (19)

where ∥∇u(x)∥+x and ∥∇u(x)∥−x are the positive eikonal operator and negative eikonal
operator, respectively.

3.12. Practical Model Implementation

Given a point x in a neighborhood N (x) of x, the positive eikonal operator is defined as

∥∇u(x)∥+x = max
y∈N (x)

u(y)− u(x)
dxz

, (20)

and the negative eikonal operator is defined as

∥∇u(x)∥−x = min
z∈N (x)

u(z)− u(x)
dxz

. (21)

Let y and z be the locations that maximize Equations (20) and (21), respectively.
With this definition, it is possible to state the infinity Laplacian,

1
2

((
u(y)− u(x)

dxy

)
+

(
u(z)− u(x)

dxz

))
= 0. (22)

Solving for u(x),

u(x) =
dxzu(y) + dxyu(z)

dxz + dxy
. (23)
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The iterated version is

uk+1(x) =
dxzuk(y) + dxyuk(z)

dxz + dxy
(24)

with k ∈ N∪ {0}.

3.13. Numerical Model for the Biased Infinity Laplacian

Taking into account the above definitions (of the biased infinity Laplacian) and substi-
tuting in Equation (10), we have

1
2

(
u(y)− u(x)

dxy
+

u(z)− u(x)
dxz

)
+ c

∣∣∣∣∣u(y)− u(x)
dxy

∣∣∣∣∣ = 0, (25)

which is a linear equation for u(x); consequently, we can solve for u(x):

u(x) =
(1 + 2c sgn(u(y)− u(x)))u(y)dxz + u(z)dxy

(1 + 2c sgn(u(y)− u(x)))u(y) + u(z)
. (26)

As shown in Equation (26), the solution of the biased infinity Laplacian is only the
weighted sum of the u(y) and u(z) values multiplied by the distance of the center of N (x)
to the points y and z, respectively. We remark that

|u(x)− u(y)| = sgn(u(x)− u(y))(u(x)− u(y)).

where sgn() is the sign function.

3.14. Numerical Model for the Balanced Biased Infinity Laplacian

Recalling the balanced infinity Laplacian, we substitute it into Equation (11) to obtain

γ(x)
2

(
u(y)− u(x)

dxy
+

u(z)− u(x)
dxz

)
+ (1 − γ(x))c

∣∣∣∣∣u(y)− u(x)
dxy

∣∣∣∣∣ = 0. (27)

We can solve for u(x):

u(x) =
(1 + 2c(1 − γ(x)) sgn(u(y)− u(x)))u(y)dxz + γ(x)u(z)dxy

(1 + 2c(1 − γ(x)) sgn(u(y)− u(x)))u(y) + γ(x)u(z)
. (28)

3.15. Numerical Model for the Double Balanced Biased Infinity Laplacian

Taking into account the above definition and substituting it into Equation (11), we have

γ(x)
2

(
ϕ(x)

[
u(y)− u(x)

dxy

]
+ (1 − ϕ(x))

[
u(z)− u(x)

dxz

])
+ (1 − γ(x))c

∣∣∣∣∣u(y)− u(x)
dxy

∣∣∣∣∣ = 0. (29)

Solving for u(x),

u(x) =
(ϕ(x) + 2c(1 − γ(x)) sgn(u(y)− u(x)))u(y)dxz + (1 − ϕ(x))γ(x)u(z)dxy

(ϕ(x) + 2c(1 − γ(x)) sgn(u(y)− u(x)))u(y) + (1 − ϕ(x))γ(x)u(z)
. (30)

3.16. Iterative Solution of the Infinity Laplacian Variations

Given an initial solution u0(x), we can compute in each neighborhood N (x) the
values of u(y) and u(z). Then, we iteratively update u(x) using any of the expressions in
Equations (26), (28), or (30), depending on the selected model.

3.17. Data Sets

In this work, we use two publicly available data sets, (1) KITTI and (2) NYU_V2, to
train and validate the proposed models.
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1. KITTI depth Completion Suite [5] consists of 1000 color images and depth data of
urban scenes acquired by a color camera and a LiDAR (Light Detection and Ranging),
respectively, mounted on a vehicle traveling across a city. The vehicle had a color
camera on its top, and as the vehicle traveled across the city, its sensors acquired
synchronized data. Each color image is accompanied by a corresponding sparse depth
map and ground truth, as illustrated in Figure 8.

Figure 8. Examples of reference color images of the KITTI data set, sparse depth maps, and ground
truth. First row: color reference images. Second row: available sparse depth maps. In the third
row, we show the corresponding ground truth. We color-coded the available depth value using a
MATLAB jet color map. In the second and third rows, black means a lack of data, and red and yellow
mean small and large depth values, respectively.

The model was trained using three images extracted from the KITTI data set, with their
corresponding depth maps and their corresponding ground truth. We used the 997
remaining images to evaluate the model’s performance.

2. NYU_V2 data set
The NYU_V2 data set comprises 1449 indoor images and their corresponding depth data
acquired by a structure light sensor. In Figure 9, we show some images of NYU_V2.

Figure 9. Examples of NYU_V2 data set. The first row shows three indoor color images of the
NYU_V2 data set. We show images Img_1199, Img_1372, and Img_1424, respectively. We color-coded
the corresponding depth map in the second row using MATLAB jet colormap: dark red means small
depth values, and bright yellow means large depth values.
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3. Similarly to the previous data set, three images from NYU_V2 were used to train the
model. Images from 1001 to 1449 were used to estimate the model’s performance (as
stated in the corresponding protocol).

3.18. Implementation and Complexity

We implemented the proposed model in C++/Cuda and used MATLAB to implement
the PSO algorithm and to plot the results. The program runs in Linux 22.04 on a laptop
with HP OMEN 16, 16 GB of RAM, a Processor i7-11800H, and an NVIDIA GTX 3070.
We measured the processing time. Our computer processed each image with NIter = 79
iterations, obtaining a running time of 0.08 ms per iteration. This processing time means
that the total processing time is 0.64 ms. Please note that the time to acquire and store the
image was not included. Given the above factors, the processing time can be ≈ 1 ms.

In terms of complexity, every time we interpolated an image, it was processed pixel-
by-pixel. Let N be the number of image pixels, and consider a neighborhood of P pixels
around each pixel x. The central pixel is compared with every pixel of the neighborhood,
leading to

number of operation = O(N × P)

The size of the neighborhood around x is presented in Table 2:

Table 2. Number of points per neighborhood size.

Order Number Neighborhood Size Parameter P

1 3 × 3 9
2 5 × 5 25
3 7 × 7 49
4 9 × 9 81
5 11 × 11 121
6 13 × 13 169

For an image of N = 1216 × 352 = 428032 and a logarithm of log(N) = 12.96, if we
keep 1 ≤ radius ≤ 2, we have O(Nlog(N)) operations.

In Table 3, we report the processing time of our model and other models considered in
this paper.

Table 3. Running time of different models.

Model Processing Time

Our model 1 ms
Eldesokey et al. [22] 20 ms

Lu et al. [4] 50 ms
Bai et al. [17] 90 ms

Imran et al. [8] 150 ms
Lin et al. [15] 160 ms

Morpho. Networks [23] 170 ms
Krauss et al. [20] 840 ms

Conv. Spatial. Prop. Networks [24] 1000 ms

Table 3 shows that our model is approximately an order of magnitude faster than the
other models.

4. Training the Model

To estimate the model parameters, the PSO (Particle Swarm Optimization) algorithm
was applied. In Table 4, we summarize the total number and values of the model parameters:
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Table 4. Parameters of the proposed model.

Parameter Description Number of
Parameters

κx, κc, p, q, s, βα, τα Parameters of the metric 7

βθ , τθ
Parameters of the anisotropic

metric 2

radius Neighborhood size of N (x) 1
niter Number of iterations 1

σj, wj with j = 1,...,8 Parameters of the Gabor
Filters CS1 16

w1j, w2j, w3j, w4j with
j = 1, ..., 9 Weights of the convolutional

filters stage CS2 36

a11, a12 and c11, c12
Coefficients of the matrices A

and C 4

Reversible Sequence order 1

NFilt, NFilt2 Number of filters considered
in

stage CS1 and CS2,
respectively 2

βγ, τγ Parameters of the
balanced infinity Laplacian 2

βϕ, τϕ Parameters of the double
balanced infinity Laplacian 2

Total 74

Each individual in the PSO method is a candidate solution to minimize the Depth
Completion Error, given by 50 random instances of µi ∈ R74 (i = 1, ..., 50). The error
formula is given by

J(µi) =
N

∑
j=1

MSEj(µi) + MAEj(µi), (31)

where N is the number of images in the training set, MSE is the Mean square error,
and MAE is the Mean absolute error. Given the ground truth, we computed the MSE and
MAE errors between the completed depth map and the ground truth of the training set
and evaluated the expression (31).

For completeness, we briefly summarize the PSO algorithm, already explained in [1,26].
In each iteration of the algorithm, the candidate solutions evolve based on the dynamical
equation for their position and velocity:

νt+1
i = ωνt

i + φg(µ
t
i − µg) + φb(µ

t
i − µb), (32)

and
µt+1

i = µt
i + νt

i , (33)

where ω, µi, φg, and φb, νi ∈ R+, and µb, µg represent the best current individual and µg
the best individual of all iterations, respectively. Additionally, we used a saturation for νi.

The training set we used to estimate model’s parameters consisted of three color
reference images with their corresponding incomplete depth maps and ground truth.
The three reference color images selected from the KITTI depth Completion Suite [5] (see
Section 4.2) to train the model are shown in Figure 3.

Figure 10a shows the evolution of the PSO algorithm. We show the fitness of 50 in-
dividuals as the iteration goes on. Figure 10b shows the fitness of the best individual in
each iteration. In Figure 10b, we only observe 30 iterations, which is the stop criteria for
the algorithm.
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Figure 10. Evolution of the PSO algorithm. Using this optimization algorithm, we selected the best
set of parameters for the model. We set the number of individuals, that is, independent realizations,
to 50. (a) Evolution of the depth error (MSE + MAE) of each of the 50 model parameters candidates
and the error evolution over successive iterations. (b) For clarity, the evolution of the best individual
from the previous 50 shown in (a) is shown here.

In Figure 10a, we show the evolution of each candidate µi in the PSO algorithm. We
use 50 individuals, i.e., we have 50 curves in 30 iterations. Each individual is a possible
parameter set that minimizes the MSE + MAE error function, Equation (31). The evolution
of each individual follows the dynamics given by Equations (32) and (33). In each itera-
tion, we compute the performance of each individual or fitness as plotted in Figure 10a.
In Figure 10b, we show the fitness of the best individual for all iterations.

The PSO algorithm was selected because most of the parameters are real numbers. We
discarded other optimization methods that use discrete domains, such as the genetic algo-
rithm. In a previous work [3], we implemented and tested the Elephant Herd Optimization
(EHO) algorithm as an alternative to the PSO algorithm. The results showed that the EHO
was less effective than the PSO algorithm at optimizing our objective function.

4.1. Model Training Difficulties

Several difficulties were encountered during the training process, mainly due to the
initialization of the model’s parameters. Some of them are detailed as follows:

1. In the training stage, we initialized the PSO with 50 instances, with each instance being
a set of random values for the parameters. Some combinations of these parameters
generated invalid models or, in other words, NaN (Not a number) values. CUDA and
MATLAB can handle NaN values, but when MSE and MAE were computed, invalid
models received a performance value of MAX_PERFORMANCE.

2. When we initialized PSO instances, for each component of the instance (or parameter),
we considered a random value from the MIN_VALUE - MAX_VALUE range. This
fact restricted the initial values to be positive and within reasonable ranges.

3. We limited the velocity of the PSO instances using Equation (32), using a value
between −2 and 2.

4. Depth data in the data set are provided in binary format, representing an image
containing a long integer. Each image was converted from long integer format to
floating-point values and saved as a text file. Our code read this text file and completed
the depth data. The output of the model was a floating-point image.
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4.2. Experiments

We trained the model using the KITTI and the NYU_V2 data sets under the following
different scenarios:

1. Using the KITTI data set considering the positive definite metric.
2. Using the KITTI data set considering the anisotropic metric.
3. Using the KITTI data set, considering the biased infinity Laplacian and the anisotropic

metric.
4. Using the KITTI data set, considering the double biased infinity Laplacian and the

anisotropic metric.
5. Using NYU_V2 downsampled 4× considering the positive definite metric.
6. Using NYU_V2 downsampled 4× considering the anisotropic metric.
7. Using NYU_V2 downsampled 8× considering the positive definite metric.
8. Using NYU_V2 downsampled 8× considering the anisotropic metric.
9. Using NYU_V2 downsampled 16× considering the positive definite metric.
10. Using NYU_V2 downsampled 16× considering the anisotropic metric.
11. Using the KITTI data set, we varied the number of images in the training set consider-

ing the anisotropic metric.

Considering each trained model from (1) to (12), we performed the experiments on
the KITTI and NYU_V2 data sets, as summarized in Table 5.

Table 5. Experiments performed with our model in order to obtain MSE + MAE.

Experiment Used Metric Training Set Experiment
Number

1 positive definite
Metric KITTI training set

Interpolation of the
complete KITTI

data set

2 anisotropic metric KITTI training set
Interpolation of the

complete KITTI
data set

3
anisotropic metric +

biased infinity
Laplacian

KITTI training set
Interpolation of the

complete KITTI
data set

4
anisotropic metric +

double biased infinity
Laplacian

KITTI training set
Interpolation of the

complete KITTI
data set

5 positive definite
Metric

NYU_V2 4× training
set

Upsampling of the
complete NYU_V2

4× data set

6 Anisotropic Metric NYU_V2 4× training
set

Upsampling of the
complete NYU_V2

4× data set

7 positive definite
Metric

NYU_V2 8× training
set

Upsampling of the
complete NYU_V2

8× data set

8 Anisotropic Metric NYU_V2 8× training
set

Upsampling of the
complete NYU_V2

8× data set

9 positive definite
Metric

NYU_V2 16×
training set

Upsampling of the
complete NYU_V2

16× data set

10 Anisotropic Metric NYU_V2 16×
training set

Upsampling of the
complete NYU_V2

16× data set

11 Anisotropic Metric KIITI training set
Interpolation of the

complete KITTI data
set
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Figure 11 shows an example of the subsampled depth map. In Figure 11a, we show
the ground truth acquired with a Kinect sensor. In Figure 11b, we show the subsampled
depth map; we took one sample every other 8 × 8 square pixel. Figure 11c shows a cropped
area of Figure 11a and a subsampled version of Figure 11c.

(a) (b) (c) (d)

Figure 11. Example of the subsampled image. We sampled the original depth map in (a) every other
8 × 8 (or 8×) square pixel in (b). In (c), we zoom in on a region (on the bed) of the depth map in (a).
In (d), we show a zoom of the downsampled depth map in (c).

Experiment number 11 considers a varying number of images in the training set.
We trained the model using sets containing 3 to 18 images. In Figure 12, we show the
MSE + MAE error for different numbers of images.

Figure 12. Error MSE + MAE in the training set as a function of the number of images in the
training set.

Figure 12 shows the training error as a function of the number of images. The figure
shows the variability in the MSE + MAE error. The fluctuation in the curve is due to the
PSO algorithm’s random nature and the images’ natural variation. We mention that as we
increased the number of images in the training set, the best-selected individual tended to
require a large number of iterations for the model to converge, from 92 iterations with three
images to 170 iterations with eight images, slowing down the interpolation of the depth
map. Furthermore, the other candidate solutions also required a large number of iterations,
contributing to the slower convergence of the PSO algorithm.

5. Results

This section summarizes the quantitative and qualitative results obtained for the KITTI
and the NYU_V2 data sets.

The KITTI data set contains depth data acquired by the LiDAR sensor. Holes in depth
data can be caused by the occlusion between objects in the scene, sensor misinterpretation,
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transparent objects, reflections, and other effects. In Figure 13, we show examples of this
lack of information, showing the reference color image and the depth ground truth.

(a) (b) (c)

(d) (e) (f)

Figure 13. Examples of lack of information in depth maps. Figures (a–c) show reference color images.
Figures (d–f) show depth map ground truth.

Figure 13 shows color reference images and the corresponding depth ground truth.
In (a), we observe (to the left) a black van, which is highly reflective. In (d), the corre-
sponding depth data present holes on the van surface. LiDAR failed to measure depth
information on that reflective surface. Additionally, occlusion between objects created a lack
of depth information below the protective railing on the right of the image. In Figure 13b,e,
we observe a reflective black car and, to the right, two rocks on a white horizontal flat
surface. The depth map in (Figure 13e) presents holes in the corresponding location of the
black van and on the white reflective surface. In Figure 13c,f, we observe that the depth
map on the yellow car (left) presents holes in its glasses due to transparent objects. Also,
we observe a similar lack of information on the gray car to the right.

5.1. Results Obtained in KITTI Depth Completion Suite

We processed the complete KITTI data set and obtained the MSE and MAE. In Table 6, we
show the MSE and MAE for our proposal, as well as for other models, such as Deep Fusion,
Morphological Operators neural networks [23], and Convolutional Spatial Propagation
Networks [24].

Table 6. Depth Completion Error in KITTI data set.

Model MSE MAE MSE + MAE

Proposed model—
Texture+Structure 1.1395 0.3127 1.4522

Proposed
model—anisotropic

metric
1.1269 0.3107 1.4376

Balanced biased
infinity Laplacian 1.1254 0.3205 1.4459

double balanced
biased infinity

Laplacian
1.1256 0.3223 1.4479

Presented results in
PDAA [1] 1.1397 0.3132 1.4529

Conv. Spatial. Prop.
Networks [24] 1.0196 0.2795 1.2991

Morpho.
Networks [23] 1.0455 0.3105 1.3560

Deep Fuse
Networks [13] 1.2067 0.4299 1.6366

Table 6 shows the quantitative results of our proposal compared to other state-of-
the-art models. Our three proposals outperform our previous work, already presented
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in [1], performing better than the model considering the Texture+Structure decomposition.
Comparing our results with other models, we observe that our proposals outperform
Deep Fuse Networks [13] and perform similarly to Convolutional Spatial Propagation
Networks [24] and Morpho Networks [23]. We emphasize that our proposals are straight-
forward and fast to implement. Completing u(x) involves a simple weighted average and
an iterative procedure.

Table 6 shows that the proposed anisotropic metric model is our best proposal consid-
ering MSE+MAE. It is noteworthy that the model presenting the best performance is the
simplest one, i.e., infinity Laplacian and the anisotropic metric.

In Figure 14, we show qualitative results obtained by our models in the KITTI data set.
Figure 14e,f show the minimum MSE obtained by our model in the KITTI data set, with an
error of 53.78 cm and 52.09 cm, respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 14. Examples of qualitative and quantitative results obtained by our best model in the KITTI
data set. We show color reference images in (a,b). In (c,d), we show the sparse depth map used as
input to our model. In (e,f), we show the completed depth map and the MSE obtained in each image.

In Figure 15, we show qualitative results where our model fails to complete the
task. In Figure 15g–i, we observe that our model cannot recover the car geometry due to
transparent objects or excessive reflections. In these three images, we obtained the most
significant MSE errors. In (g) we obtained MSE = 3.2025, in Figure 15h we obtained
MSE = 3.1126, and in Figure 15i we obtained MSE = 2.7428.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 15. Examples of qualitative and quantitative errors obtained by our model in the KITTI data
set. We show our worst results in the KITTI data set. In (a–c), we show color reference images. We
present the sparse depth map used as input to our model in (d–f). In (g–i), we show the completed
depth map.
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5.2. Experiments Varying the Number of Images in the Training Set

Experiment 11 involved varying the number of images in the training set. We trained
the model and then we evaluated the model using the complete KITTI data set.

In Table 7, we show the experiment’s results.

Table 7. Depth Completion Error obtained varying the number of images in the training set.

Number of Images MSE MAE Error MSE + MAE
in the Training Set cm cm cm

3 1.1254 0.3205 1.4459
4 1.1272 0.3139 1.4411
6 1.2617 0.4237 1.6854
8 1.1355 0.3226 1.4581
10 1.2826 0.4247 1.7073
12 1.1353 0.3234 1.4586
14 1.4396 0.7735 2.2132
16 1.4412 0.7675 2.2087
18 1.4365 0.7603 2.1968

In Figure 16, we simultaneously plot the obtained results in Figure 12 and Table 7. We
show the results in the training set and in the validation set.

Figure 16. Error MSE + MAE in the training and validation set as a function of the number of images
in the training set.

In Figure 16, we observe that as the number of training images increases, the training
error decreases and finally saturates (curve in blue). However, the error in the validation
set tends to increase as the number of images grows (curve in red). This behavior shows the
model is overfitting to the training set. To obtain better results with a large set of training
images, the PSO algorithm may overfit the model, i.e., it can reach MSE + MAE = 0.7029
with ten images.

Considering three or four images in the training set, we had higher training errors;
however, we obtained the minimum error in the validation set.

This study highlights the trade-off between good performance in the training set and
good performance in the validation set. Therefore, our decision to take three images in the
training set is supported by the fact that it leads to the best performance in the validation
set and suggests more generalization capabilities.



Appl. Sci. 2024, 14, 4514 22 of 27

5.3. Results Obtained in NYU _V2

Table 8 shows our results for different subsampling factors in the upsampling task.
We compare the results obtained by our proposal with different models available in the
literature regarding the completion error (MSE).

Table 8. Depth Completion Error obtained by different models in NYU_V2.

Model Error 4× Error 8× Error 16×
cm cm cm

Proposed model 8.31 9.38 17.56
Proposed

model—anisotropic
metric

8.31 9.35 17.16

Bicubic 8.46 14.22 22.32
TGV [10] 6.98 11.23 28.13
Ham [28] 5.27 12.31 19.24

JBU 4.07 8.39 13.25
Park [2] 5.21 9.56 18.10
DJF [29] 3.54 6.20 10.21

We plot the data in Table 8 in Figure 17.
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Figure 17. Comparison of obtained MSE between models: Our proposal, Bicubic, TGV [10], Ham [28],
JBU, and Park [2].

In Figure 17, we observe that our proposal (in blue) outperforms the model Total
Generalized Variation [10], Filtering using static and dynamic guidance [28], and Bicubic
interpolation for upsampling factors of 8× and 16×. The JBU and Ham models [28] perform
better than ours.

In Figure 18, we show quantitative and qualitative results obtained by the proposal
on the images already presented above in Figure 9. Depth maps were downsampled by a
factor of eight.

Figure 18 shows color frames and their corresponding interpolated depth maps.
Figure 18g shows the completed depth map of the downsampled depth map. Similar
results are presented in Figure 18h,i.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 18. Examples of completed depth maps in the NYU_V2 data set. Figures (a–c) show examples
of three color reference images, and (d–f) show their corresponding ground truth, respectively. In (g),
we obtained an MSE = 3.94, in (h) we obtained MSE = 10.69, and in (i) we obtained MSE = 10.90.
In these figures, we show the completed depth maps with an upsampling factor of 8×.

5.4. Ablation Test

We performed an ablation test on our proposed model. In this ablation test, we used
the NYU_V2 data set with a factor 4×. In each evaluation, we disabled one of the stages of
the model while keeping the other stages active. In each test, we turned off the convolution
stage (CS1) and the convolutional stage (CS2). We show the results of the ablation test in
Table 9.

Table 9. Results of the ablation test.

Stage MSE

Complete 8.3136
Convolutional Stage CS1 8.3272

Anisotropic Metric 8.3140
Convolutional Stage CS2 8.6529

In Table 9, we show the results of the ablation test. By turning off the convolutional
stage CS1, we observe that the MSE increases by 0.0146 cm; by changing the anisotropic
metric for the previous metric, the MSE increases by 0.0004 cm. Turning off the convolu-
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tional stage CS2, the MSE error increases by 0.3393 cm. These increments show that given
the data set NYU_V2 and the estimated parameters, the most critical stage of the proposal
is the final stage, which eliminates outliers and noise.

5.5. Discussion

In summary, we present the results obtained by our proposal in the KITTI data set and
in the NYU_V2 data set in Tables 10 and 11, respectively.

Table 10. Best results obtained in KITTI data set.

Model MSE MAE

Anisotropic Metric 1.1269 0.3107

Table 11. Best results obtained in NYU_V2 data.

Model MSE MSE MSE
×4 ×8 ×16

Anisotropic Metric 8.31 9.38 17.56

In Table 10, in the second row, we show the results obtained by our proposal in
the KITTI data set. We obtained an MSE = 1.1269 in the KITTI data set, outperforming
our previous published version of the model in [1] (MSE = 1.1397) and other similar
contemporaneous models [13]. In Table 11, in the NYU_V2 data set, we obtained MSEs
of 8.31, 9.35, and 17.56 with an upsampling factor of 4×, 8×, and 16×, respectively. Our
results outperform many contemporaneous models, such as [28] and [10].

Last but not least, we would like to mention the main limitations of our model and
our evaluation:

1. The model struggled to accurately fill in objects with weak edges in the reference
image. In the case of objects with weak edges, the model failed to accurately prop-
agate the depth information correctly, causing data from different objects to merge.
A possible solution to tackle this problem could be to use a semantic segmentation of
the reference color image and use superpixel boundaries in order to stop diffusion.

2. The model faced challenges when dealing with transparent and reflective objects. We
will tackle this problem in our future work.

3. Performance was evaluated using only two data sets. We consider that having only
two data sets is insufficient to generalize our conclusions. Therefore, we plan to extend
the evaluation to more data sets. In any case, the preliminary results are promising,
particularly in using this technique in real-world scenarios and applications such as
3D reconstruction of an urban scene. An example of the depth completion for an
urban scene is shown in Figure 19.
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Figure 19. A 3D reconstruction of an urban scene from a depth map and a color frame. The first row
shows the 3D interpolated depth of an urban scene. The second row shows the reconstruction of the
3D scene created using the color reference and the completed depth map.

6. Conclusions

This paper extends the work presented in [1], evaluating new variations of the original
model to interpolate incomplete depth maps. The results have been qualitatively and
quantitatively evaluated in two data sets, KITTI and NYU_V2.

The main conclusions of this work are as follows: (i) the use of an anisotropic metric
improves model performance; (ii) the use of a Texture+Structure decomposition as a pre-
filtering stage did not have a significant impact; and (iii) the ablation test showed that the
model’s final stage is an essential component in the pipeline, with its suppression leading
to an MSE increase of approximately 4%. We also show that our model outperforms
state-of-the-art alternatives with similar levels of complexity.

The model shows a performance superior to or at least similar to other state-of-the-art
algorithms that are not based on deep neural networks. Nevertheless, its complexity and
execution were significantly faster than those approaches, outperforming most of them by
an order of magnitude. In the context of the current evaluation, our approach outperformed
TGV [10] and JBU in the NYU_V2 data set, and is comparable to Morpho Networks [23] and
Convolutional Spatial Networks [24].

We varied the number of images included in the training set. The results show that as
the number of considered images grows, the PSO algorithm tends to overfit the model to
obtain better results in the training set. This fact comes at the expense of compromising the
model’s performance in the validation test. The model achieves acceptable performance
when using only three images for training. For training sets using more than three images,
the PSO algorithm selects the best parameters, which present a large number of iterations,
increasing the complexity of the model, making the execution of the model run slowly and
be more demanding on computational resources.

A hybrid approach is advantageous as it combines the generalization capabilities
of classical models with the high precision provided by new features obtained through
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convolutional stages. Also, the flexible structure of the pipeline lets the model reach its
maximum performance considering the used interpolation model.

Experimentally, we evaluated the model only in two data sets: KITTI and NYU_V2.
In order to assess the generalization capabilities of the model, it is necessary to extend the
evaluation to other contemporary data sets, such as Middlebury or Virtual KITTI. Further-
more, the parameter estimator (PSO) has additional parameters that require optimization.
We think it is possible to obtain better performance by optimizing the parameters of the
PSO algorithm. We propose investigating nested optimization to jointly estimate both the
parameters of the model and those of the PSO algorithm.

Future work will consider the implementation of a better approximation of the
geodesic distance, evaluating the model in other data sets (synthetic and real data sets),
and matching patches instead of matching individual pixels. When we determine the u(y)
that maximizes the positive eikonal operator and the u(z) that minimizes the negative
eikonal operator, we compare pixels; more robust matching could be performed using
patches instead of matching pixels. This fact will increase the confidence of the matching.

We will also improve the model’s result in areas of the color image with weak bound-
aries and in the presence of transparency and intense reflections.
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