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Abstract: This paper presents investigations of rail vehicle bogies of the Y25 type. The Y25 bogie
family is one of the most commonly used freight car bogie designs. In addition to several significant
advantages characterising this design, several disadvantages have also been observed since the
beginning of more than fifty years of its operation in several types of cargo vehicles. One of these
defects observed in real systems is its “unsatisfactory running stability”, particularly for long straight
tracks. This paper used the commercial engineering software VI-Rail (2010.13.0) to create a model
of a gondola car (type 412W Eaos) with two Y25 bogies. The car model was tested in empty and
loaded (maximum permissible load) modes. Its motion along straight and curved tracks with
different radii values was analysed. The vehicle velocity was changed from a few m/s to the
maximum values for which stable solutions of the model existed. For each route, the nonlinear critical
velocity was determined, defining the maximum operating velocity of the modelled car. The model
solutions were recorded, while just one was selected to present the results—the first wheelset’s lateral
displacement ylw. Conjecture about its “imperfect running quality” on curved tracks was confirmed.
The possible appearance of self-exciting wheelset vibrations in the modelled car’s operating velocity
range in a laden state was also observed. The research results on the impact of changes in the bogie
suspension parameters on the vehicle model’s stability are presented. The crucial parameter in the
bogie suspension was indicated. Reducing its value by several percent about the nominal value
increases the critical velocity of the car to values higher than the maximum operating velocity of the
modelled vehicle.

Keywords: Y25 bogie; numerical model; suspension parameters; stability of motion; vehicle
lateral stability

1. Introduction

The research and results discussed in this article are part of broader studies on the
formulation and testing of a novel approach to the nonlinear dynamical features of rail
vehicles. This approach focuses primarily on velocities around the vehicle’s nonlinear
critical velocity vn. It comprises all significant conditions of motion, that is, transition
curves (TCs), circular curves (CCs), and straight tracks (STs). Athe same time, TCs are
of elevated interest in this approach for three reasons: (1) in terms of the track shape
geometry, they are three-dimensional objects, while CCs and STs are two-dimensional and
one-dimensional objects, respectively; (2) in terms of place and geometry, TCs represent
the transitions from STs to CCs and vice versa; and (3) the dynamics of vehicles on TCs,
especially around vn, is less researched than their dynamics on STs and CCs. A draft of
this novel approach is described in [1]. The primary tool in the mentioned studies is the
numerical simulation of vehicles’ dynamics using numerical models. The studies so far,
performed for nine different objects, reveal that all, with no exception, exhibit strongly
nonlinear and unexpected features of various natures for the motion conditions of interest.
These features make predictions about the objects’ behaviour surely impossible. The results
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of studies on six generic objects (three different bogies, two different two-axle freight cars
in empty and loaded states, and a four-axle passenger car) are published in part in [2].
The subsequent results refer to the second stage of these studies on three existing but no
longer produced configurations of four-axle vehicles. These were the passenger car 127A
on 25AN bogies, an empty gondola car 412a, and a laden gondola car 412a on Y25 bogies.
These results were obtained in the research project mentioned in the Acknowledgements
section of this article. The nonlinear critical velocity vn is the element determined in this
novel approach to the nonlinear dynamical features of rail vehicles, as the vehicle dynamics
around this velocity is particularly interesting. Note that vn is also the main parameter in the
nonlinear stability analysis of rail vehicles. Depending on how unfavourable, unexpected,
untypical, and faulty the stability features of a given vehicle are, stability analysis may be
a more critical element of the authors’ novel approach. So, the minimum is determining
vn. Then, we can imagine more advanced stability studies (for example, for STs only). At
the same time, the apogee is a complete stability analysis of vehicles on STs and CCs with
different curve radii R.

The results discussed in this article concern the second stage of the studies, namely for
the existing vehicles. More precisely, they represent a stability analysis of the gondola car
412a in both empty and laden states. Despite several nonlinear features detectsed for this
freight car, its stability features appeared to be the most important and dominating among
all its nonlinear features. Furthermore, these unfavourable features appeared within the
range of the exploitation conditions of this car. Consequently, they needed to be either
removed or at least improved. To some extent, the studied gondola car can also represent
other freight cars on Y25 bogies. This explains why the results for the 412a car became so
important and why the car underwent a complete stability analysis by the authors.

So, the primary aim of the current paper is to present and discuss the stability prop-
erties of this gondola car on Y25 bogies and the measures undertaken to improve its
unfavourable features successfully. The massive volume of the analysis performed justifies
gathering stability results on the 412a car into a separate paper without discussing it jointly
with the other nonlinear features of this freight car, all the nonlinear features of the 127A
passenger car, and conclusions on the novel approach formulation based on the results
from the second stage of the studies.

The Y25 bogie series is a conventional European design for freight cars, which has
been produced and widely explored in many countries. Most freight cars, such as container
platforms, gondola cars, tank wagons, etc., can be equipped with Y25-type bogies (Figure 1).
The main advantages of this bogie design are its low cost, low weight, low maintenance
requirements, and adequate reliability. Despite their unquestionable advantages, confirmed
by over fifty years of operation, Y25 bogies’ disadvantageous features can also be mentioned.
The first to note is their imperfect running quality and unsatisfactory running stability [3].
Furthermore, their poor running performance and history of derailments must also be
mentioned [4]. In this article, the authors probe into the dynamics of vehicles with Y25
bogies through analysis of the results from a numerical model of a vehicle. More precisely,
relying on previous authors’ works [5–7], lateral stability investigations are executed for
the nonlinear rail vehicle–track model.

The additional technical aim of this paper can be formulated as confirming or refuting
the accusations made against the Y25 bogie about its poor running performance. The
primary suspension parameters were changed to check the potential to improve the bogie
behaviour.
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1.1. The Literature Survey

The papers in which problems on railway vehicles’ stability, including determination
of their nonlinear critical velocity vn, are discussed by the present authors are [5–7]. Broad
reference to the corresponding literature by other authors is provided in these publications,
too. The newest examples of papers discussing the stability and dynamics of rail vehicles,
also with their motion on CCs and TCs taken into account, are [8–24]. In [8], its authors
study the stability of high-speed trains through a focus on bogie behaviour. A novel
method for stability determination, based on root loci methods, is successfully tested. A
sensitivity analysis was performed on the selected vehicle parameters, too. In [9], one can
see the interesting differences in stability issues for rail and road vehicles. The important
influence of the vehicle roll angle on stability is considered. The results on the stability
region are presented as a three-dimensional stability domain. Paper [10] describes a
novel measuring system that monitors vehicles’ hunting motion. Based on the monitoring
results, the system can predict the lateral and yaw displacements of the wheelset and
the contact relationships for the wheel–rail pair in real time. The accuracy and efficiency
of the whole system were validated by comparing the predicted results with simulated
and experimental results. Paper [11] is truly interesting and of high intellectual value. It
reveals and verifies experimentally (on a roller rig) the possible existence of parametric
vibrations in a wheelset–track system. They appear parallel to self-exciting vibrations
(hunting motion) and are caused by wheel load fluctuations. Systems particularly prone
to this type of resonance are those with large tread angles, which also decrease the critical
(hunting) velocity, favouring the simultaneous existence of self-exciting and parametric
vibrations. Publication [12] represents a study of the chaos in a mechanical impacting
system. The novelty of this paper lies in the extension of previous results for a one-degree-
of-freedom (DoF) system to a two-DoFs system. The existence of phenomena such as
narrow-band chaos, finger-shaped attractors, etc., was demonstrated numerically and
then experimentally verified. In [13], the authors propose a new method for stability
determination based on data instead of equations. With this method, they managed to
determine the long-term statistics of the chaotic state, the covariant Lyapunov vector, the
Lyapunov spectrum, the finite-time Lyapunov exponents, and the angles between the stable,
neutral, and unstable splitting of the tangent space [13]. Publication [14] presents and uses
one more nonlinear wheelset model to perform bifurcation analysis. The nonlinearity in the
wheel–rail contact is of primary interest. The analysis comprises comparisons between the
results for linearised and nonlinear models. The results for different field-measured wheel
profiles are also compared. Finally, the conclusion is that a greater suspension stiffness
increases the stability under wheel wear conditions. Publication [15] is to some extent
similar to [14]. A nonlinear wheelset model undergoes bifurcation analysis. The nonlinear
equivalent conicity in wheel–rail contact is of interest. The results for linear and nonlinear
approaches to equivalent conicity and contact forces are compared. The authors show the
possible coexistence of stable and unstable limit cycles and expand on the consequences of
Chinese high-speed trains’ observed unfavourable behaviour. In paper [16], the authors
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study the influence of the curved track parameters, such as their radii, superelevation, and
TC and CC lengths, on vehicle–track interactions in the case of a side-frame cross-braced
two-axle railway bogie. They conclude that the curve radius is of unequivocal importance,
the TC length is important provided the inflection point is not exceeded, superelevation is
of minor importance (the differences in the results for the superelevation deficiency and
excess are surprisingly small), and the CC length is of no importance at all. In [17], the
authors focus on vibrations in passenger cars. They compare results from two approaches,
one based on analytical solutions to dynamical equations and the other based on simulation,
which means solving the equations numerically. Thanks to the greater DoFs possible and
less simplification of the equations with the simulation approach, the authors conclude
that it is superior to the other approach. The authors highlight the higher accuracy of
the simulations. Publication [18] compares a few methods for nonlinear critical velocity
determination. A simulation approach to this issue and ramping and path-following
(continuation) methods are of primary interest. Different methods for hunting motion
excitation are compared with each other in terms of the critical velocity value. The impact
of the track class (its irregularities) on the results is also shown thanks to comparison with
the results for an ideal track. In [19], the effect of the bogie’s parameters in suspension
on the lateral forces in the track frame is studied. This bogie is a three-piece traditional
construction applied in freight cars. The authors consider 30 different bolster suspension
combinations. It is concluded that an increase in the dumping force (the friction coefficient
of the wedge) causes an increase in the lateral force of the track frame. Simultaneously
increasing the bogie’s lateral stiffness and the dumping force raises the lateral force of the
track frame, too. On the other hand, the internal interplay between these two parameters
also appears important. In [20], the hunting motion of a locomotive car body is studied
experimentally and according to simulation. The aim is to explain and suggest measures
to eliminate such hunting motion that appears for low conicity in wheel–rail contact. The
measures concern the suspension parameters. Namely, the series stiffness and damping
in the yaw damper and the longitudinal stiffness in the primary suspension are indicated
as those that need to be decreased. Both ST and CC cases are analysed. In paper [21], the
author studied interactions between a vehicle’s internal elements and between the vehicle
and the track to make sure that existing freight cars with three-piece bogies can run at
higher permissible speeds under an increased axle load. ST and CC sections are considered.
It is shown that such increases are possible. However, the bogies have to be replaced
with slightly modernised ones. In [22], the authors propose a method to identify, rather
than neglect, low-amplitude hunting in high-speed railway vehicles. They found that the
coefficient of autocorrelation and the spread of spectral frequency are the most efficient
parameters for this purpose. The findings are dedicated to supporting the monitoring of
hunting motion instability and active control studies for high-speed trains in real time.
Paper [23] is a general paper on the instability of limit-cycle-type oscillations. The aim is to
derive an efficient computational method for instability modelling and handling hundreds,
sometimes thousands, of design variables. This is fulfilled by using a simple metric to
determine the stability of the limit cycle utilising a fitted bifurcation diagram slope. Stability
derivatives for many design variables are efficiently computed using the developed adjoint-
based formula. Publication [24] proposes a nonlinear wheel–rail kinematics model, which
extends Klingel’s well-known linear model. The nonlinear model comprises high-order
odd harmonic frequencies (HOHFs) [24], besides the basic hunting frequency. Along with
this, HOHFs are sources of self-exciting vibrations in rail vehicles. Thus, these findings
are important to the methods in hunting instability research and condition monitoring
for trains.

Summarising the content of these publications, one can note that their scope is similar
to that of the profiled literature from 15 years ago. So, we find works of intellectual quality,
works on new methods of research and description, and works on general dynamics,
stability issues, hunting (limit cycles), chaos, and so on. Yet there are many more works
concerning issues for STs than those for CC and TC problems.
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1.2. The Fundamental Theoretical Considerations

Although part of the discussed literature directly concerns stability issues, the funda-
mentals of stability are given below.

The physical explanation for practical problems with rail vehicle stability is the self-
exciting vibrations that appear in vehicle–track systems. This phenomenon has been
recognised for a long time [25]. Some vehicle parts undergo self-exciting vibrations un-
der certain motion conditions (parameter values). The wheelsets oscillate laterally and
around the vertical axis (yawing). Wheel flange–rail contact, noise, and a higher risk of
derailment accompany this. Although a vehicle’s motion along the track is usually possible
under such conditions, self-exciting vibrations cause obvious adverse phenomena in rail
vehicle operation in straight track (ST) and circular curve (CC) sections. The self-exciting
vibrations observed in real vehicle–track systems [25] can be identified using vehicle–track
models with bifurcation of the solutions [26,27]. Bifurcation analysis is an effective method
for testing modelled objects [26–29] and is thus applied also in the presented research.
Numerical simulation studies on vehicle–track systems enable us to observe whether the
model solutions are stable. Stable stationary solutions (with constant values of the model’s
observed coordinates on STs and CCs) describe the normal exploitation conditions for a
real vehicle. This means that in the real system, each disturbance, for example, disturbance
caused by track irregularities, is effectively damped, while the system tends toward equilib-
rium. A properly designed vehicle should ensure running stability in the expected range of
exploitation parameter changes, such as velocity (0 to vmax), load (empty or partially to fully
loaded), load asymmetry, track shape (CC, transition curve (TC), ST), track maintenance,
etc. Stable stationary solutions for a modelled vehicle–track system on STs and CCs are
expected under typical operation conditions. In contrast, due to the constant change in the
curve radius and superelevation on TCs, stationary solutions for TCs are neither possible
nor expected.

The model’s stable periodic solutions (limit cycles) are attributed to self-exciting
vibrations in the real system. Due to them, the lateral displacements in the wheelset change
periodically during the main vehicle motion (along the track). Calling such solutions
“stable periodic” is justified because they are limited and observable and can last any length
of time. On the other hand, stable periodic solutions represent the highest capacity of the
modelled system in terms of stable behaviour and also bring other valuable information.
The key parameter in stability analysis is nonlinear critical velocity vn, as well as in the
present research. The value of vn separates the range of vehicle velocity v for which stable
stationary solutions exist (v < vn) from the range for which stable periodic solutions may
appear (v ≥ vn). The value of vn is the minimum vehicle velocity v starting from which
stable periodic solutions can exist. For a real object, this means self-exciting vibrations
may occur, and a vibrational system state is reached. Further increase in the system output
(for example, with a rise in v) leads to an increase in the self-exciting vibration amplitude.
Finally, the amplitude values are no longer constant, which causes unbounded growth of
the solutions (a loss of stability), which could lead to an accident due to the derailment in the
real system. The research on periodic solutions for vehicle models under increased system
input (vehicle velocity) in an above-critical system state is interesting. It is conducted to
ascertain how much the system parameters (velocity) can be exceeded and the solutions
still kept stable (periodic or stationary). A wide range of system velocities between the
values corresponding to the appearance of periodic solutions and a loss of stability is
always desirable for a real vehicle.

2. The Approach to Stability and the Corresponding Model

The stability studies discussed in the present paper, originating from the project
specified in the Acknowledgements section, represent, according to a general view, the
bifurcation approach to stability. Within it, a simulation method for studying nonlinear
lateral stability is applied. Such a method is beneficial when considering rail vehicle
systems (vehicles) and their entire dimensions, when one prefers to consider the entire
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system’s degrees of freedom (DoFs) rather than considering one or two degrees of freedom
for a single wheelset. The latter may be an alternative for some authors. Its advantage is the
use of analytical methods. These can be applied to small systems only. At the same time,
numerical simulations are helpful no matter what the dimensions of a given system are.

On the other hand, authors have used an original approach with the method of
studying the lateral stability on CCs, as elaborated in [5,6]. With this method, an ST is
taken as a CC with an infinite curve radius of R = ∞. Vehicle velocity v is typically the
bifurcation parameter, as it is here. The authors’ original bifurcation diagrams are utilised,
providing a convenient form for presenting the results. These diagrams are bipartite, where
the maximum absolute value of the leading wheelset’s lateral displacements |ylw|max
versus velocity and the peak-to-peak value of ylw versus velocity [5–7] are represented
correspondingly. When jointly presenting these coupled values for all the radii values R,
one obtains two complex bifurcation diagrams. The authors call such a pair of bifurcation
diagrams a stability map [5,6]. The first stability map in this paper is Figure 5, which can
serve as an example.

Following the bifurcation approach and their method, the authors needed simulation
models for a whole vehicle with many DoFs for their studies. Consequently, a rail vehicle
model with Y25 bogies was also created and tested. As mentioned before, its first wheelset’s
lateral displacements ylw were chosen for observation. In fact, a model of the whole
vehicle–track system was created. The authors used the VI-Rail engineering software
for this task. In it, type I Lagrange equations are used to build equations of the system
dynamics. All the inertia terms for motion on a curved track are taken into account. The
main nonlinear elements within the models are those arising from the nonlinear kinematics
in the curved tracks, the nonlinear contact geometry, and the nonlinear contact forces
in the wheel–rail pair. The suspension parameters were assumed to be linear. The VI-
Rail software is a well-established commercial product of high credibility. Nevertheless,
the authors verified it when the project mentioned in the Acknowledgement section was
realised. This was a kind of benchmarking approach. The simulation results from the
commercial software were contrasted with the results from software built by the authors,
according to which complete insight into the program code was made possible. The results
of these comparisons appeared satisfactory.

The model built is a discrete model of a cargo gondola car type 412W Eaos (see
Figure 2). Its bogie models represent a Y25 construction (alternatively named 25TN in
Poland). A total of 15 rigid bodies make up the model of the 412W gondola. These
are a loading space (a gondola), two bogie frames, four wheelsets, and eight axle boxes.
The connections between the rigid bodies are flexible elements, with linear and bi-linear
characteristics for stiffness and dumping. The suspension structure of the Y52 bogie
comprises dry friction dampers. However, in order to avoid the non-smooth problem in
modelling dry friction (stick–slip effect in the suspension), viscous dampers are applied
in the model. Furthermore, each dry friction damper in the Y25 bogie acts vertically and
laterally. Thus, to describe the damping forces, a two-dimensional model of dry friction
should be considered [30–32]. A pair of individual viscous dampers acting vertically czz and
laterally czy are finally adopted to simplify the bogie model. Vertical coil springs (formed
as two-spring sets) in each axle box represent the stiffness in the vertical kzz and lateral
kzy directions. The parameters of stiffness and damping just mentioned take two values
each. One refers to empty gondola conditions and the second to laden gondola conditions
(see Table A1 in Appendix A). In this simple way, the dependence of the parameters on
the vertical load is considered to some extent. The values of the stiffness and damping
parameters were obtained following the identification procedure performed at the authors’
home faculty [33]. Experiments on a real freight car with Y25 bogies were its basis. Shortly,
for the damping, the measured car’s responses enabled formulae for vertical and lateral
damping forces to be built and then the linear equivalent coefficients for different discrete
car load states in the indirect procedure to be determined. The result is somewhat simplified.
Nevertheless, the procedure is multi-level and scientifically advanced.
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On the other hand, the literature shows that damping forces can be crucial to vehicle
dynamics. An example is a recent vertical dynamics study [34] for high-speed rail where
comfort issues for vehicles running up to 400 km/h on a track with vertical irregularities
were tested. It confirmed that when considerable vertical dynamical interactions between
the vehicle and the track exist and are of interest, the influence of the vertical load on the
damping forces (dry friction dampers) should be as accurate as possible. The conditions
in the present study are different, however. The vertical dynamics is out of scope, while
the vehicle’s admissible speed vad = 120 km/h. Equally, the track is perfect, which means
no vertical or lateral irregularities are considered. Consequently, vertical load changes
(influencing forces for the dry friction damper laterally and vertically) almost do not exist.
Additionally, in such circumstances, the well-known and commonly applied assumption
easily holds that the couplings between the rail vehicle’s lateral and vertical dynamics
are insignificant. Then, analyses can be carried out separately for the lateral and vertical
directions, e.g., [10,14,15,24,33,34]. In practice, no mutual influences of vertical and lateral
dynamical solutions can be observed. Thus, the simplified modelling of vertical dumping
does not influence the lateral dynamics (lateral stability) in the present study.

The longitudinal guidance of the wheelsets is very stiff. It represents a type of horn
guidance [28]. So, eventual small deflections in the guide’s material only effect the longitu-
dinal stiffness kzx. Because of this, it is agreed that kzx is independent of the car load.

The freight car model is supplemented with a flexible track model, both vertically and
laterally. The track parameters correspond to a ballasted European track with a 1435 mm
gauge. Nominal profiles of UIC60 rails with an inclination of 1:40 are adopted. Nominal
profiles of S1002 wheels are taken. The parameters of nonlinear wheel–rail contact are
calculated using the ArgeCare RSGEO software. The tangential forces in the wheel–rail
contact are calculated using Kalker’s simplified theory, implemented in the FASTSIM
numerical procedure [35,36]. Integration of the equations of motion is performed using
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Gear’s procedure. The error and step size control characterise its features. Its suitability
for solving stiffness problems is well known, as with rail vehicle dynamics issues [28,29].
The whole model of the vehicle–track system possesses 76 kinematic DoFs. Appendix A
(Table A1) comprises detailed parameter values for the whole model.

3. The Method of Research

Analysis of car model solutions, performed for the range of velocity v and its constant
value in each simulation, is the essential element in the authors’ research method. To
explain the wheelset oscillations (its hunting motion), the theory of self-exciting vibrations
is used. The range of vehicle velocity v starts, e.g., at 10 m/s, while its end is determined
by the maximum value at which stable solutions of the model still exist. Generally, the
model parameter observed in studies is the leading wheelset’s lateral displacement ylw in
time or distance. The term stable solution is adopted when describing the ylw solutions for
constant or periodic (of a limit cycle nature) values. The same criteria for a stable solution
on STs and CCs hold in the analyses discussed in this paper. Different from the mentioned
forms of solutions are those classified as unstable, although they may fulfil other stability
criteria, e.g., technical stability [37].

Example stable solutions, typical for vehicle motion velocity lower than the critical
value (v < vn) and above than critical value (v > vn), are shown in Figure 3a,b, respectively.
The vehicle motion in this example takes place on a route composed of ST, TC, and CC
sections. The CC’s radius R = 2000 m. The wheelset undergoes a lateral shift while
negotiating the TC; thus, ylw ̸= 0 on the regular CC. The track’s superelevation influences
it also. The superelevation values h applied to the CC tracks for the studied R values are
shown in Table 1. The h values are constant during the calculations on the CCs for each
radius R. That means that at lower speeds, excess superelevation (cant) exists, while at
higher speeds, insufficient superelevation (cant) exists. To be precise, the superelevation
values provide an ideal balance between the lateral components in the track plane of
centrifugal and gravity forces at v = 34.29, 41.23, 46.45, 44.90, and 44.77 m/s for R = 1200,
2000, 3000, 4000, and 6000 m, respectively.
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stationary solution (40 m/s < vn); (b) stable limit cycle (periodic solution, 65 m/s > vn).

Table 1. The tested curve radii and corresponding track superelevations.

CC radius; R in m 1200 2000 3000 4000 6000 ∞

Superelevation; h in m 0.150 0.130 0.110 0.077 0.051 0
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The studies in [6] and the present research demonstrate that the wheelset’s oscillations
are a limit cycle, described as that of hard excitation. In other words, initial conditions of
a given minimum value must occur for vibrations to start. When studying the stability
of the model on CCs, the negotiation of the TC forces a lateral shift in the wheelset on
the track, which means it falls out of equilibrium. This way, non-zero initial conditions
for solutions on CCs are imposed. For the stability analysis on an ST, a single lateral
irregularity in the track serves as the input (equivalent to the initial conditions). Usually,
it is located 100 m from the beginning of the test route. Thanks to the negotiation of the
irregularity, lateral shifts in all the wheelsets take place one by one. The shifts adopted are
typically between 0.005 and 0.006 m. After each simulation, the maximum value of the
lateral displacement of the leading wheelset in the first bogie ylw max has to be read from
the final part of the simulation results. ylw max can be positive or negative (as in Figure 3),
depending on the coordinate system orientation and the curve direction. When the curve
turns to the left, this corresponds to a negative value. Actually, the simulation solutions
for left- and right-hand side curve turns are antisymmetric to each other when the same
conditions of motion occur. This enables us to avoid the problem of the sign. We can use
the maximum absolute value of the wheelset lateral displacements |ylw|max instead of ylw
max. This quantity ultimately represents the simulation solutions for a particular velocity v.
In the case of a stationary solution (Figure 3a), |ylw|max is the only recorded value for the
solution. An additional quantity is read off and recorded for a periodic solution (Figure 3b),
namely the peak-to-peak value of ylw. The peak-to-peak value of ylw = 0 in the case of
stationary solutions. Consequently, |ylw|max and the peak-to-peak (p-t-p) value of ylw for
each simulation for a constant velocity v and radius R are read off and recorded, forming a
pair of bifurcation plots. Such pairs are presented jointly for all R values to create stability
maps. The way stability maps are built is shown in Figure 4, however, for just one selected
value of R = 2000 m. Each of the simulations, as in Figure 4c,d, produces one point on the
whole courses shown in Figure 4a,b. These points correspond to the velocities v for which
the simulations in Figure 4c,d were performed. Simulations for the whole range of velocity
v must be performed to ascertain the whole course. In the same way as in Figure 4, courses
for other R values are obtained. As already explained, a stability map is built as a pair of
joint bifurcation diagrams representing |ylw|max and the p-t-p value of ylw (p-t-p ylw for
short) as a v function for CCs of different radii R. The first stability map in this paper is
Figure 5. The map components (here, Figure 5a,b) enable us to observe the solutions’ nature,
the solutions’ values, and the critical velocity vn values in the v range within which stable
solutions exist. For the existing stationary solutions exclusively, especially for the range of
v below vn, the results start to be presented from v just below the value of vn (usually about
30 m/s in this study). Then, they are continued for the entire range of velocities above the
critical value. The courses on the diagrams are marked with different line colours, referring
to a specific constant radius R of the CC route. The last points on the courses represent the
highest velocity at which a stable solution (no matter whether stationary or periodic) still
exists. Examples of stability determination on the part of the authors are given in detail
in [5–7].
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map [7] for a CC with R = 2000 m: (a) example simulation of stationary solution on CC; (b) example
periodic solution for CC; (c) bifurcation plot of |ylw|max; (d) bifurcation plot of p-t-p ylw.
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4. Results of the Research
4.1. The Empty Car Analysis

Stability maps for the motion of an empty wagon model are shown in Figure 5. As
can be seen there, the properties of the model are regular. That is, for each of the tested
routes, the critical velocities vn were determined. Only stable stationary solutions appear
for velocities lower than the critical value. Periodic solutions exist for velocities equal to and
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higher than the critical value vn. The values of the critical velocity vn on each curved track
increase as the curve radius decreases (Table 2). The smallest value is 37.2 m/s for an ST
(R = ∞), and the highest vn is 45.2 m/s for a CC with R = 1200 m. Stable periodic solutions
still exist at velocities greater than 200 m/s on the ST (black line). The velocity ranges where
periodic solutions for CCs occur are smaller than those for STs and decrease as the curve
radius decreases (different line colours for particular R values). For each CC section and
the final range of velocities, there is a bifurcation of periodic to stationary solutions, which
are the stable ones. Potentially, this could be the effect of the action of centrifugal force.
Only stable stationary solutions exist in the range of velocities lower than the critical value,
with the |ylw|max values increasing as the curve radius decreases. Therefore, the diagrams
show results for a motion velocity higher than 30 m/s. The wheelsets not being centrally
located on CCs below vn (|ylw|max ̸= 0) results from the motion conditions, including the
applied superelevation of the track (Table 1).

Table 2. The nonlinear critical velocity values vn of the modelled gondola car.

CC radius; R in m 1200 2000 3000 4000 6000 ∞

Empty car; vn in m/s 45.2 44.4 44.4 42.6 40.1 37.2

Laden car; vn in m/s 55.8 43.7 33 45.6 45 30.8

So, in light of the tests carried out on the car model in an empty state, the requirements
regarding motion stability for operating velocities (less than 120 km/h ≈ 33.33 m/s) are
met. The critical velocities on particular tested routes are not lower than the maximum
operational velocity. Periodic solutions with |ylw|max values up to approximately 0.006 to
0.007 m appear for the critical and greater than critical velocities. This means that self-
exciting vibrations of the wheelsets may occur in the modelled system. Still, the basic
motion of the vehicle (along the track) is also possible at a velocity over the critical value.

4.2. Loaded Car Analysis

The laden vehicle model presents significantly different features under the same
motion conditions (track curvatures, Figure 6) from those of the empty one. Motion on
an ST represents the lowest value of critical velocity vn = 30.8 m/s. This value is below
the vehicle’s maximum operating (admissible) velocity vad = 120 km/h ≈ 33.3 m/s. This
means self-exciting vibrations may appear in the modelled car during regular operation.
Critical velocities are higher on CCs (Table 2) than on STs. In the range of velocities over the
critical value, the solutions are bifurcated from periodic to stationary and from stationary to
periodic on an ST and a CC with R = 6000 m. These make the stability maps hardly legible.
Therefore, analyses of selected solutions on the routes for a loaded car are presented in
separate diagrams further on.

4.2.1. Analysis on a Straight Track

The periodic solutions that appeared on the ST at 30.8 m/s exist until the velocity v
equals 49.9 m/s (Figure 7). Increasing v over this value by 0.1 m/s causes the bifurcation of
periodic solutions to stationary ones. Stationary solutions persist up to a v value of 80.7 m/s.
Increasing the velocity v by 0.1 m/s further causes bifurcation to periodic solutions again.
The periodic solutions last until the end of the tested velocity range (200 m/s).

Next, research was undertaken to eliminate the possibility of the occurrence of periodic
solutions (self-exciting vibrations in real systems) in the modelled car’s operating velocity
range. Elements of the suspension system have a crucial impact on the dynamic properties
of the vehicle. Changing the suspension parameter values is usually a relatively simple
process. Accordingly, the influence of the longitudinal and lateral stiffness (kzx, kzy) and
damping (czx, czy) on the primary suspension was examined by varying their values. The
result of these tests is the determination of the lateral stiffness kzy parameter for which
a drop in value compared to the nominal value gives the most favourable effects, i.e.,
improvements in the analysed car’s properties. The test results are shown in Figure 8.
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Figure 8. Influence of the lateral stiffness kzy on laden car’s first wheelset. kzy = 55.6 ∗ 105 N/m—nominal
value (black line), kzy = 50 ∗ 105 N/m—90% of nominal value (red line), kzy = 44.5 ∗ 105 N/m—80% of nomi-
nal value (blue line). Motion on the ST: (a) maximum absolute value of lateral displacement; (b) peak-to-peak
value of wheelset’s lateral displacement.
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A reduction in the lateral stiffness to 90% of its nominal value (90% ·kzy = 0.9·55.6·105

≈ 50·105 N/m) increases the vn velocity up to 36.9 m/s. At this velocity, periodic solutions
appear and exist up to 45.3 m/s. Then, bifurcation from periodic to stationary solutions in
velocity v cause bifurcation from stationary to periodic solutions, with values close to those
obtained for the nominal value of kzy. Periodic solutions persist up to velocities exceeding
200 m/s. A further decrease in the lateral stiffness value, down to 80% of the nominal value
(80% · kzy = 0.8·55.6·105 ≈ 44.5·105 N/m), causes a jump in the critical velocity value. In
this case, the range of periodic solutions which existed at velocities lower than 50 m/s
disappears. Stationary solutions exist for a velocity of up to 136.1 m/s. Then, bifurcation to
periodic solutions occurs. The values of the solutions are similar to those determined at the
nominal value of the lateral stiffness. This type of solution lasts up to v = 200 m/s. So, a
decrease in lateral stiffness kzy by a dozen percent relative to the nominal kzy value enables
an improvement in the stability properties of the loaded car on an ST.

4.2.2. Analysis on Curved Tracks

The following step in the research examined whether the beneficial effect on an ST
(regarding the improvement in the system properties) due to reducing the lateral stiffness
kzy would also appear as a favourable improvement on a CC with R = 6000 m. For the
nominal value kzy = 55.6·105 N/m, the corresponding critical velocity was vn = 45 m/s
(Figure 9). This was determined to be to some extent arbitrary because at a lower v value
(about 20 m/s), “periodic” solutions of the minimal p-t-p value of ylw appeared. A velocity
vn = 45 m/s was adopted, judging that the p-t-p value of ylw was large enough (about
0.001 m) at this velocity to talk about periodic solutions in the practical sense. However,
a considerable increase in the p-t-p value of ylw to a dozen millimetres is observed at a
velocity of 57.1 m/s. Stable periodic solutions exist up to v = 61.6 m/s only, thereafter being
replaced by bifurcation to stationary solutions. In further increasing the velocity, stationary
solutions exist up to 92.3 m/s. Then, bifurcation to stable periodic solutions is observed.
Periodic solutions exist until v = 131 m/s. Next, bifurcation to stable stationary solutions
appears. Such solutions exist for a high velocity range from 131 to 148 m/s. At even greater
velocities, no stable solutions are observed.
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Figure 9. Influence of lateral stiffness kzy on laden car’s first wheelset. kzy = 55.6 ∗ 105 N/m—nominal
value (black line), kzy = 50 ∗ 105 N/m—90% of nominal value (red line), kzy = 44.5 ∗ 105 N/m—80%
of nominal value (blue line). Motion on CC of R = 6000 m: (a) maximum absolute value of lateral
displacement; (b) peak-to-peak value of wheelset’s lateral displacement.

In the following research step, the lateral stiffness decreased to 90% of its nominal
value, kzy = 0.9·55.6·105 ≈ 50·105 N/m. Stable stationary solutions persist up to v = 102 m/s.
Similarly to the model with a nominal value for lateral stiffness, some “periodic” lateral
displacements of the wheelset appear on the curve, too. Nevertheless, they have minimal



Appl. Sci. 2024, 14, 4545 14 of 20

p-t-p values. Increasing the vehicle velocity to v = 102.1 m/s induces bifurcation to periodic
solutions. This type of solution persists when increasing v up to 131 m/s.

The next step was reducing the lateral stiffness to 80% of its nominal value
(80% · kzy = 0.8·55.6·105 ≈ 44.5·105 N/m). Stable stationary solutions occur up to a ve-
locity v = 107.1 m/s. Bifurcation from stable stationary solutions to stable periodic one
occurs at this velocity. Periodic solutions last up to approximately v = 130 m/s. The values
of |ylw|max and p-t-p ylw for all the kzy values tested are similar. To conclude, a reduction
in the lateral stiffness kzy by a dozen percent compared to its nominal value results in a
considerable rise in the critical velocity on a CC of R = 6000 m.

In the case of motion on a CC of R = 3000 m and the nominal value of kzy, the critical
velocity vn = 33 m/s (Figure 10). This is slightly lower than the maximum operating
(admissible) velocity vad of the studied gondola (vad = 120 km/h ≈ 33.3 m/s). Stable
periodic solutions occur up to a velocity v = 103.6 m/s in this case. Then, bifurcation to
other periodic solutions appears but with lower values of |ylw|max and p-t-p ylw (approx.
p-t-p ylw = 0.004 m). The maximum velocity for which a stable solution exists is v = 109 m/s.
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Figure 10. Influence of lateral stiffness kzy on laden car’s first wheelset. kzy = 55.6 ∗ 105 N/m—nominal
value (black line), kzy = 50 ∗ 105 N/m—90% of nominal value (red line), kzy = 44.5 ∗ 105 N/m—80%
of nominal value (blue line). Motion on a CC of R = 3000 m: (a) maximum absolute value of lateral;
(b) peak-to-peak value of wheelset lateral displacement.

A decrease in the stiffness kzy to 90% of its nominal value (kzy = 50·105 N/m) results in
a critical velocity increase up to vn = 34.6 m/s. Periodic solutions last up to v = 105 m/s,
and then their bifurcation to other periodic solutions appears but with lower values of
|ylw|max and p-t-p ylw (approx. p-t-p ylw = 0.004 m). The maximum value of velocity for
which a stable solution exists is v = 108 m/s.

In the next step, the lateral stiffness was reduced to 80% of its nominal value
(kzy = 44.5·105 N/m). As a result, there was a dramatic rise in the critical velocity up
to vn = 73.3 m/s. Periodic solutions last up to v = 104 m/s, and then their bifurcation to
other periodic solutions appears, however, with lower values for |ylw|max and p-t-p ylw.
The highest velocity value at which stable solutions existed was v = 109 m/s. Concluding
this part of the study, one can state that a reduction in the primary suspension’s lateral
stiffness kzy by a dozen percent compared to its nominal value brought about favourable
effects on the vehicle motion on the ST and CCs as well. To supplement studies on the
influence of kzy on the vehicle model’s solution stability, how reducing kzy affects the tested
car model’s properties when it is empty should be checked.

4.3. Empty Car Analysis at Reduced kzy Values

A moderate effect of reducing the lateral stiffness of the primary suspension can
be observed on motion along an ST (Figure 11). The critical velocity vn decreases from
37.2 m/s at a nominal kzy value (38.9·105 N/m) to 36.5 m/s for 90% · kzy ≈ 35·105 N/m
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and to 35.8 m/s for 80% · kzy ≈ 31·105 N/m. So, vn is higher than the required minimum
vn = 33.3 m/s. The nature of the model solutions is analogous for each kzy value. So, the
solutions are stationary only for velocities v < vn, while for v > vn, periodic solutions appear,
which exist up to v > 200 m/s. The solutions’ values are very similar for each value of kzy.
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Figure 11. Influence of lateral stiffness kzy on the empty car’s first wheelset. kzy = 38.9 ∗ 105 N/m—nominal
value (black line), kzy = 35 ∗ 105 N/m ∼= 90% of nominal value (red line), kzy = 31 ∗ 105 N/m ∼= 80% of nomi-
nal value (blue line). Motion on the ST: (a) maximum absolute value of lateral displacement; (b) peak-to-peak
value of wheelset’s lateral displacement.

The influence of kzy on the investigated model parameters is also moderate in the case
of motion on curved tracks. The critical velocity is 40.1 m/s at the nominal kzy value and
with a large R = 6000 m (Figure 12). Reducing the lateral stiffness causes a slight decrease
in the critical velocity to the values vn = 39.6 m/s for 90% kzy and vn = 39.2 m/s for 80% kzy,
respectively. Stable periodic solutions persist for an increased velocity up to about 151 m/s,
followed by bifurcation to stationary solutions. Stable stationary solutions exist up to a
velocity of about 176 m/s. The model solution values for the particular kzy values applied
are similar in the entire velocity range.
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value (black line), kzy = 35 ∗ 105 N/m ∼= 90% of nominal value (red line), kzy = 31 ∗ 105 N/m ∼= 80% of nomi-
nal value (blue line). Motion on a CC with R = 6000 m: (a) maximum absolute value of lateral displacement;
(b) peak-to-peak value of wheelset’s lateral displacement.

The critical velocity is 44.4 m/s on a CC with a smaller R = 3000 m for the nominal
value of kzy = 38.9·105 N/m (Figure 13). Reducing the lateral stiffness kzy to 90% decreased
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the critical velocity to 44.2 m/s. A further reduction in the lateral stiffness kzy to 80%
reduced the critical velocity to 44 m/s only. So, a moderate influence of decreasing kzy
on the critical velocity on this route is also observed. The values of the model solutions
(|ylw|max and p-t-p ylw) for individual kzy values are similar to the values on the previously
studied routes. Thus, it can be observed that reducing kzy to 80% of its nominal value
reduces the model’s critical velocity when the car is empty but not more than by 1 m/s.
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5. Conclusions

A thorough analysis of the 412W gondola car used in Poland (also by Polish State
Railways) in terms of its nonlinear features revealed the existence of several such features.
On the other hand, the only unfavourable nonlinear features closely related to the car’s
real conditions of exploitation were its stability features. It appeared that unfavourable
features of this type concern the studied gondola car in its fully loaded state. The same
vehicle in an empty state possesses satisfactory stability properties for the real conditions
of its exploitation. The stability map in Figure 5, for the empty car, represents its uniform
character for all curve radii R, including on an ST (R = ∞). Most importantly, the nonlinear
critical velocities vn for all these R values are above the maximum admissible exploitation
velocity vad, equal to 33.3 m/s (120 km/h). The smallest vn = 37.2 m/s exists for an ST. This
means that the empty car avoids (is protected against) hunting motion, which is certainly
desirable. In the case of the stability map for the fully loaded gondola in Figure 6, the
stability features are not as uniform as those of the empty gondola. One can see uniform
solutions starting at R = 3000 m and going down to R = 1200 m. On an ST at R = 6000 m,
additional, untypical, and, to some extent, unfavourable bifurcations of the solutions from
stable periodic solutions to stable stationary solutions exist above the critical velocity vn.
Moreover, the vn values for R = ∞, 6000 m, and 3000 m are smaller than or relatively close
to the maximum admissible exploitation velocity vad. vn equals 30.8, 45.5, and 33.0 m/s,
respectively. So, formally, an ST and R = 3000 m appeared to need correction from the
viewpoint of the exploitation velocities. Consequently, the corresponding measures were
determined successfully.

The analysis of a gondola freight car with Y25-type bogies shows there is potential
to improve its motion properties through minor corrections to the suspension parameter
values. From the point of view of the tested vehicle model’s properties, it is possible to
increase the car’s critical velocity in the laden state by reducing the lateral stiffness in the
primary suspension kzy by a dozen percent or so relative to the nominal value. Reducing kzy
to 80% of its nominal value is indicated as a recommendation by the authors. In addition
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to the higher critical velocity value on an ST (vn = 136.1 m/s), the critical velocities on
CCs increased favourably for all R values, too. They were vn = 107.1 and 103.6 m/s for
R = 6000 and 3000 m, respectively. Furthermore, a reduction in kzy causes the disappearance
of periodic solutions with very small peak-to-peak values on CCs. This could mean an
improvement in the quality of real gondola cars of the studied type to negotiate curved
tracks. One should notice that reducing kzy to just 90% of its nominal value could also be
counted as a successful measure for improving the gondola’s nonlinear features. Then, vn
for an ST, at R = 6000 m, and at R = 3000 m equal 36.9, 102.1, and 34.6 m/s, respectively. All
of these values are greater than 33.3 m/s. On the other hand, two of them are quite close to
vad. In particular, the value for R = 3000 m resulted in a safety margin that was too small.
One should also remember here that the accuracy of determining vn is limited.

An essential element of the study’s results, and an important fact at the same time,
is that the corrective remedy found for the loaded gondola car does not spoil the results
for the empty car. Figures 11–13 for the empty vehicle show that for R = ∞, 6000, and
3000 m, decreasing kzy to 90% and 80% of its nominal value changes the critical velocities
vn insignificantly. Although such a decrease also decreases vn, which is unfavourable, the
changes obtained are negligible. The most significant change in Figure 11 for the ST was
the change in vn from 37.2 to 35.8 m/s. It can be seen that 35.8 m/s is still higher enough
than vad = 33.3 m/s.

One could treat as certain limitation of the obtained results the calculations having been
performed for unworn wheel and rail profiles only. The wear of their profiles can influence
a vehicle’s stability properties. We conducted such tests for a two-axle car in [6]. We showed
that the critical velocity vn increases slightly when just the wear of the wheels is considered.
In the case of worn rails (severe wear was adopted), no matter whether the wheels were
worn or not, a drop in vn appeared, which should be regarded as considerable. On the
other hand, the wear of wheel and rail profiles concerns all rail vehicles. Thus, eventually,
modified cars will be in the same position as the other rail vehicles exploited worldwide.

Finally, it should be noted that the results obtained formally apply only to the particular
tested type of car. For other types of freight cars that use Y25 bogies, the observed effects
need to be individually studied, and only then can eventual confirmations be made. Note
that the gondola studied in the present paper possesses quite different properties in its
empty and laden states. This illustrates why the results of this paper could be transferred
to another type of car if it had almost identical parameters. On the other hand, the obtained
results offer a warning that other cars on Y25 bogies may exhibit unfavourable stability
properties, too.
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Appendix A

Table A1. Parameters of the freight car accepted for research.

Notation Description Unit
Value

Empty Loaded

mcb Vehicle body mass kg 11,000 72,000

mb Bogie frame mass kg 1600

mw Wheelset mass kg 1400

mab Axle box mass kg 100

mtb Bogie’s total mass (mb + 2mw + 4mab) kg 4800

Iξcb Body’s moment of inertia; longitudinal axis kg·m2 17,300 90,055

Iηcb Body’s moment of inertia; lateral axis kg·m2 188,500 1,210,606

Iψcb Body’s moment of inertia; vertical axis kg·m2 188,140 1,231,450

Iξb Bogie frame’s moment of inertia; longitudinal axis kg·m2 790

Iηb Bogie frame’s moment of inertia; lateral axis kg·m2 1000

Iψb Bogie frame’s moment of inertia; vertical axis kg·m2 1090

Iξw Wheelset’s moment of inertia; longitudinal axis kg·m2 747

Iηw Wheelset’s moment of inertia; lateral axis kg·m2 131

Iψw Wheelset’s moment of inertia; vertical axis kg·m2 747

kzz Vertical stiffness of the primary suspension kN/m 1017 2280

kzy Lateral stiffness of the primary suspension kN/m 3890 5560

kzx Longitudinal stiffness of the primary suspension kN/m 12,000 12,000

czz Vertical damping of the primary suspension kN·s/m 7 123.3

czy Lateral damping of the primary suspension kN·s/m 42 138

czx Longitudinal damping of the primary suspension kN·s/m 100

k2z Vertical stiffness of the bogie frame—car body side bearer kN/m 22,500

c2x Longitudinal damping of the bogie frame—car body side bearer kN·s/m 6 10

k2ψ Torsional stiffness between the bogie frame and car body kN·m/rad 20

c2ψ Torsional damping between the bogie frame and car body kN·m·s/rad 0.5

ap Half of bogies’ pivot-t-pivot distance m 4.5

a Semi-wheel base m 0.9

tc Half the distance between the wheelset’s wheels’ rolling circles m 0.75

hb Vertical distance between bogie frame centre of mass and track plane m 0.69

hcb Vertical distance between car body centre of mass and track plane m 1.5 1.87

rt Wheel’s rolling radius m 0.46
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