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Abstract: Image fusion is a pivotal image-processing technology designed to merge multiple images
from various sensors or imaging modalities into a single composite image. This process enhances
and extracts the information contained across the images, resulting in a final image that is more
informative and of superior quality. This paper introduces a novel method for infrared and visible
image fusion, utilizing nested connections and frequency-domain decomposition techniques to
effectively solve the problem of lost image detail features. By incorporating depthwise separable
convolution technology, the method reduces the computational complexity and model size, thereby
increasing computational efficiency. A multi-scale residual fusion network, R2FN (Res2Net Fusion
Network), has been designed to replace traditional manually designed fusion strategies, enabling
the network to better preserve detail information in the image while improving the quality of the
fused image. Moreover, a new loss function is proposed, which is aimed at enhancing important
feature information while preserving more significant features. Experimental results on public
datasets indicate that the method not only retains the detail information of visible-light images but
also highlights the significant features of infrared images while maintaining a minimal number
of parameters.

Keywords: image fusion; infrared image; multi-scale features; lightweight model; attention mode

1. Introduction

Image fusion is a process whereby images from diverse sensors or modalities are
amalgamated into a singular image. This crucial phase in image processing is designed to
extract and enhance information from multiple sources, resulting in a composite image that
is both more informative and of superior quality. Based on variations in imaging devices,
image fusion tasks are primarily classified into three categories: multimodal image fusion,
remote sensing image fusion, and digital photography image fusion [1]. Among these,
the fusion of infrared and visible images, as a branch of multimodal image fusion, has
been a topic of considerable interest. Visible images, which are captured following the
imaging principles of the human eye, are rich in color and texture information, but they are
susceptible to obstruction and cannot function in low-light or nighttime conditions. Infrared
images emphasize the thermal distribution characteristics of targets and are suitable for
low-light and adverse weather conditions, but they lack color and texture information.
Therefore, the fusion of these two types of images can result in a composite image that
possesses enriched information and enhanced visual perception, providing significant
assistance in various application areas, such as target detection [2], medical diagnosis [3],
and remote sensing localization [4]. Currently, infrared and visible image fusion methods
are typically categorized into two types based on the representation learning techniques
employed in their algorithms: traditional image fusion algorithms and those based on
deep learning.
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Most traditional fusion algorithms primarily utilize signal processing techniques to
accomplish fusion tasks. Traditional image fusion techniques commonly employ multi-scale
transformations and methods based on sparse or low-rank representations (SRs/LRRs).
Among these, methods based on multi-scale transformations, such as the discrete wavelet
transform [5], contourlet transform [6], and shearlet transform [7], are notable. The strength
of these methods stems from their capability to extract feature information in the frequency
domain, which is unattainable in the spatial domain, which helps enhance the performance
of fusion algorithms. However, the efficacy of these algorithms is primarily contingent
upon the multi-scale transformation operation, which complicates the task of identifying
a suitable transformation applicable to diverse image types. On the other hand, the
transformation between spatial and frequency domains not only elevates computational
complexity but also results in the loss of crucial image features.

Methods based on sparse/low-rank representations (SRs/LRRs), such as SR-HOG [8],
DDL [9], JSR [10], and DLRR [11], are applied directly to source images in the spatial
domain to extract features, thereby minimizing the loss of feature information typically
incurred by transformations between spatial and frequency domains. However, when
the source images contain complex information, the performance of these algorithms can
drastically decrease.

In recent years, the rapid advancement of deep learning technology has ushered
in new opportunities for the fusion of infrared and visible images. The introduction of
convolutional neural networks and attention mechanisms has broadened the scope of image
fusion, surpassing traditional algorithms and giving rise to a variety of deep learning-based
methods. Li et al. [12] introduced the pretrained deep learning network VGG into the image
fusion model, significantly improving fusion performance compared to traditional fusion
networks. However, since deep learning processing was only added to a few branches and
the pretrained structure was not specifically designed for fusion tasks, the features extracted
may not necessarily contain complementary information for infrared and visible images.

To accomplish feature extraction and image reconstruction, the autoencoder-based
image fusion method first pretrains an autoencoder on a sizable dataset. Then, for image
fusion, a hand-crafted fusion approach is used to combine deep features extracted from
various source images. Li et al. [13] proposed a novel autoencoder-based image fusion
network called DenseFuse, which adopts the network structure of DenseNet [14] to fully
extract image features, enriching the extracted features with more abundant information.
Then, a designed fusion method is applied for feature-level fusion, and finally, four con-
volutional layers are used in feature reconstruction to create fused pictures. During the
training phase, a large-scale dataset is used to train the autoencoder designed for the fusion
task, facilitating the improvement of feature extraction adaptability in various scenarios.
However, this network structure is relatively simple and cannot extract multi-scale deep
features. To address this issue, many improved autoencoder image fusion algorithms based
on the DenseFuse framework have emerged. In 2019, Song et al. [15] proposed the MSDNet
algorithm, which extracts multi-scale features and fuses data across all scales by adding
convolutional kernels of varying sizes after the encoder. However, while introducing
multi-scale features enriches the information of deep features, it also makes the overall
fusion network more complex, increasing the computational complexity of the model. Sub-
sequently, Li et al. [16] further improved the network structure based on DenseFuse and
proposed the NestFuse image fusion method, which utilizes nest connections to construct
the decoder network structure and achieves multi-scale feature extraction. Nevertheless,
this model still requires the manual design of fusion methods and cannot perform fusion
specifically for the unique information of infrared and visible images.

Although autoencoder-based image fusion methods significantly improve fusion
performance compared to traditional methods, they lack specific datasets for multimodal
images, resulting in limitations in their expressive power when dealing with complex
multimodal images. With the emergence of more multimodal datasets, a plethora of
end-to-end fusion methods have emerged, incorporating end-to-end training, a fusion



Appl. Sci. 2024, 14, 4589 3 of 18

strategy, and deep feature extraction as the three main fusion process components. In
2017, Prabhakar et al. [17] introduced the DeepFuse model, which was the first to apply
an end-to-end network to image fusion. However, its very simplistic network topology
results in information loss, as it just uses the final layer’s output. Ma et al. [18] utilized
GAN [19] to fuse infrared and visible images. They achieved this by creating an adversarial
relationship between the two types of data. However, FusionGAN utilizes content loss
and discriminator loss as loss functions, resulting in fused images with fewer texture
details. Subsequently, Ma et al. [20] improved upon FusionGAN with FusionGANv2,
introducing novel loss functions such as detail loss and target edge-enhancement loss to
preserve the detailed information of target edges. To solve many kinds of image fusion
challenges, Zhang et al. [21] manually assembled a multi-focus image dataset and used
a CNN that had already been trained. However, the network’s results were constrained
when used for other image fusion tasks because it was trained on a dataset of images
with several foci. Following this, Xu et al. [22] proposed a unified image fusion method
that maintains the adaptive similarity between the fusion results and source images by
leveraging adaptiveness. However, the loss function employed in U2Fusion, designed
solely around gradient-based adaptiveness, fails to fully capture the significance of source
images across various fusion subtasks. For instance, in the fusion task of infrared and
visible-light images, compared to infrared images, visible-light images exhibit more texture
details and dominant gradient clues, resulting in fusion results biased toward visible-light
images. Li et al. [23], building upon NestFuse, designed a fusion network called the residual
fusion network (RFN) to replace manually designed fusion strategies. By employing a
two-stage training method, the RFN retains detailed information and salient features in the
fusion features, significantly enhancing the fusion performance of the network. However,
the complexity of the network structure leads to a large number of model parameters.

To address the issues present in the aforementioned image fusion networks, we
propose a lightweight multi-scale infrared and visible image fusion method based on
nested connections and Res2Net. This innovative combination not only enhances the feature
extraction process, thereby substantially enhancing the quality of the fused images, but
also ensures low computational complexity. Compared to existing techniques, the nested
connection structure that we introduce can integrate multi-scale information more deeply,
a facet often overlooked in traditional image fusion methods. Furthermore, by designing
the multi-scale residual fusion network R2FN to replace traditional manually designed
fusion strategies, our method can effectively highlight key information in the images,
thereby enhancing their expressiveness while preserving image details. The introduction
of depthwise separable convolution significantly reduces computational complexity and
memory requirements, making the algorithm suitable for resource-constrained mobile
devices. The main contributions of our algorithm are summarized as follows:

1. We employ the frequency-domain decomposition technique to split the source im-
age into detail and base layers, allowing the network to operate on the image with
greater precision.

2. We incorporate depthwise separable convolution into the infrared and visible-light im-
age fusion network. In comparison to existing classical fusion methods, our network
achieves the lowest number of parameters without compromising performance.

3. We propose a multi-scale residual fusion module (R2FN) to replace manually designed
fusion strategies, enabling the effective fusion of features across multiple scales.

4. We design a new loss function that preserves detail information while enhancing
salient target features.

5. We conduct experiments on the TNO dataset to test the proposed fusion method.
Comparative analysis with existing classical image fusion algorithms demonstrates
that our method achieves optimal performance in these fusion tasks.
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2. Related Works
2.1. Res2Net

To improve the multi-scale representation capabilities of CNNs, GAO et al. [24]
proposed a novel multi-scale backbone architecture called Res2Net, which is utilized for
object detection, class activation mapping, and salient object detection. This method divides
the input features into multiple branches, with each branch responsible for extracting
features at different scales. These branches are connected together in a manner similar
to residual connections, enhancing the scale representation capability of features. The
framework of Res2Net is illustrated in Figure 1.

Figure 1. Architecture of Res2net.

The internal connectivity of Res2Net is similar to that of ResNet [25], with the dis-
tinction that, in Res2Net, the 3 × 3 convolutions are decoupled. The input features are
segmented into multiple groups, each of which is processed by a corresponding set of
filters to extract features. Subsequently, the output features of the preceding group are
combined with the input features of the subsequent group and processed by the next
group of filters. This process is iterated multiple times until all groups of features have
undergone processing. Finally, the feature maps from all groups are concatenated and
subjected to a set of 1 × 1 filters and then concatenated with the original features to derive
the final result. Through this approach, Res2Net enhances the network’s performance
and representation capability by increasing the effective receptive field and generating
multi-scale feature representations.

2.2. Depthwise Separable Convolution

Depthwise separable convolution (DSC), first proposed by Sifre et al. [26], gained
widespread recognition when it was introduced in the MobileNet model by the Google
team in 2017 [27]. The fundamental concept of MobileNet involves significantly reducing
computational complexity and model size by employing DSC.

Depthwise separable convolution comprises two processes: Depthwise Convolution
(DW) and Pointwise Convolution (PW). In DW, the number of convolutional kernels
matches that of the input channels, thereby establishing a one-to-one correlation between
channels and kernels. Consequently, in DW, the number of output feature maps matches
that of the input channels. PW then convolves the output feature maps from DW with
convolutional kernels, ensuring that each output feature map integrates information from
all input feature maps. The schematic diagram of depthwise separable convolution is
illustrated in Figure 2.
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Figure 2. Depth-separable convolution schematic.

In the figure, the input image size is denoted by DF × DF × M and is convolved with
convolution kernels of size DK × DK × M to obtain M-channel feature maps. Then, the
M-channel feature maps are input to convolution kernels of size 1 × 1 × N, resulting in
N-channel feature maps. The computational complexity of the entire process is as follows:

DF · DF · M · DK · DK + DF · DF · M · N (1)

If the input image with the size DF × DF × M is convolved using regular convolution
with kernels of size DK × DK × M to obtain the same feature maps as in the above process,
the computational complexity is as follows:

DK · DK · DF · DF · M · N (2)

The ratio between (1) and (2) is

1
DK

2 +
1
N

(3)

In feature extraction, the commonly chosen kernel size is 3 × 3. Therefore, theoretically,
depthwise separable convolution reduces computation by a factor of 8–9 compared to
regular convolution.

MobileNetv3, introduced by [28], incorporates depthwise separable convolution,
inverted residual blocks, and Squeeze-and-Excitation (SE) modules [29]. The input feature
map is initially expanded through convolutional layers to extract additional features.
Subsequently, Depthwise Convolution (DW) is applied, followed by the SE module to
adjust the weights of each channel, thereby enhancing the model’s accuracy. Finally,
downsampling is performed through convolutional layers. When the number of input and
output features matches, shortcut connections are utilized by the Bottleneck (Bneck). The
structure of the Bneck network is depicted in Figure 3.

Figure 3. Bneck of MobileNetv3 structure.
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3. Approach
3.1. An Overview of the Proposed Method

We propose a lightweight multi-scale infrared and visible image fusion method. The
method first divides the original visible-light and infrared images into base and detail layers
using mutually guided image filtering (muGIF) [30], which allows for extracting more
hierarchical representations in high-frequency and low-frequency domains. The base layer
encompasses information such as image content and spatial structure, whereas texture and
local shape information are contained within the detail layer. Subsequently, sub-images
at the same hierarchical level are input into the image fusion network for fusion. Finally,
the fused images from both high-frequency and low-frequency components are merged
to derive the final fused image. The flowchart of the proposed algorithm is illustrated in
Figure 4.

Figure 4. Two-layer fusion framework of the proposed method.

The decomposition process of the source image primarily consists of two steps. Firstly,
the image’s base layer is obtained through the muGIF method, which can be calculated
using (4).

Ibase = muGIF(Ii, α, T) (4)

Here, Ibase represents the base layer image, muGIF denotes the mutually guided
image filtering operation, Ii stands for the source image, α is the parameter controlling the
extent of texture removal, and T represents the number of iterations. We set α to 0.003 and
T to 3.

After extracting the base layer, the detail layer image is obtained through the operation
in (5):

Idetail = Ii − Ibase (5)

When fusing sub-images at the same hierarchical level, we propose a lightweight
multi-scale infrared and visible fusion network. Taking the fusion process of the base layer
as an example, its architecture is illustrated in Figure 5. We draw inspiration from the
RFN-Net’s network structure, where the fusion network consists of encoder, fusion, and
decoder modules. We introduce depthwise separable convolution into the encoder and
decoder networks, replacing conventional convolutions in the original network to address
the issue of the relatively large parameter size. The encoder module of the encoder network
comprises two improved bneck layers and a max-pooling layer. Through this combination,
the encoder can extract multi-scale depth features with a smaller computational cost. The
multi-scale fusion network R2FN is employed to integrate multimodal depth features
extracted at each scale. The fused features are then input into the decoder with a nested
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connection structure. The advantage of this structure is its ability to avoid information
loss from previous layers during convolution operations, thereby fully utilizing multi-scale
features for image reconstruction.

Figure 5. Framework of proposed method.

We adopted the Bottleneck (Bneck) structure from MobileNetv3. DSC is capable of
reducing the number of model parameters and computational complexity, but it might
also adversely affect the convolution’s capacity to extract features. Therefore, the attention
module CBAM [31] is introduced to enhance the model’s attention concentration ability and
improve the information-processing mechanism, effectively improving the quality of image
fusion and the overall performance of the model. CBAM, as a lightweight and versatile
attention mechanism, can be easily added to the convolutional layers of any network at a
minimal cost. CBAM applies attention mechanisms simultaneously in both the channel
and spatial dimensions, enhancing the model’s accuracy. Additionally, the parameter size
of the improved network has been further decreased. The enhanced Bneck structure is
illustrated in Figure 6.

Figure 6. The structure of the enhanced Bneck.

3.2. Fusion Network

The fusion network R2FN, tailored for the dual-modal image fusion task, is designed
based on the Res2Net architecture. In the fusion network, the parameters of R2FN vary
across different layers. The structure of the R2FN network is illustrated in Figure 7.
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Figure 7. The architecture of R2FN.

In the figure, Φm
ir and Φm

vi represent the infrared and visible depth features extracted
by the encoder network, respectively. Initially, the outputs of Conv1 and Conv2 are
concatenated and fed into a 1 × 1 convolution for channel transformation. The feature
maps are subsequently partitioned into s subsets, each characterized by an identical spatial
size and 1/s of the total channel count, with s serving as the scale control parameter. The
first subset, X1, remains unchanged and is directly propagated to Y1, while the remaining
subsets undergo 3 × 3 convolution operations before being added to the next feature subset.
Subsequently, the acquired feature maps are fed into the SE module to modify the weights
of each channel, thereby improving the model’s accuracy. Here, ReLU and h-sigmoid are
sequentially utilized as activation functions. Finally, the results from the 1 × 1 convolution
are added to the fusion convolutional layer Conv3 to obtain the final outcome C. In our
experiments, we selected s = 4 as the scale control parameter.

4. Training Strategy

During the training phase, our image fusion network needs to possess superior per-
formance based on two key factors: one is the feature extraction capability of the encoder
network and the feature reconstruction capability of the decoder network, and the other is
the capability of R2FN to extract dual-mode multi-scale features. Therefore, a two-stage
training method is adopted in this study. Firstly, the encoder network and the decoder
network are trained as a whole, with the objective of reconstructing the network input.
Then, R2FN is trained using multimodal images, with the parameters of the encoder and
decoder obtained from the first stage being fixed during this phase.

4.1. Training in the First Stage

We are essentially training an autoencoder network to recreate the input images during
the training phase because the fusion layer of the network is dropped. The formulation of
the loss function is a critical factor that impacts the quality of image fusion outcomes. In the
case of the autoencoder-based image fusion network, the loss function calculates the loss
between the reconstructed image and the source image to supervise the learning process.
While simultaneously imposing constraints on the output image to maintain consistency
in texture details with the input image, our goal is for it to share greater structural and
intensity distribution similarity with the source image. Considering these factors, we
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introduce similarity loss Lsim and gradient loss Lgrad to formulate the total loss function L,
defined as follows:

L = Lsim + λLgrad (6)

where Lsim is used to retain important information from the source image. It limits the
resemblance between the fusion result and the source image, ensuring that the fusion result
retains the essential features of the source image to the greatest extent possible, thereby
enhancing the quality and perceptual effect of the fusion result. Lgrad is used to constrain
the fusion result to maintain consistent gradient information and texture features with
the source image. λ represents the balance parameter, which is used to adjust the balance
between the loss terms Lsim and Lgrad, keeping different loss terms on the same scale. This
enables the encoder and decoder to balance information from different modalities when
dealing with infrared and visible images.

To determine Lsim, we utilize two metrics, SSIM and MSE, to comprehensively assess
the similarity of fusion results. The SSIM is the most commonly used metric to assess the
similarity between two images. It assesses their similarity by comparing the brightness,
contrast, and structural information of the two images. The SSIM values range from -
1 to 1, with a value closer to 1 indicating a higher similarity between the two images.
To minimize the loss, we use the dissimilarity between the two images to represent the
structural similarity loss Lssim, which is calculated using (7):

Lssim = 1 − SSIM(X, Y) (7)

where X represents the output image, Y represents the input image, and SSIM(·) represents
the structural similarity operation. It is worth noting that the SSIM primarily focuses
on changes in contrast and structure, with weaker constraints on intensity distribution
differences. Therefore, we introduce MSE as a supplement. MSE is a metric that measures
the error between two images. Using MSE as the loss function ensures that the distribution
of pixel intensities in the input and output images are similar in image fusion tasks. Lmse
can be calculated using (8):

Lmse =
1

HW ∑
i

∑
j

(
Xi,j − Yi,j

)2 (8)

where H and W represent the height and width of the image, respectively. X represents the
output image, and Y represents the input image. i, j represent the pixel values in row i and
column j. Since the scales of Lssim and Lmse are different, we introduce a balance parameter,
µ, to control the balance between the two terms. The final expression for Lsim is as shown
in (9):

Lsim = µLssim + Lmse (9)

We utilize gradient operators to compute the gradients of both the input image and
the output image, followed by the calculation of the Euclidean distance between them.
Gradient operators can compute the gradient values of each pixel in the image, representing
the rate of color change at that pixel. Therefore, the gradient loss ensures that the output
image has similar texture details to the input image, thereby improving the quality of the
fusion result. Lgrad can be calculated using (10):

Lgrad =
1

HW ∑
i

∑
j

√(
∇Xi,j −∇Yi,j

)2 (10)

where ∇(·) represents the gradient operator, which can calculate the gradient values for

each pixel in the image, and
√(

∇Xi,j −∇Yi,j
)2 represents the Euclidean distance between

the input image and the output image at pixel (i, j). A smaller Lsim indicates that the texture
details in the output image are more similar to those in the input image, leading to higher
fusion result quality.
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4.2. Training in the Second Stage

In the fusion layer, the multimodal multi-scale feature fusion module R2FN is designed
to replace the manually designed fusion strategies typically used in autoencoder-based
fusion networks. In the second stage of training, the focus is on training the R2FN module
to enhance its capability of extracting multimodal multi-scale features. The R2FN module is
trained using multimodal images, aiming to optimize its performance in effectively fusing
multimodal multi-scale features. The parameters of the encoder and decoder obtained from
the first stage are kept fixed to ensure consistency in the features extracted and reconstructed
by these networks. Subsequently, a loss function tailored for R2FN is designed to train the
multi-scale depth feature fusion network.

The fixed encoder network is employed to extract multi-scale features from the source
images, with the features at each scale being fused by the corresponding R2FN. The fused
multi-scale features are then used as inputs to the decoder network to reconstruct the fused
image. We define a loss function LR2FN as the training loss for R2FN. LR2FN consists of two
components: detail loss (Ldetail) and feature enhancement loss (Lfeature), defined as follows:

LR2FN = βLdetail + Lfeature (11)

where β represents the balancing parameter between Ldetail and Lfeature.
In infrared and visible image fusion networks, the visible image typically contributes

texture details in the background. Therefore, we define the detail preservation loss by
computing the structural similarity loss of the visible-light image. It is defined as follows:

Ldetail = 1 − SSIM(O, Ivi) (12)

In infrared images, more salient object features are typically present. Therefore, a
feature enhancement loss function is designed to enhance salient feature information. It is
defined as follows:

Lfeature =
M

∑
m=1

ω1(m) ·
[(

ϕm
f − ϕm

ir

)2
· ωir +

(
ϕm

f − ϕm
vi

)2
· ωvi

]
(13)

where M represents the number of multi-scale features obtained through downsampling,
ω1(m) represents the balancing parameter for the m-th multi-scale feature, and ωir and ωvi,
respectively, represent the balancing parameters controlling the ratio of visible-light depth
features and infrared features.

5. Experiments and Results Analysis
5.1. Dataset and Experimental Environment

In order to verify the efficacy of our method, in the training stage, we selected
80,000 images from the MS-COCO dataset [32] as the first-stage training set and utilized the
KAIST dataset [33] as the second-stage training set. In the first-stage training, the balancing
parameter λ between the similarity loss and the gradient loss in the loss function was set to
1, and µ was set to 100. In the second-stage training, β was set to 500, ωir was set to 5, and
ωvi was set to 3. The model training parameters were set as follows: epochs = 20; batch
size = 4.

During the testing phase, to verify the effectiveness of our method, images were
selected from the publicly available infrared and visible-light dataset TNO [34] for experi-
mentation. Six sets of images were chosen for comparative analysis. These images, rich
in detail and texture, are suitable for assessing the quality of image fusion. Having been
widely used in previous studies, they provide a benchmark for comparing our results with
existing methods.

Our experiments were conducted on a system running Windows 11 with hardware
specifications that include an Intel(R) Core(TM) i5-12400F 2.50 GHz processor. The model
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was run on an NVIDIA GeForce RTX 3060 GPU. The software environment for the experi-
ments included Python 3.8.3, PyTorch 1.10.1, CUDA 11.3, and the PyCharm 2020.1 IDE.

5.2. Evaluation Metrics

To objectively evaluate the algorithm, we selected Entropy, the Standard Deviation,
and the Structural Similarity Measure (SSIM) as objective evaluation metrics to assess the
amount of edge, texture, and contrast information in the fused images. Mutual Information,
Feature Mutual Information using Discrete Cosine Transform (FMIdct), Feature Mutual
Information using Wavelet Transform (FMIw), and Visual Information Fidelity were used
to evaluate the distortion, noise, and artifacts caused by fusion, similarity, and the transfer
of complementary information between the fused and source images. We also used the
“params" metric to evaluate the model’s size.

EN is used to assess the information content of fused images, with higher values
indicating richer content, and is crucial for evaluating fusion effectiveness. The SD measures
pixel dispersion, reflecting image contrast, which is important for enhancing visibility and
details. The SSIM evaluates the structural similarity between the fused and original images,
with high values showing the effective preservation of visual features. MI assesses the
degree of information correlation between the fusion result and original images, indicating
the preservation of original data. FMIdct and FMIw assess the Mutual Information of
discrete cosine and wavelet features, respectively, reflecting the algorithm’s ability to retain
significant original features. VIF, which assesses the visual quality of the fusion result,
shows that higher values indicate greater fidelity to human visual perception, representing
better quality. The model’s size and computational complexity are critical for practical
applications, with models having fewer parameters being easier to deploy in resource-
limited environments, reducing energy and operational costs.

In comparative experiments, we selected six classical image fusion algorithms as
benchmarks: DeepFuse (CNN-based fusion), DenseFuse (DenseNet-based fusion with
autoencoders), NestFuse (fusion with nested connections and spatial/channel attention
models), FusionGAN (GAN-based fusion), U2Fusion (end-to-end unsupervised fusion),
and IFCNN (fusion using multiple fusion strategies).

5.3. Ablation Study

To validate the optimization effects of our various strategies and assess the effec-
tiveness of the proposed methods, we designed and conducted ablation experiments.
These experiments aimed to further evaluate the impact of improved techniques on the
performance of image fusion.

5.3.1. Frequency-Domain Decomposition

In this section, an analysis is conducted on the frequency-domain decomposition
module, and the influence of different parameters of α in the guided filtering operation
(muGIF) on the network is examined.

As discussed in Section 3.1, mutually guided image filtering is employed during
frequency-domain decomposition to decompose the input source image into base and
detail layers. The quality of filtering critically impacts the final image fusion performance.
Therefore, in the experiments of this section, α is set to 0.0001, 0.001, 0.01, 0.002, 0.003,
and 0.004 to analyze its influence on the filtering effect. (Only the experimental results of
infrared image frequency-domain decomposition are listed in this paper, and it is observed
that the trends in the decomposition effects of visible-light images are consistent with those
of infrared images.) The experimental results are shown in Figures 8 and 9.
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Figure 8. The infrared base layer images corresponding to different α values of mutually guided filtering.

Figure 9. The infrared detail layer images corresponding to different α values of mutually guided filtering.

From the figure, it can be observed that, with the increase in α, the base layer gradually
becomes smoother, as larger α values result in the removal of more high-frequency details.
When α increases to a certain extent, such as α = 0.01, the detail layer loses too much high-
frequency information, leading to less prominent image details. At α = 0.003, the base layer
demonstrates moderate smoothness, removing an appropriate amount of high-frequency
detail information while still retaining sufficient structural information. The detail layer
preserves more texture and edge information without excessive smoothing, indicating that
the filter can better distinguish between the base content and detail content. Therefore, we
select 0.003 as the value of α.

After determining the value of α, to verify the impact of the frequency-domain decom-
position module on the performance of image fusion, we conducted ablation experiments
targeting this module using the same image fusion network. The experimental results are
presented in Table 1.

Table 1. The average values of objective metrics obtained without using the frequency-domain
decomposition module and with the frequency-domain decomposition module included.

EN SD SSIM MI FMIdct FMIw VIF

Exp.1 6.7597 42.4632 0.7348 14.0251 0.3783 0.4132 0.6531
Exp.2 7.0876 45.9123 0.7564 14.2398 0.3975 0.4371 0.7360
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In the table, Experiment 1 corresponds to the fusion results without the frequency-
domain decomposition module, while Experiment 2 corresponds to the fusion results with
the inclusion of the frequency-domain decomposition module. Clearly, after incorporating
the frequency-domain decomposition module, the numerical values of various evaluation
metrics improved, validating the effectiveness of this module in enhancing the performance
of the image fusion network.

5.3.2. The Loss Function during the First Stage of Training

The first stage of training focuses on the feature extraction capability of the encoder
and the reconstruction ability of the decoder, independent of the fusion layer. To balance
the magnitudes of different loss terms in the loss function, we introduce the balancing
parameters λ and µ, where λ is used to balance the magnitude difference between Lsim
and Lgrad, and µ is used to balance the magnitude difference between Lssim and Lmse. We
assessed the average values of objective metrics under different magnitude combinations
to validate the optimal combination of balancing parameters. The experimental results are
presented in Table 2. The optimal values are highlighted in bold font.

Table 2. The average values of objective metrics obtained by setting different balancing parameters
for the loss functions during the first stage of training.

µ λ EN SD SSIM MI FMIdct FMIw VIF

1
0.1 6.6176 41.9542 0.7021 13.4094 0.3125 0.4003 0.6629
1 6.6268 42.1055 0.7113 13.4598 0.3317 0.4206 0.6831
10 6.6341 42.2104 0.7168 13.4783 0.3354 0.4239 0.6876

10
0.1 6.6194 41.9845 0.7081 13.4297 0.3177 0.4056 0.6687
1 6.6331 42.1588 0.7170 13.4722 0.3380 0.4261 0.6888
10 6.6404 42.2558 0.7195 13.4984 0.3411 0.4291 0.6922

100
0.1 6.6430 42.2992 0.7129 13.4419 0.3233 0.4119 0.6742
1 6.6659 42.6404 0.7186 13.8028 0.3511 0.4387 0.7065
10 6.6593 42.4887 0.7217 13.5089 0.3461 0.4340 0.6969

1000
0.1 6.6465 42.3545 0.7082 13.4724 0.3294 0.4166 0.6805
1 6.6567 42.5179 0.7192 13.5304 0.3394 0.4263 0.6899
10 6.6654 42.6293 0.7254 13.5709 0.3448 0.4327 0.7019

From Table 2, it can be observed that when µ is set to 100 and λ is set to 1, the image
fusion network exhibits better performance.

5.3.3. The Loss Function during the Second Stage of Training

We kept the numerical values obtained in the first stage unchanged and conducted
an ablation study on the balancing parameters of the loss function during the second
stage of training. Referring to the conclusions drawn in reference[23], we first set β to 700
and conducted ablation experiments for both ωvi and ωir. The experimental results are
presented in Table 3.

From Table 3, it can be observed that the combination of ωir = 5 and ωvi = 3 performs
the best across almost all key performance indicators. This combination not only maintains
the richness of image information and contrast but also effectively preserves the structural
similarity, feature information, and visual fidelity of the images. Therefore, this combination
is considered the optimal parameter setting, providing the best image fusion results.

To find the optimal value of β, which controls the balance between Ldetail and Lfeature,
we conducted an ablation study by setting ωir to 5 and ωvi to 3. Due to the larger difference
in magnitudes between Ldetail and Lfeature, we experimented with β values of 100, 300, 500,
700, and 1000. The experimental results are presented in Table 4.
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Table 3. The average values of objective metrics obtained were calculated by setting β to 700 during
the second stage of training and by varying the values of ωir and ωvi. The bold indicates the
optimal value.

ωir ωvi EN SD SSIM MI FMIdct FMIw VIF

2 2 6.8374 43.3473 0.7117 13.8329 0.3211 0.4121 0.6826

3 2 6.8479 43.5035 0.7322 13.8838 0.3415 0.4334 0.7038
3 6.8558 43.6115 0.7380 13.9025 0.3448 0.4366 0.7086

4
2 6.8397 43.3764 0.7172 13.8530 0.3264 0.4178 0.6886
3 6.8544 43.5587 0.7377 13.8955 0.3475 0.4389 0.7092
4 6.8624 43.6606 0.7412 13.9225 0.3505 0.4419 0.7131

5

2 6.8655 43.7051 0.7230 13.8641 0.3324 0.4240 0.6945
3 6.8911 43.9084 0.7561 14.2369 0.3607 0.4505 0.7240
4 6.8833 44.1212 0.7473 13.9342 0.3557 0.4475 0.7174
5 6.8694 43.7629 0.7278 13.8762 0.3382 0.4298 0.7003

6

2 6.8803 43.9310 0.7396 13.9350 0.3489 0.4408 0.7117
3 6.8905 44.1225 0.7515 13.9753 0.3543 0.4461 0.6980
4 6.8730 43.8484 0.7326 13.8878 0.3362 0.4274 0.7272
5 6.8612 43.6517 0.7197 13.8518 0.3240 0.4152 0.6860
6 6.8494 43.4549 0.7066 13.8164 0.3116 0.4030 0.6741

Table 4. The average values of objective metrics obtained were calculated by setting ωir to 5 and
ωvi to 3 during the second stage of training while varying the values of β. The bold indicates the
optimal value.

β EN SD SSIM MI FMIdct FMIw VIF

100 6.6453 43.7460 0.7438 13.9182 0.3405 0.4230 0.7141
300 6.7841 44.6525 0.7532 14.0203 0.3544 0.4366 0.7324
500 7.0876 45.9123 0.7564 14.2398 0.3975 0.4371 0.7360
700 6.8911 43.9084 0.7561 14.2369 0.3607 0.4505 0.7240

1000 6.7140 43.5906 0.7505 14.1427 0.3460 0.4312 0.7244

From Table 4, it can be observed that when β is set to 500, all metrics except for FMIw
are at their optimal values, with the value of FMIw being only slightly below the optimum.
Considering all key performance indicators comprehensively, β = 500 offers the best overall
performance. Therefore, we set β to 500 in our experiments.

5.4. Results Analysis and Comparison
5.4.1. Subjective Evaluation

To validate the effectiveness of our proposed method, we conducted a subjective
comparative experiment on a subset of images from the TNO dataset, comparing them
with various image fusion algorithms. The comparative results of each algorithm are
shown in Figure 10. The comparison results show that the FusionGAN method fails to
effectively preserve detailed texture information from the visible-light images. NestFuse
and IFCNN methods demonstrate a good representation of the target contours but do not
effectively retain the thermal radiation information from the infrared images. The DeepFuse,
DenseFuse, and U2Fusion methods exhibit clear contour information and target features,
but the introduction of excessive noise leads to poor fused image quality. Particularly in the
yellow-boxed areas in Figure 10, none of these algorithms achieve the desired fusion results.
In contrast, our algorithm maintains a better balance of information between the infrared
and visible-light images in most fusion scenarios, resulting in superior fusion results.
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Figure 10. Infrared and visible-light fusion results of each algorithm.

5.4.2. Objective Evaluation

To further validate the effectiveness of our proposed algorithm, we selected eight
objective evaluation metrics for comparative analysis, and the comparative results are
shown in Table 5.
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Table 5. The average quantitative value of each evaluation index. The bold indicates the
optimal value.

EN SD SSIM MI FMIdct FMIw VIF Params

DeepFuse 6.7581 41.8988 0.7329 13.5161 0.3777 0.4146 0.6582 2.9653M
DenseFuse 6.7634 41.9003 0.7335 13.5268 0.3810 0.4192 0.6573 3.1317M
NestFuse 6.9355 43.5519 0.6942 13.8709 0.3321 0.4378 0.7249 10.9310M

FusionGAN 6.5440 38.3732 0.6933 13.0673 0.2831 0.3534 0.5082 7.9873M
U2Fusion 6.4722 30.0504 0.7526 12.9444 0.3077 0.3540 0.4998 5.9896M

IFCNN 6.9521 44.5987 0.7054 13.9041 0.3574 0.4275 0.7279 8.4360M
Ours 7.0876 45.9123 0.7564 14.2398 0.3975 0.4371 0.7360 2.0432M

From Table 5, it is evident that our proposed method achieves the optimal performance
across all seven metrics except FMIw. Additionally, it demonstrates significant advantages
in terms of model complexity and computational efficiency. This demonstrates that the
algorithm can effectively preserve detailed information from visible-light images while
highlighting significant features from infrared images. Moreover, it maintains a relatively
small parameter count. The reduced number of parameters implies a lighter-weight model
and lower training and deployment costs, which are particularly suitable for resource-
constrained environments such as mobile devices and real-time systems. This highlights
the high practical value of our method, not only theoretically and experimentally excellent
but also highly applicable in real-world scenarios.

6. Conclusions

In this article, we propose a novel method for lightweight infrared and visible image
fusion based on nested connections and Res2Net. This method combines frequency-
domain decomposition, depthwise separable convolution, nested connection networks, and
multi-scale residual networks, achieving multi-scale feature extraction while maintaining
a small model parameter count. Prior to inputting the source images into the fusion
network, a mutually guided filtering operation is applied to better extract hierarchical
representations of the images’ high- and low-frequency domains. By improving depthwise
separable convolution, the model reduces computational complexity while maintaining
high fusion quality. Multi-scale feature extraction is realized through the use of nested
connection structures. Through the designed R2FN network, image details are effectively
preserved, and significant features of the infrared images are highlighted. Experimental
comparisons with several classical image fusion algorithms, in terms of subjective and
objective evaluations, demonstrate the superiority of the proposed method across multiple
key performance indicators. Notably, the method exhibits advantages in lightweighting,
significantly reducing the computational burden, while also enhancing feature extraction
and fusion capabilities through the nested connection architecture and the R2FN fusion
module. Consequently, this study not only advances the theoretical and practical aspects
of image fusion technology but also opens up new pathways for its application in high-
dynamic and dynamic environments.
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