Enhanced Wear Resistance of Microstripe-Textured Water-Lubricated Materials Fabricated via Hot Embossing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials’ Preparation
2.2. Manufacturing Method of Microtextured Surfaces
2.3. Tribological Tests
3. Results and Discussion
3.1. Fabrication of Microstripe Textures
3.2. Effect of Microstripe Texture on the Water Contact Angle of Materials
3.3. Influence of Microstripe Texture on the Adhesion of Materials
3.4. Comparison of Tribological Properties between Pristine and Microtextured Surfaces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, C.; Yuan, C.; Bai, X.; Yan, X.; Peng, Z. Study on wear behaviour and wear model of nitrile butadiene rubber under water lubricated conditions. RSC Adv. 2014, 4, 19034–19042. [Google Scholar] [CrossRef]
- Wodtke, M.; Litwin, W. Water-lubricated stern tube bearing—Experimental and theoretical investigations of thermal effects. Tribol. Int. 2021, 153, 106608. [Google Scholar] [CrossRef]
- Qin, H.-L.; Zhou, X.-C.; Zhao, X.-Z.; Xing, J.-T.; Yan, Z.-M. A new rubber/UHMWPE alloy for water-lubricated stern bearings. Wear 2015, 328–329, 257–261. [Google Scholar] [CrossRef]
- Tang, D.; Xiao, K.; Xiang, G.; Cai, J.; Fillon, M.; Wang, D.; Su, Z. On the nonlinear time-varying mixed lubrication for coupled spiral microgroove water-lubricated bearings with mass conservation cavitation. Tribol. Int. 2024, 193, 109381. [Google Scholar] [CrossRef]
- Han, H.S.; Lee, K.H. Experimental verification of the mechanism on stick-slip nonlinear friction induced vibration and its evaluation method in water-lubricated stern tube bearing. Ocean. Eng. 2019, 182, 147–161. [Google Scholar] [CrossRef]
- Xie, Z.; Zhu, W. Theoretical and experimental exploration on the micro asperity contact load ratios and lubrication regimes transition for water-lubricated stern tube bearing. Tribol. Int. 2021, 164, 107105. [Google Scholar] [CrossRef]
- Wu, W.; Li, S.; Yang, X.; Shuai, C.; Li, Z.; Wang, X. Improvement of the Static and Dynamic Characteristics of Water-Lubricated Bearings With Integrated Halbach Magnet Arrays. Tribol. Trans. 2023, 66, 302–315. [Google Scholar] [CrossRef]
- Litwin, W. Experimental research on water lubricated three layer sliding bearing with lubrication grooves in the upper part of the bush and its comparison with a rubber bearing. Tribol. Int. 2015, 82, 153–161. [Google Scholar] [CrossRef]
- Naduvinamani, N.B.; Fathima, S.T.; Jamal, S. Effect of roughness on hydromagnetic squeeze films between porous rectangular plates. Tribol. Int. 2010, 43, 2145–2151. [Google Scholar] [CrossRef]
- Joshi, G.S.; Putignano, C.; Gaudiuso, C.; Stark, T.; Kiedrowski, T.; Ancona, A.; Carbone, G. Effects of the micro surface texturing in lubricated non-conformal point contacts. Tribol. Int. 2018, 127, 296–301. [Google Scholar] [CrossRef]
- Hu, J.; Xu, H. Friction and wear behavior analysis of the stainless steel surface fabricated by laser texturing underwater. Tribol. Int. 2016, 102, 371–377. [Google Scholar] [CrossRef]
- Dan, L.; Xuefeng, Y.; Chongyang, L.; Jian, C.; Shouren, W.; Yanjun, W. Tribological characteristics of a cemented carbide friction surface with chevron pattern micro-texture based on different texture density. Tribol. Int. 2020, 142, 106016. [Google Scholar] [CrossRef]
- Wang, W.; He, Y.; Zhao, J.; Li, Y.; Luo, J. Numerical optimization of the groove texture bottom profile for thrust bearings. Tribol. Int. 2017, 109, 69–77. [Google Scholar] [CrossRef]
- Pei, S.; Xu, H.; Yun, M.; Shi, F.; Hong, J. Effects of surface texture on the lubrication performance of the floating ring bearing. Tribol. Int. 2016, 102, 143–153. [Google Scholar] [CrossRef]
- Li, R.; Du, X.; Zhang, Z. Ultra-Precision Free-Form Surface Optical Design, Processing and Measurement Technology; Machinery Industry Press: Beijing, China, 2015; p. 265. (In Chinese) [Google Scholar]
- Kong, L.; Cheung, C. Design, fabrication and measurement of ultra-precision micro-structured freeform surfaces. Comput. Ind. Eng. 2011, 61, 216–225. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Guo, S.; Wang, M. Tribological properties of surface microtexture friction pairs under different lubrication conditions. Adv. Mech. Eng. 2019, 11, 1687814019881569. [Google Scholar] [CrossRef]
- Wang, R.J.; Fu, B.Y.; Ma, L.; Yuan, T. Study on turbine vanes TBCs automatic spraying technology. Therm. Spray. Technol. 2015, 7, 1–5. (In Chinese) [Google Scholar]
- Schroers, J.; Pham, Q.; Desai, A. Thermoplastic Forming of Bulk Metallic Glass—A Technology for MEMS and Microstructure Fabrication. J. Microelectromechanical Syst. 2007, 16, 240–247. [Google Scholar] [CrossRef]
- Worgull, M. Hot Embossing: Theory and Technology of Microreplication (Micro and Nano Technologies); Elsevier Ltd.: Oxford, UK, 2009; p. 368. [Google Scholar]
- Jin, X.; Zheng, Y.; Zhang, Y.; Chen, Z.; Duan, X.; Fu, H.; Ji, J.; Yang, Z.; Hua, X.; Fu, Y. Hierarchical microtextures generated by pulsed-laser manufacturing for surface geometry modulation. J. Manuf. Process. 2023, 97, 148–158. [Google Scholar] [CrossRef]
- Qu, C.; Wang, T.; Wang, Q.; Chen, S. A novel ternary interpenetrating polymer networks based on NBR/PU/EP with outstanding damping and tribological properties for water-lubricated bearings. Tribol. Int. 2022, 167, 107249. [Google Scholar] [CrossRef]
- Leite, F.L.; Bueno, C.C.; Da Róz, A.L.; Ziemath, E.C.; Oliveira, O.N., Jr. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy. Int. J. Mol. Sci. 2012, 13, 12773–12856. [Google Scholar] [CrossRef] [PubMed]
- Lutz, C.; Ma, Z.; Thelen, R.; Syurik, J.; Il’in, O.; Ageev, O.; Jouanne, P.; Hölscher, H. Analysis of Carbon Nanotube Arrays for Their Potential Use as Adhesives Under Harsh Conditions as in Space Technology. Tribol. Lett. 2019, 67, 10. [Google Scholar] [CrossRef]
- Schwarz, U.D.; Koster, P.; Wiesendanger, R. Quantitative analysis of lateral force microscopy experiments. Rev. Sci. Instrum. 1996, 67, 2560–2567. [Google Scholar] [CrossRef]
Material | Heating Temperature (°C) | Preheating Time (min) | Preset Pressure (kN) | Preloading Time (s) | Work Pressure (kN) | Hot Pressing Time (s) | Mold Opening Temperature (°C) |
---|---|---|---|---|---|---|---|
Thordon | 175 | 10 | 20 | 5 | 50 | 240 | 70 |
PU | 170 | 10 | 20 | 50 | 40 | 2150 | 70 |
Materials | Sa (μm) |
---|---|
Pristine surface Thordon | 0.084 |
Microstripe-textured Thordon | 0.051 |
Pristine surface PU | 0.203 |
Microstripe-textured PU | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wu, W.; Yang, X.; Wang, X. Enhanced Wear Resistance of Microstripe-Textured Water-Lubricated Materials Fabricated via Hot Embossing. Appl. Sci. 2024, 14, 4625. https://doi.org/10.3390/app14114625
Li Z, Wu W, Yang X, Wang X. Enhanced Wear Resistance of Microstripe-Textured Water-Lubricated Materials Fabricated via Hot Embossing. Applied Sciences. 2024; 14(11):4625. https://doi.org/10.3390/app14114625
Chicago/Turabian StyleLi, Zeyun, Weibin Wu, Xue Yang, and Xin Wang. 2024. "Enhanced Wear Resistance of Microstripe-Textured Water-Lubricated Materials Fabricated via Hot Embossing" Applied Sciences 14, no. 11: 4625. https://doi.org/10.3390/app14114625
APA StyleLi, Z., Wu, W., Yang, X., & Wang, X. (2024). Enhanced Wear Resistance of Microstripe-Textured Water-Lubricated Materials Fabricated via Hot Embossing. Applied Sciences, 14(11), 4625. https://doi.org/10.3390/app14114625