Securing Edge Devices: Malware Classification with Dual-Attention Deep Network
Abstract
:Featured Application
Abstract
1. Introduction
- We propose a novel deep network with attention mechanisms and an auxiliary branch to learn salient features from malware images. The proposed network also incorporates a Faster SAM (FSAM) with 83% lower trainable parameters than the well-known SAM. Apart from FSAM, we also propose to leverage MHA to correlate our feature branches for efficient malware classification.
- We illustrate the practicability and optimization strategy for DAMN for real-world usage. We achieved a frame per second (FPS) of 545.29 on a real-edge device. Higher frame rates on low-power computing devices reveal countless possibilities for securing future IoT and network applications.
- We densely study the existing methods from malware and image classification domains to summarize the performance of deep networks for malware classification. We outperform the existing works for the benchmark dataset in multiple evaluation metrics by a large margin.
2. Related Works
2.1. Traditional Machine Learning
2.2. Deep Learning
2.3. Malware Detection on IoT and Edge Devices
2.4. Malware Detection on 5G/6G Infrastructure
3. Learning Malware Detection
3.1. Model Architecture
3.1.1. Faster Spatial-Asymmetric Attention Module
3.1.2. Auxiliary Branch
3.1.3. Multi-Head Attention (MHA)
3.2. Dataset Preparation
3.3. Training Details
Algorithm 1 Learning malware classification with DAMN. |
|
4. Results and Analysis
4.1. Comparison
4.1.1. Comparison with Malware Detection Methods
4.1.2. Comparison with Image Classification Methods
4.2. Ablation Study
4.3. Learning Analysis
5. Malware Detection on Edge Platform
5.1. Optimization and Deployment
5.2. Inference Analysis
5.3. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibert, D.; Planes, J.; Mateu, C.; Le, Q. Fusing feature engineering and deep learning: A case study for malware classification. Expert Syst. Appl. 2022, 207, 117957. [Google Scholar] [CrossRef]
- Abusitta, A.; Li, M.Q.; Fung, B.C. Malware classification and composition analysis: A survey of recent developments. J. Inf. Secur. Appl. 2021, 59, 102828. [Google Scholar] [CrossRef]
- Awan, M.J.; Masood, O.A.; Mohammed, M.A.; Yasin, A.; Zain, A.M.; Damaševičius, R.; Abdulkareem, K.H. Image-Based Malware Classification Using VGG19 Network and Spatial Convolutional Attention. Electronics 2021, 10, 2444. [Google Scholar] [CrossRef]
- Rouissat, M.; Belkheir, M.; Alsukayti, I.S.; Mokaddem, A. A lightweight mitigation approach against a new inundation attack in RPL-based IoT networks. Appl. Sci. 2023, 13, 10366. [Google Scholar] [CrossRef]
- Pytorch. Cybercrime to Cost the World $10.5 Trillion Annually by 2025 Code. 2021. Available online: https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021 (accessed on 12 November 2022).
- Schultz, M.G.; Eskin, E.; Zadok, F.; Stolfo, S.J. Data mining methods for detection of new malicious executables. In Proceedings of the 2001 IEEE Symposium on Security and Privacy. S&P 2001, Oakland, CA, USA, 14–16 May 2000; IEEE: New York, NY, USA, 2000; pp. 38–49. [Google Scholar]
- Christodorescu, M.; Jha, S. Static analysis of executables to detect malicious patterns. In Proceedings of the 12th USENIX Security Symposium (USENIX Security 03), Washington, DC, USA, 4–8 August 2003. [Google Scholar]
- Ahmadi, M.; Ulyanov, D.; Semenov, S.; Trofimov, M.; Giacinto, G. Novel feature extraction, selection and fusion for effective malware family classification. In Proceedings of the of the Sixth ACM Conference on Data and Application Security and Privacy, New Orleans, LA, USA, 9–11 March 2016; pp. 183–194. [Google Scholar]
- Zhang, Y.; Huang, Q.; Ma, X.; Yang, Z.; Jiang, J. Using multi-features and ensemble learning method for imbalanced malware classification. In Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; IEEE: New York, NY, USA, 2016; pp. 965–973. [Google Scholar]
- Alzaidy, S.; Binsalleeh, H. Adversarial Attacks with Defense Mechanisms on Convolutional Neural Networks and Recurrent Neural Networks for Malware Classification. Appl. Sci. 2024, 14, 1673. [Google Scholar] [CrossRef]
- Aslan, Ö.; Yilmaz, A.A. A new malware classification framework based on deep learning algorithms. IEEE Access 2021, 9, 87936–87951. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, J.; Liu, D.; Guo, W.; Wu, P.; Bao, X. Byte-level malware classification based on markov images and deep learning. Comput. Secur. 2020, 92, 101740. [Google Scholar] [CrossRef]
- Gibert, D. Convolutional Neural Networks for Malware Classification; University Rovira i Virgili: Tarragona, Spain, 2016. [Google Scholar]
- Kalash, M.; Rochan, M.; Mohammed, N.; Bruce, N.D.; Wang, Y.; Iqbal, F. Malware classification with deep convolutional neural networks. In Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 26–28 February 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Prajapati, P.; Stamp, M. An empirical analysis of image-based learning techniques for malware classification. In Malware Analysis Using Artificial Intelligence and Deep Learning; Springer: Berlin/Heidelberg, Germany, 2021; pp. 411–435. [Google Scholar]
- Singh, A.; Handa, A.; Kumar, N.; Shukla, S.K. Malware classification using image representation. In Proceedings of the Cyber Security Cryptography and Machine Learning: Third International Symposium, CSCML 2019, Beer-Sheva, Israel, 27–28 June 2019; Proceedings 3. Springer: Berlin/Heidelberg, Germany, 2019; pp. 75–92. [Google Scholar]
- Agarap, A.F. Towards building an intelligent anti-malware system: A deep learning approach using support vector machine (SVM) for malware classification. arXiv 2017, arXiv:1801.00318. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 28 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Syeda, D.Z.; Asghar, M.N. Dynamic Malware Classification and API Categorisation of Windows Portable Executable Files Using Machine Learning. Appl. Sci. 2024, 14, 1015. [Google Scholar] [CrossRef]
- Gyamfi, N.K.; Goranin, N.; Ceponis, D.; Čenys, H.A. Automated system-level malware detection using machine learning: A comprehensive review. Appl. Sci. 2023, 13, 11908. [Google Scholar] [CrossRef]
- Rey, V.; Sánchez, P.M.S.; Celdrán, A.H.; Bovet, G. Federated learning for malware detection in IoT devices. Comput. Netw. 2022, 204, 108693. [Google Scholar] [CrossRef]
- Cheng, S.M.; Hong, B.K.; Hung, C.F. Attack detection and mitigation in MEC-enabled 5G networks for AIoT. IEEE Internet Things Mag. 2022, 5, 76–81. [Google Scholar] [CrossRef]
- Kumar, R.; Zhang, X.; Wang, W.; Khan, R.U.; Kumar, J.; Sharif, A. A multimodal malware detection technique for Android IoT devices using various features. IEEE Access 2019, 7, 64411–64430. [Google Scholar] [CrossRef]
- Mujtaba, G.; Ryu, E.S. Human character-oriented animated gif generation framework. In Proceedings of the 2021 Mohammad Ali Jinnah University International Conference on Computing (MAJICC), Karachi, Pakistan, 15–17 July 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Zhao, D.; Ren, J.; Lin, R.; Xu, S.; Chang, V. On orchestrating service function chains in 5G mobile network. IEEE Access 2019, 7, 39402–39416. [Google Scholar] [CrossRef]
- Rahman, A.u.; Mahmud, M.; Iqbal, T.; Saraireh, L.; Kholidy, H.; Gollapalli, M.; Musleh, D.; Alhaidari, F.; Almoqbil, D.; Ahmed, M.I.B. Network Anomaly Detection in 5G Networks. Math. Model. Eng. Probl. 2022, 9, 397. [Google Scholar] [CrossRef]
- Sharif, S.; Naqvi, R.A.; Biswas, M. SAGAN: Adversarial Spatial-asymmetric Attention for Noisy Nona-Bayer Reconstruction. arXiv 2021, arXiv:2110.08619. [Google Scholar]
- Sharif, S.; Mahboob, M. Evil method: A deep CNN model for Bangla handwritten numeral classification. In Proceedings of the 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 28–30 September 2017; IEEE: New York, NY, USA, 2017; pp. 217–222. [Google Scholar]
- Wang, Z.; Cun, X.; Bao, J.; Zhou, W.; Liu, J.; Li, H. Uformer: A general u-shaped transformer for image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 17683–17693. [Google Scholar]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H. Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 5728–5739. [Google Scholar]
- Ahmed, I.; Anisetti, M.; Ahmad, A.; Jeon, G. A multilayer deep learning approach for malware classification in 5G-enabled IIoT. IEEE Trans. Ind. Inform. 2022, 19, 1495–1503. [Google Scholar] [CrossRef]
- Hasan, M.K.; Ghazal, T.M.; Saeed, R.A.; Pandey, B.; Gohel, H.; Eshmawi, A.; Abdel-Khalek, S.; Alkhassawneh, H.M. A review on security threats, vulnerabilities, and counter measures of 5G enabled Internet-of-Medical-Things. IET Commun. 2022, 16, 421–432. [Google Scholar] [CrossRef]
- Narayanan, B.N.; Djaneye-Boundjou, O.; Kebede, T.M. Performance analysis of machine learning and pattern recognition algorithms for malware classification. In Proceedings of the 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS), Dayton, OH, USA, 25–29 July 2016; IEEE: New York, NY, USA, 2016; pp. 338–342. [Google Scholar]
- Kinable, J.; Kostakis, O. Malware classification based on call graph clustering. J. Comput. Virol. 2011, 7, 233–245. [Google Scholar] [CrossRef]
- Anderson, B.; Storlie, C.; Lane, T. Improving malware classification: Bridging the static/dynamic gap. In Proceedings of the 5th ACM Workshop on Security and Artificial Intelligence, Raleigh, CA, USA, 19 October 2012; pp. 3–14. [Google Scholar]
- Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B.S. Malware images: Visualization and automatic classification. In Proceedings of the 8th International Symposium on Visualization for Cyber Security, Pittsburgh, PA, USA, 20 July 2011; pp. 1–7. [Google Scholar]
- Mushtaq, S.; Alandjani, G.; Abbasi, S.F.; Abosaq, N.; Akram, A.; Pervez, S. Hybrid geo-location routing protocol for indoor and outdoor positioning applications. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 7. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Luo, J.S.; Lo, D.C.T. Binary malware image classification using machine learning with local binary pattern. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; IEEE: New York, NY, USA, 2017; pp. 4664–4667. [Google Scholar]
- Yeo, M.; Koo, Y.; Yoon, Y.; Hwang, T.; Ryu, J.; Song, J.; Park, C. Flow-based malware detection using convolutional neural network. In Proceedings of the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 10–12 January 2018; pp. 910–913. [Google Scholar]
- Alandjani, G.O. Blockchain Technology and Impacts on Potential Industries. In Proceedings of the 2023 IEEE 2nd International Conference on AI in Cybersecurity (ICAIC), Houston, TX, USA, 7–9 February 2023; IEEE: New York, NY, USA, 2023; pp. 1–4. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: New York, NY, USA, 2009; pp. 248–255. [Google Scholar]
- Alandjani, G.O.; Bouk, A.H. Meme Generation Using Deep Neural Network to Engage Viewers on Social Media. Yanbu J. Eng. Sci. 2021, 18, 81–87. [Google Scholar] [CrossRef]
- Rezende, E.; Ruppert, G.; Carvalho, T.; Theophilo, A.; Ramos, F.; Geus, P.d. Malicious software classification using VGG16 deep neural network’s bottleneck features. In Information Technology-New Generations; Springer: Berlin/Heidelberg, Germany, 2018; pp. 51–59. [Google Scholar]
- Khan, R.U.; Zhang, X.; Kumar, R. Analysis of ResNet and GoogleNet models for malware detection. J. Comput. Virol. Hacking Tech. 2019, 15, 29–37. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- Gulatas, I.; Kilinc, H.H.; Zaim, A.H.; Aydin, M.A. Malware threat on edge/fog computing environments from Internet of things devices perspective. IEEE Access 2023, 11, 33584–33606. [Google Scholar] [CrossRef]
- Alandjani, G. Leveraging vulnerabilities in sensor based IOT edge computing networks. Int. J. Future Gener. Commun. Netw. 2021, 14, 11–20. [Google Scholar]
- HaddadPajouh, H.; Dehghantanha, A.; Khayami, R.; Choo, K.K.R. A deep recurrent neural network based approach for internet of things malware threat hunting. Future Gener. Comput. Syst. 2018, 85, 88–96. [Google Scholar] [CrossRef]
- Medsker, L.R.; Jain, L. Recurrent neural networks. Des. Appl. 2001, 5, 2. [Google Scholar]
- Su, J.; Vasconcellos, D.V.; Prasad, S.; Sgandurra, D.; Feng, Y.; Sakurai, K. Lightweight classification of IoT malware based on image recognition. In Proceedings of the 2018 IEEE 42Nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018; IEEE: New York, NY, USA, 2018; Volume 2, pp. 664–669. [Google Scholar]
- Alasmary, H.; Khormali, A.; Anwar, A.; Park, J.; Choi, J.; Abusnaina, A.; Awad, A.; Nyang, D.; Mohaisen, A. Analyzing and detecting emerging Internet of Things malware: A graph-based approach. IEEE Internet Things J. 2019, 6, 8977–8988. [Google Scholar] [CrossRef]
- Dovom, E.M.; Azmoodeh, A.; Dehghantanha, A.; Newton, D.E.; Parizi, R.M.; Karimipour, H. Fuzzy pattern tree for edge malware detection and categorization in IoT. J. Syst. Archit. 2019, 97, 1–7. [Google Scholar] [CrossRef]
- Vasan, D.; Alazab, M.; Venkatraman, S.; Akram, J.; Qin, Z. MTHAEL: Cross-architecture IoT malware detection based on neural network advanced ensemble learning. IEEE Trans. Comput. 2020, 69, 1654–1667. [Google Scholar] [CrossRef]
- Lu, N.; Li, D.; Shi, W.; Vijayakumar, P.; Piccialli, F.; Chang, V. An efficient combined deep neural network based malware detection framework in 5G environment. Comput. Netw. 2021, 189, 107932. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, X. Dissecting android malware: Characterization and evolution. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; IEEE: New York, NY, USA, 2012; pp. 95–109. [Google Scholar]
- Jeon, J.; Park, J.H.; Jeong, Y.S. Dynamic analysis for IoT malware detection with convolution neural network model. IEEE Access 2020, 8, 96899–96911. [Google Scholar] [CrossRef]
- Sharif, S.; Mobin, I.; Mohammed, N. Augmented quick health. Int. J. Comput. Appl. 2016, 134, 1–6. [Google Scholar] [CrossRef]
- Varsha, M.; Vinod, P.; Dhanya, K. Identification of malicious android app using manifest and opcode features. J. Comput. Virol. Hacking Tech. 2017, 13, 125–138. [Google Scholar] [CrossRef]
- Ankita, A.; Rani, S. Machine learning and deep learning for malware and ransomware attacks in 6G network. In Proceedings of the 2021 Fourth International Conference on Computational Intelligence and Communication Technologies (CCICT), Sonepat, India, 3 July 2021; IEEE: New York, NY, USA, 2021; pp. 39–44. [Google Scholar]
- Sousa, B.; Dias, D.; Antunes, N.; C’amara, J.; Wagner, R.; Schmerl, B.; Garlan, D.; Fidalgo, P. MONDEO-Tactics5G: Multistage botnet detection and tactics for 5G/6G networks. Comput. Secur. 2024, 140, 103768. [Google Scholar] [CrossRef]
- Mahmood, I.; Alyas, T.; Abbas, S.; Shahzad, T.; Abbas, Q.; Ouahada, K. Intrusion Detection in 5G Cellular Network Using Machine Learning. Comput. Syst. Sci. Eng. 2023, 47. [Google Scholar] [CrossRef]
- Basnet, M.; Poudyal, S.; Ali, M.H.; Dasgupta, D. Ransomware detection using deep learning in the SCADA system of electric vehicle charging station. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America), Lima, Peru, 15–17 September 2021; IEEE: New York, NY, USA, 2021; pp. 1–5. [Google Scholar]
- Anand, A.; Rani, S.; Anand, D.; Aljahdali, H.M.; Kerr, D. An efficient CNN-based deep learning model to detect malware attacks (CNN-DMA) in 5G-IoT healthcare applications. Sensors 2021, 21, 6346. [Google Scholar] [CrossRef] [PubMed]
- Sharif, S.; Mahboob, M. Deep hog: A hybrid model to classify bangla isolated alpha-numerical symbols. Neural Netw. World 2019, 29, 111–133. [Google Scholar] [CrossRef]
- Mujtaba, G.; Khowaja, S.A.; Jarwar, M.A.; Choi, J.; Ryu, E.-S. FRC-GIF: Frame Ranking-Based Personalized Artistic Media Generation Method for Resource Constrained Devices. IEEE Trans. Big Data 2023, 1–14. [Google Scholar] [CrossRef]
- Wei, Y.; Xiao, H.; Shi, H.; Jie, Z.; Feng, J.; Huang, T.S. Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7268–7277. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Pytorch. PyTorch Framework Code. 2016. Available online: https://pytorch.org/ (accessed on 27 March 2024).
- Sharif, S.; Mahboob, M. A comparison between hybrid models for classifying Bangla isolated basic characters. In Proceedings of the 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 28–30 September 2017; IEEE: New York, NY, USA, 2017; pp. 211–216. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146. [Google Scholar]
- Sun, R.Y. Optimization for deep learning: An overview. J. Oper. Res. Soc. China 2020, 8, 249–294. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Han, K.; Zhang, W.; Ma, S.; Gao, W. Post-training quantization for vision transformer. Adv. Neural Inf. Process. Syst. 2021, 34, 28092–28103. [Google Scholar]
- NVIDIA Corporation. TensorRT. Available online: https://developer.nvidia.com/tensorrt (accessed on 2 April 2024).
- Hubara, I.; Nahshan, Y.; Hanani, Y.; Banner, R.; Soudry, D. Accurate post training quantization with small calibration sets. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 4466–4475. [Google Scholar]
- Liang, T.; Glossner, J.; Wang, L.; Shi, S.; Zhang, X. Pruning and quantization for deep neural network acceleration: A survey. Neurocomputing 2021, 461, 370–403. [Google Scholar] [CrossRef]
- NVIDIA Corporation. Jetson Orin NX Series and Jetson AGX Orin Series. Available online: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/ (accessed on 2 March 2024).
- Nagel, M.; Fournarakis, M.; Bondarenko, Y.; Blankevoort, T. Overcoming oscillations in quantization-aware training. In Proceedings of the International Conference on Machine Learning, Baltimore, MA, USA, 17–23 July 2022; pp. 16318–16330. [Google Scholar]
Module | Input | Sqaure Kernel | Dilation | Param. (M) | Comp. (GFlops) |
---|---|---|---|---|---|
SAM | 1 | 1.43 | 0.0713 | ||
FSAM | 4 | 0.25 | 0.0123 |
Model | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Ajay et al. [16] | 96.04 | 0.9096 | 0.9239 | 0.9595 |
Agarap et al. [17] | 94.55 | 0.8777 | 0.8957 | 0.9469 |
Yeo et al. [44] | 93.47 | 0.8682 | 0.8851 | 0.9351 |
Luo et al. [43] | 94.44 | 0.8926 | 0.9048 | 0.9438 |
Kalash et al. [14] | 96.04 | 0.9151 | 0.9253 | 0.9608 |
Prajapati et al. [15] | 94.65 | 0.8990 | 0.9168 | 0.9459 |
Yuan et al. [12] | 96.15 | 0.9256 | 0.9408 | 0.9618 |
Aslan et al. [11] | 97.01 | 0.9341 | 0.9397 | 0.9708 |
Gibert et al. [13] | 95.29 | 0.9075 | 0.9209 | 0.9528 |
Edmar et al. [48] | 94.33 | 0.8719 | 0.8855 | 0.9448 |
Awan et al. [3] | 98.18 | 0.9678 | 0.9724 | 0.9823 |
Ankita et al. [69] | 98.10 | 0.9616 | 0.9633 | 0.9796 |
DAMN (Proposed) | 99.36 | 0.9892 | 0.9879 | 0.9924 |
Model | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
VGG-16 [18] | 97.86 | 0.9641 | 0.9614 | 0.9778 |
VGG-19 [18] | 98.29 | 0.9713 | 0.9703 | 0.9833 |
AlexNet [51] | 95.08 | 0.8943 | 0.9116 | 0.9501 |
Densenet121 [20] | 98.72 | 0.9806 | 0.9838 | 0.9875 |
Efficientnet [76] | 97.75 | 0.9528 | 0.9537 | 0.9775 |
GoogLenet [50] | 97.97 | 0.9629 | 0.9666 | 0.9802 |
Mobilenet-v2 [19] | 98.40 | 0.9673 | 0.9607 | 0.9837 |
Mobilenet-v3 [21] | 99.03 | 0.9773 | 0.9790 | 0.9906 |
Resnet18 [22] | 99.03 | 0.9835 | 0.9819 | 0.9906 |
Shufflenet-v2 [77] | 98.08 | 0.9637 | 0.9710 | 0.9806 |
Squeezenet [78] | 98.29 | 0.9721 | 0.9712 | 0.9820 |
Swin Transformer [79] | 97.86 | 0.9594 | 0.9609 | 0.9778 |
VIT-B-16 [80] | 96.26 | 0.9273 | 0.9322 | 0.9622 |
Wide ResNet [81] | 95.94 | 0.9350 | 0.9259 | 0.9598 |
DAMN (Proposed) | 99.36 | 0.9892 | 0.9879 | 0.9924 |
Network Varient | Backbone | FSAM | MHA | Param. (M) | Comp. (GFlops) | Accuracy (%) | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|---|---|---|
Base | X | X | X | 3.76 | 0.6605 | 98.07 | 0.9660 | 0.9638 | 0.9799 |
FSAM | Y | X | X | 4.01 | 0.6728 | 98.93 | 0.9732 | 0.9780 | 0.9889 |
SAMAUX | Y | Y | X | 4.02 | 0.6748 | 99.04 | 0.9880 | 0.9865 | 0.9906 |
DAMN (Proposed) | Y | Y | Y | 4.08 | 0.6782 | 99.36 | 0.9892 | 0.9879 | 0.9924 |
Acceleration | Unoptimized | Optimized | |||
---|---|---|---|---|---|
Architecture | CPU (X64) | GPU (GTX 3060) | Jetson (ARM64) | Jetson (ARM64) | |
Weight Precision | Float32 | Float32 | Float16 | ||
Accuracy | 99.36 | 95.19 | 94.97 | ||
Precision | 0.9892 | 0.95187 | 0.9497 | ||
Rrcall | 0.9879 | 0.95187 | 0.9497 | ||
F1 | 0.9924 | 0.95187 | 0.9497 | ||
FPS | 49.93 | 103.83 | 35.28 | 432.19 | 545.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alandjani, G. Securing Edge Devices: Malware Classification with Dual-Attention Deep Network. Appl. Sci. 2024, 14, 4645. https://doi.org/10.3390/app14114645
Alandjani G. Securing Edge Devices: Malware Classification with Dual-Attention Deep Network. Applied Sciences. 2024; 14(11):4645. https://doi.org/10.3390/app14114645
Chicago/Turabian StyleAlandjani, Gasim. 2024. "Securing Edge Devices: Malware Classification with Dual-Attention Deep Network" Applied Sciences 14, no. 11: 4645. https://doi.org/10.3390/app14114645
APA StyleAlandjani, G. (2024). Securing Edge Devices: Malware Classification with Dual-Attention Deep Network. Applied Sciences, 14(11), 4645. https://doi.org/10.3390/app14114645