
Citation: Alandjani, G. Securing Edge

Devices: Malware Classification with

Dual-Attention Deep Network. Appl.

Sci. 2024, 14, 4645. https://doi.org/

10.3390/app14114645

Academic Editor: Gianluigi Ferrari

Received: 13 April 2024

Revised: 18 May 2024

Accepted: 23 May 2024

Published: 28 May 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Securing Edge Devices: Malware Classification with
Dual-Attention Deep Network
Gasim Alandjani

Computer Science and Engineering Department, Yanbu Industrial College, KSA, Yanbu Al Sinayiah 46452,
Saudi Arabia; gasim@rcjy.edu.sa

Featured Application: The proposed method reveals the widespread real-world applicability
of malware detection, particularly in securing IoT devices. Its faster inference speed and high
fidelity score illustrate the practicability of on-device malware detection without incorporating
desktop/server-class hardware via the internet for faster inference.

Abstract: Detecting malware is a crucial defense mechanism against potential cyber-attacks. However,
current methods illustrate significant limitations in achieving high performance while maintaining
faster inference on edge devices. This study proposes a novel deep network with dual-attention
feature refinement on a two-branch deep network to learn real-time malware detection on edge
platforms. The proposed method introduces lightweight spatial-asymmetric attention for refining
the extracted features of its backbone and multi-head attention to correlate learned features from
the network branches. The experimental results show that the proposed method can significantly
outperform existing methods in quantitative evaluation. In addition, this study also illustrates the
practicability of a lightweight deep network on edge devices by optimizing and deploying the model
directly on the actual edge hardware. The proposed optimization strategy achieves a frame rate of
over 545 per second on low-power edge devices.

Keywords: IoT malware classification; malware detection; deep learning; dual-attention; edge device

1. Introduction

Malware typically refers to malicious code that intends to deface confidential data,
financial information, or any digital resources of a computer system. The evaluation of
malicious software is a never-ending process [1,2]. In particular, the ease of communication,
like the availability of the internet, digital assets, and online transactions, enables the
evolution of malware faster than ever [3,4]. The casualties inflicted by malware have also
increased in recent years. According to a statistic [5], the global inflicted damage yielded
by malware is calculated at SAR 6 trillion in the year 2021. Also, this inflicted cost has been
predicted to rise to SAR 10 trillion in 2025. The increasing threat of malware highlights the
need for innovative and effective malware detection measures that effectively work with
low-power edge computing infrastructures.

In the past, malware was identified using signature-based techniques. These methods
compare suspicious files to pre-established malware signatures through static detection [6–9].
It is important to note that this type of malware defense requires a significant amount of
handcrafted malware feature samples, such as text signs, regular expressions, filenames,
and byte codes [2]. Despite the use of these features, these methods can only detect a few
malware variants that match the predetermined features. Additionally, anti-analysis tech-
niques like obfuscation, packing, and polymorphism can easily bypass these defenses with
minor modifications. Furthermore, traditional approaches are computationally expensive,
requiring a secure environment to analyze each suspicious file. These limitations highlight
the need for more dynamic and practical methods of malware classification.

Appl. Sci. 2024, 14, 4645. https://doi.org/10.3390/app14114645 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14114645
https://doi.org/10.3390/app14114645
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0321-7013
https://doi.org/10.3390/app14114645
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14114645?type=check_update&version=2

Appl. Sci. 2024, 14, 4645 2 of 20

Recent research on detecting malware places significant emphasis on developing
AI-powered solutions that leverage deep learning techniques to overcome the limitations
of traditional approaches [1,2,10]. These approaches treat malware analysis as a clas-
sical image classification task, representing the malware binaries as images. Over the
past decade, several innovative works with complex network architectures have been
introduced [3,11–14], which have shown considerable improvements over traditional meth-
ods. To evaluate the practicality of these existing methods in developing robust malware
detection, especially for edge platforms, we assessed the performance of various classifi-
cation methods, including specialized malware classification methods, using a standard
benchmark malware dataset as illustrated in Figure 1.

Figure 1. Comparison between different classification methods for malware classification. The
proposed method outperforms existing methods by a notable [3,15–22].

As Figure 1 illustrates, the existing deep networks, explicitly, the malware classifica-
tion methods, failed to achieve a high fidelity rate in the benchmark dataset. Our initial
evaluation found that the existing malware classification methods fail to extract and utilize
salient features from the malware image. In addition to that, the state-of-the-art (SOTA)
methods are developed primarily for desktop or server-class hardware [23,24]. Due to
computational and optimization limitations, the existing malware detection works assume
that malware detection should be performed on high-performance computing devices
like servers via API [25,26]. However, detecting malware on local low-power devices in
real-world scenarios is more practical, as it can address the threat without any external
dependency [27,28]. Deploying efficient and independent detection mechanisms can revo-
lutionize future solutions, such as integrating them into the secure computing frameworks
of 5G/6G infrastructures [29,30]. The current limitation of existing methods and countless
applications of efficient malware detection motivated us to develop a robust classifier with
an optimization strategy for real-world usage.

This study proposes a novel deep network to classify the malware classes. Our
proposed architecture incorporates a two-branch deep network to leverage local–global
attention on different image scales. Here, one of the two branches of the proposed net-
work include an edge device-friendly Mobilenet-v2 backbone [20] with an efficient spatial
asymmetric attention (SAM) [31] module to extract and refine malware features from
high-resolution images. Our deep network’s second branch (the auxiliary branch in the
later sections) learns salient feature extraction on low-resolution malware images. Thus,
it can handle the missing information of a malware input appearing by the compression

Appl. Sci. 2024, 14, 4645 3 of 20

artifacts [32], attenuation, parsing errors, etc. We correlate the extracted features of both
branches with multi-head attention (MHA) [33,34] to achieve a higher detection accuracy.
We compared our proposed method with the existing malware classification methods
and studied our method on numerous hardware. Our proposed method outperforms the
existing deep malware detection and image classification methods by a notable margin. In
addition to that, we illustrate an optimization strategy for deploying our deep model in
low-power edge devices to reveal the practicability of deep, efficient malware detection
for securing future solutions, including securing IoT and 5G/6G infrastructures [35,36]. To
the best concern, this is the first work in the literature demonstrating the optimization and
practicability of malware detection on real-edge hardware with sophisticated experiments.
In a nutshell, the proposed network is hardware-independent and could be incorporated
into any system based on the application requirement. The main contribution of this study
is as follows:

• We propose a novel deep network with attention mechanisms and an auxiliary branch
to learn salient features from malware images. The proposed network also incorporates
a Faster SAM (FSAM) with 83% lower trainable parameters than the well-known SAM.
Apart from FSAM, we also propose to leverage MHA to correlate our feature branches
for efficient malware classification.

• We illustrate the practicability and optimization strategy for DAMN for real-world
usage. We achieved a frame per second (FPS) of 545.29 on a real-edge device. Higher
frame rates on low-power computing devices reveal countless possibilities for securing
future IoT and network applications.

• We densely study the existing methods from malware and image classification domains
to summarize the performance of deep networks for malware classification. We
outperform the existing works for the benchmark dataset in multiple evaluation
metrics by a large margin.

The rest of the paper is organized as follows. Section 2 reviews the related works,
Section 3 details our proposed method, and Section 4 densely evaluates and summarizes
the results. In addition to that, Section 5 illustrates the optimization and deployment scope
of malware detection algorithm on edge devices. Finally, Section 6 concludes this work.

2. Related Works

Machine learning for malware analysis is relatively new in cybersecurity. These
learning-based approaches can be divided into two subcategories based on feature ex-
traction. This section briefly discusses both subcategories of the learning-based malware
classification approach and provides an inside look at malware classification on edge
platforms.

2.1. Traditional Machine Learning

Traditional learning-based approaches for malware analysis heavily rely on hand-
crafted feature extraction. Typically, these methods extracted the malware features manually
and then utilized their handcrafted features to feed shallow classifiers like support vector
machine (SVM), naive Bayes classifier, decision trees, k-nearest algorithms, etc. [37–41].
However, the effectiveness of these methods relies heavily on feature engineering. Ad-
ditionally, these shallow classifiers are not known for their scalability [2], which limits
their ability to handle large numbers of malware samples. This is why recent works on
malware classification have shifted towards deep learning-based solutions, which have
shown promising results in achieving state-of-the-art performance.

2.2. Deep Learning

Deep learning-based malware classifiers have illustrated a notable performance gain
over traditional methods in the past decade. In a recent study, Gilbert et al. [13] proposed
a LeNet-like [42] stacked convolutional neural network (CNN) to classify malware im-
ages. They reported a validation accuracy of 99.37% on the nine-class malware dataset.

Appl. Sci. 2024, 14, 4645 4 of 20

Luo et al. [43] utilized a local binary pattern (LBP) to extract malware features and lever-
age similar network architecture as Gilbert et al. [13] to classify the Malimg dataset. In
their work, they reported 93.17% classification accuracy on the validation data. Agarap
et al. [17] also utilized a similar feature extraction architecture to their prior methods and
revised the softmax classifier with an SVM classifier in their work to achieve an accuracy
of 77.23% in the Malimg dataset. However, in their setup, GRU-SVM outperformed their
CNN-SVM structures by a notable margin. Later, Ajay et al. [16] also proposed a CNN
with four consecutive blocks, combining convolution and max pooling operation to achieve
96.10% on the Malimg dataset. Yeo et al. [44] also used a CNN with flow data to reach
just over 85% classification on a nine-class dataset. Kalash et al. [14] also proposed a deep
network called M-CNN and reported an accuracy of 98.52% in the validation phase while
using the Malimg dataset. In another work, Yuan et al. [12] proposed a deep stacked
CNN with 13 convolution layers to achieve an accuracy of 99.26% on a nine-class malware
dataset with a 10-fold validation strategy. In addition, Prajapati et al. [15] compared dif-
ferent network architectures in their study with a 17-class malware dataset and reported
an accuracy of 89.55% with a 2D CNN architecture. They found that with pre-trained
based Resnet-152 [22], VGG-19 [18] architecture can outperform their 2D CNN [42] with a
marginal score.

Although several novel works explore different CNN architectures in their respective
works, it has been observed that training a CNN without pre-trained weight achieved
unsatisfactory performance in malware classification [45]. It is worth noting the existing
malware benchmark datasets lack data diversity. Therefore, many recent works utilized
Imagenet [46] pre-trained on their respective methods [47]. For instance, Rezende et al. [48]
proposed to use a VGG-16 [18] with Imagenet pre-trained weights to classify malware
images. They achieved a validation accuracy of 90.77% accuracy with a 10-fold validation
strategy on a 20-class dataset. Similarly, Khan et al. [49] also used transfer learning on
Resnet-18 [22], 34, 50, 101, 152, and GoogleNet [50] to achieve 83%, 86.51%, 86.62%, 85.94%,
87.98%, and 84% validation accuracy. Also, Awan et al. [3] leveraged a VGG-19 architecture
with frozen weights and fused it with simple spatial attention. They reported an accuracy
of 97.38% with class balancing on the Malimg dataset. Similarly, Aslan et al. [11] combined
two pre-trained weights (i.e., ALexNet [51] and Resnet0152 [22]) to classify the malware
images. They reported 97.18% accuracy on the Malimg dataset.

Most of the IoT malware detection studies are based on static analysis [52,53]. Had-
dadpajouh et al. [54] used their OPCODE-based IoT dataset with Recurrent Neural Network
(RNN) [55] and achieved an accuracy rate of 98,18%. Su et al. [56] used the IoTPoT dataset and
converted the malware binary files into gray-scale images. They used the CNN-based classifier
and achieved an accuracy rate of 94%. Alasmary et al. [57] created their dataset and compared
the characteristics of IoT malware and Android malware, mainly based on Linux, using Control
Flow Graphs. Also, they proposed a detection mechanism based on CNN, which achieved
a very high accuracy rate of 99.66%. Dovom et al. [58] used the IoT dataset and achieved
an average accuracy rate of 96.41% with the Fuzzy Pattern Tree algorithm. Vasan et al. [59]
presented a Cross-Architecture IoT Malware Detection method called MTHAEL. In addition
to these methods, a few recent methods studied malware detection on Android platforms to
evaluate the practicability of malware detection on IoT devices [60,61]. It is worth noting that
the existing process has evaluated its method on IoT malware benchmark datasets, mostly with
x64 computational architecture or specific IoT hardware like Android power devices [52,62].
However, the IoT and edge devices typically leverage the numerous ARM architectures based
on their specific applications [63].

2.3. Malware Detection on IoT and Edge Devices

In response to the escalating threat of attacks on IoT devices, the focus on malware
classification on edge platforms like Android has intensified in recent years. Haddadpajouh
et al. [54] utilized their OPCODE-based IoT Dataset alongside Recurrent Neural Network
(RNN) techniques [55], achieving an impressive accuracy rate of 98.18%. Su et al. [56]

Appl. Sci. 2024, 14, 4645 5 of 20

employed the IoTPoT dataset, transforming malware binary files into grayscale images
and utilizing a CNN-based classifier to achieve a notable accuracy rate of 94%. Alasmary
et al. [57] contributed by constructing a dataset comparing IoT and Android malware
characteristics, predominantly Linux-based, through Control Flow Graphs, proposing a
CNN-based detection mechanism that attained an exceptional accuracy rate of 99.66%.
Dovom et al. [58] achieved an average accuracy rate of 96.41% using the Fuzzy Pattern
Tree algorithm with the IoT Dataset. Furthermore, Vasan et al. [59] introduced MTHAEL, a
Cross-Architecture IoT Malware Detection method, adding to the arsenal of approaches to
combating IoT malware threats.

Rajesh et al. [27] introduced a Bayes classifier to identify malware present on Android
devices, with DroidMat differentiating malware as benign through an analysis of intents,
permissions, and API calls. Additionally, Varsha et al. [64] focused on extracting static
features from Android application package (APK) files, including manifest and application
executable data, as part of their malware detection approach.

2.4. Malware Detection on 5G/6G Infrastructure

Recent exploration into malware classification has extended beyond IoT devices to
encompass 5G and emerging 6G infrastructures. Ning et al. [60] introduced a framework
tailored explicitly for detecting malware on 5G-enabled smartphones, achieving a notable
95.69% accuracy by analyzing APK files. Ankita et al. [65] proposed a machine learning-
based approach for detecting malware and ransomware attacks for future 6G infrastructure.
Sousa et al. [66] presented a multistage botnet detection mechanism that operates without
requiring software installation on edge hardware. They emphasized the importance of
centralized administration in intrusion detection systems utilizing a software-defined 5G
architecture to manage infected devices effectively. Researchers underscored the necessity
of identifying cyber threats and employing machine learning (ML) methods to mitigate
risks to the 5G network. Ishtiaque et al. [67] addressed unidentified and suspicious cir-
cumstances in 5G networks, employing various machine learning algorithms, with the
Linear Regression algorithm yielding the best results, achieving 92.12% precision on test
data and 92.13% on train data. Similarly, Manoj et al. [68] compared different CNN and
LSTM models for malware detection on 5G/6G devices, with Ankita et al. [69] proposing a
CNN-DMA network for application in 5G/6G infrastructures.

Notably, existing malware detection methods, especially for 5G/6G, have focused on
integrating deep models into infrastructure rather than deploying them on specific hard-
ware. However, deploying deep models on ARM-based low-power IoT devices presents
considerable challenges. In contrast, our proposed method highlights the difficulties of
deploying deep models on low-power edge devices through practical experiments. We
deployed our model on an ARM-powered Jetson board to assess the performance and
challenges of deploying deep networks on such hardware. This optimization and deploy-
ment strategy explores the challenges inherent in any 5G/6G infrastructure, including
server-class hardware, rather than focusing on making the theoretical framework like
previous studies.

3. Learning Malware Detection

Figure 2 shows the proposed methods’ learning overview. This work takes malware
binaries as input and converts them into 2D images. The image input is then scaled into two
sizes and fed into the proposed network’s branches. Our network learns salient features
from the given malware image and classifies them based on the extracted and refined
features with attention mechanisms.

Appl. Sci. 2024, 14, 4645 6 of 20

Figure 2. Overview of the proposed method. We parse the malware binary files into 2D images and
pre-process them to learn malware classification. We classify the malware images using our novel
deep network.

3.1. Model Architecture

The proposed dual-attention malware network (DAMN) comprises two distinct feature
branches to learn salient features from different image scales. As Figure 3 illustrates, our
main branch takes an image input IM ∈ [0, 1]H×W×3. H and W represent the height
and width of the input. We incorporate a mobile-friendly Mobilenet-v2 [19] architecture
(without fully connected layers) [20] pre-trained block as the backbone to extract generic
features. It is worth noting that Mobilenet-v2 is considered one of the most efficient
backbones for low-power edge devices. We introduce the FSAM to refine the extracted
features of Mobilenet-v2 by incorporating local–global attention. Apart from that, our
proposed network also incorporates a novel auxiliary attention branch. It aims to learn the
artifacts and missing information that may appear due to compression [32] and binary-to-
image conversion. We concatenate the output of both branches and apply a MHA to refine
the learned features. The final layer of the proposed DAMN is a fully connected layer that
learns to calculate the probability of being a malware (class). In addition to that, we utilize
the dropout layers in our network to reduce overfitting [32,70,71].

Figure 3. Overview of the proposed dual-attention malware network (DAMN). It comprises a
dual-attention strategy with an auxiliary feature extraction branch. The auxiliary branch focuses
on learning artifacts, FSAM refines backbone features, and MHA correlates features extracted by
both branches.

Appl. Sci. 2024, 14, 4645 7 of 20

3.1.1. Faster Spatial-Asymmetric Attention Module

SAM is known for its capability of refining features with global-local attention. It has
significantly impacted reconstructing nona-Bayer images with real-world image noises.
Despite showing significant performance gain, the SAM is computationally expensive.
Explicitly, it leverages a 9 × 9 square convolution for pursuing global attention from a
given input. On the downside, malware classification suffers substantially from data
limitations, and our target platform is mostly edge devices. Consequently, utilizing such
computationally expensive blocks for malware classification counters two-fold limitations:
(i) a large number of trainable parameters leads to overfitting, and (ii) significantly slower
computation time with high temperature. To address both limitations, we propose to
replace the large kernel convolution with small kernel dilation convolution [72] as shown
in Figure 4. Table 1 compares the proposed FSAM and SAM modules. It helps reduce the
trainable parameters of the original SAM by 83% without affecting the performance. We
pursue Faster SAM as follows:

FV = τ(CS([ZA(AV(X)); ZM(AV(X))])) (1)

FH = τ(CS([ZA(AH(X)); ZM(AH(X))])) (2)

In this context, the functions A(·) and C(·) denote the asymmetric convolution op-
eration and square convolution, respectively, while τ represents the sigmoid activation
function. Additionally, ZA and ZM refer to the average pooling and max pooling opera-
tions, which generate two 2D feature maps denoted as XA ∈ R1×H×W and XM ∈ R1×H×W ,
respectively. These mapped features are then concatenated and presented as a 2D map.

Overall, the aggregated bi-directional attention over a given feature of malware is
obtained as:

FC = FV + FH (3)

A squeeze-extractor descriptor [73] has also been utilized to pursue a global descriptor
as follows:

FG = MF(ZG(CD(X))) (4)

where MF and ZG represent consecutive fully connected layers and global pooling oper-
ations, respectively. Additionally, CD in Equation (4) denotes the proposed small kernel
dilated convolution operation. This operation plays a crucial role in reducing the trainable
parameters of the proposed Faster SAM module by 83% compared to its base module.

Table 1. Comparison between proposed FSAM and well-known SAM module. Our FSAM is 83%
lighter compared to the original SAM module.

Module Input Sqaure Kernel Dilation Param. (M) Comp. (GFlops)

SAM 128 × 5 × 5 9 × 9 1 1.43 0.0713
FSAM 128 × 5 × 5 3 × 3 4 0.25 0.0123

Appl. Sci. 2024, 14, 4645 8 of 20

Figure 4. Overview of the proposed FSAM module. We replace the large kernel of the SAM module
with dilated convolution. Overall, we reduced the complexity of the SAM module by 83%.

3.1.2. Auxiliary Branch

The auxiliary attention branch serves as a vital component of the proposed DAMN
architecture. Its primary objective is to capture missing information introduced by factors
such as compression artifacts, the conversion of malware binaries to images, and network
distortions. In this branch, a low-sampled image denoted as IA ∈ [0, 1]H×W×3 is taken as
input, where H and W represent the height and width of the input image, respectively. This
input undergoes two consecutive 3 × 3 convolutions followed by max-pooling operations
before being fed into the MHA mechanism and its parallel branch for further refinement.

3.1.3. Multi-Head Attention (MHA)

Multi-head attention is a well-known attention mechanism in artificial intelligence,
particularly in natural language processing and computer vision [33]. It allows models to
focus on different parts of the input sequence simultaneously, capturing complex depen-
dencies and relationships within the data. Figure 5 demonstrates an overview of the MHA
block. This study uses the MHA to correlate our extracted features to achieve effective
malware classification results. We perceive the MHA throughout this study as follows:

MHA(Q, K, V) = concat(head1, . . . , headh)W
O (5)

Appl. Sci. 2024, 14, 4645 9 of 20

where headi = Attention(QWQ
i , KWK

i , VWV
i) (6)

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (7)

Here, we utilize three matrices: Q, K, and V. They respectively represent the query,
key, and value matrices. These matrices are essential for capturing different aspects of
the input data. Each attention head, denoted as headi, generates its output, allowing the
model to focus on different input parts simultaneously. To obtain the final output, the
outputs of all attention heads are concatenated along the feature dimension and multiplied
by the output weight matrix WO. Additionally, each attention head is associated with
its own set of learnable weight matrices, WQ

i , WK
i , and WV

i , enabling the model to learn
distinct representations for different attention heads. The number of attention heads h and
the dimensionality of the key vectors dk are hyperparameters that influence the model’s
capacity to capture complex dependencies within the data. Finally, the softmax activation
function is applied to compute the attention scores, facilitating the weighted aggregation of
values based on their relevance to the queries.

Figure 5. Overview of MHA block. We leverage MHA to correlate the extracted features of both
network branches to achieve effective classification results.

3.2. Dataset Preparation

Throughout this study, we employ the widely used Malimg dataset as our benchmark
for evaluating our proposed method [40]. Notably, Malimg is one of the most widespread
malware classification datasets. Many previous studies leveraged this dataset as a stan-
dard benchmark dataset. We follow the footprint of the previous studies to conduct our
experiments.

The Malimg dataset comprises 9339 malware samples categorized into 25 distinct
classes, encompassing well-known malware families such as Yuner.A, VB.AT, Malex.gen!J,
Autorun.K, Rbot!gen, Swizzor.gen!I, and C2Lop.p, among others. Notably, these malware
images are derived from malware binaries, where the transformation from binaries to
images involves converting the malware binaries into 8-bit vectors. Subsequently, these
vectors are transformed into grayscale images by mapping the 8-bit vectors to pixel values,
representing the intensity [3,40]. This dataset serves as a comprehensive benchmark for
assessing the performance of our proposed method in malware image classification tasks.
Figure 6 illustrates the pre-processed images from Malimg dataset.

Appl. Sci. 2024, 14, 4645 10 of 20

Figure 6. Malware images from Maling dataset. (a) Adialer.C (b) Autorun.K (c) Wintrim.BX
(d) Swizzor.geniE.

3.3. Training Details

The proposed method is implemented using the PyTorch 2.0 framework [74]. During
training, we employed a learning rate of 1 × 10−4, which was adjusted every two epochs
using a weight decay of 1 × 10−4. We utilized the Adam optimizer with the objective
function set to minimize the cross-entropy loss. Furthermore, we resized all training and
testing images to dimensions of 160 × 160 × 3 for the main branch and 20 × 20 for auxiliary
branches. We applied various augmentation techniques to prevent overfitting [70,75], such
as random flipping, blur, and rotation. Algorithm 1 demonstrates the training detail of the
proposed DAMN.

Algorithm 1 Learning malware classification with DAMN.

1: Input: Training set Dtrain, validation set Dval
2: Output: Trained CNN model M
3: Initialize CNN model M with random weights
4: Initialize learning rate η0, initial batch size B0, number of epochs Nepochs, learning rate

decay factor α
5: Initialize epoch counter e = 1
6: for i = 1 to Nepochs do
7: if i mod 2 = 0 then
8: Update learning rate: ηi = α · ηi−1

9: Sample mini-batches Btrain from Dtrain with augmentation
10: for each mini-batch Btrain do
11: Compute loss L using forward pass of M on Btrain
12: Update weights of M using backpropagation and gradient descent with learning

rate ηi

13: for each mini-batch Bval ∈ Dval do
14: Compute validation accuracy using forward pass of M on Bval

15: Compute average validation accuracy for this epoch
16: if average validation accuracy > best validation accuracy then
17: Update best validation accuracy: best_val_acc = average validation accuracy
18: Save current weights of M as best weights: best_weights = M.get_weights()
19: Set weights of M to best weights: M.set_weights(best_weights)

All models were trained for 50 epochs with a fixed batch size of 64. Our experiments
were conducted on a machine equipped with an AMD Ryzen 3200G central processing
unit (CPU) clocked at 3.6 GHz, 16 GB of random-access memory, and a Nvidia GeForce
GTX 1060 (6 GB) graphical processing unit (GPU). These hardware specifications provided
sufficient computational resources for effectively training and evaluating our models.

4. Results and Analysis

This section illustrates the results obtained through the proposed network, a compari-
son between different network architectures, and an analysis.

Appl. Sci. 2024, 14, 4645 11 of 20

4.1. Comparison

The proposed method was evaluated against two categories of image classification
methods: (i) malware and (ii) state-of-the-art (SOTA) image classification methods. All
networks were trained for consistency using our pre-processed dataset. This uniform
pre-processing step allowed us to fairly compare the performance of different models on
the benchmark dataset.

To accommodate the input dimensions of our dataset, we modified the input layer of all
comparison models accordingly. Subsequently, we conducted comprehensive evaluations
by summarizing the performance of each deep model using standard evaluation metrics
such as accuracy, F1 score, precision, and recall. These metrics provide insights into the
overall effectiveness of the proposed method compared to existing approaches in both
malware and general image classification tasks. This rigorous evaluation process ensures
the reliability and validity of our comparative analysis.

4.1.1. Comparison with Malware Detection Methods

We compared 11 advanced malware classification models, utilizing deep learning
to better understand their performance. Please note that the existing works on malware
detection methods are not publicly available. Therefore, we implemented all of the exist-
ing methods for the comparison. We cross-checked the implementation by reproducing
their claimed results on their reported dataset. Later, we trained each model with their
recommended hyperparameters and trained them until they converged with the given
dataset. After applying our pre-processing and augmentation techniques, we evaluated
each model’s performance in a benchmark dataset. Table 2 illustrates the comparison be-
tween proposed network and state-of-the-art malware classification models. Our proposed
method outperformed the existing methods in all evaluation metrics, achieving a 1.18%
gain in accuracy, 0.0214 gain in precision, 0.0155 gain in recall, and 0.0101 gain in F1-score.
It is worth noting that we did not perform any weight balancing, which was included in
previous studies, to enhance the scores. We evaluated all methods similarly to how they
would be evaluated in real-world scenarios, and our proposed method still outperformed
its counterparts by learning salient features through two distinct feature branches.

Table 2. Comparison with malware image classification methods. The proposed method outperforms
the existing method in evaluation metrics with a straightforward learning strategy.

Model Accuracy Precision Recall F1-Score

Ajay et al. [16] 96.04 0.9096 0.9239 0.9595
Agarap et al. [17] 94.55 0.8777 0.8957 0.9469
Yeo et al. [44] 93.47 0.8682 0.8851 0.9351
Luo et al. [43] 94.44 0.8926 0.9048 0.9438
Kalash et al. [14] 96.04 0.9151 0.9253 0.9608
Prajapati et al. [15] 94.65 0.8990 0.9168 0.9459
Yuan et al. [12] 96.15 0.9256 0.9408 0.9618
Aslan et al. [11] 97.01 0.9341 0.9397 0.9708
Gibert et al. [13] 95.29 0.9075 0.9209 0.9528
Edmar et al. [48] 94.33 0.8719 0.8855 0.9448
Awan et al. [3] 98.18 0.9678 0.9724 0.9823
Ankita et al. [69] 98.10 0.9616 0.9633 0.9796

DAMN (Proposed) 99.36 0.9892 0.9879 0.9924

4.1.2. Comparison with Image Classification Methods

Over the past decade, numerous deep network architectures have emerged for image
classification, significantly enhancing classification accuracy and fidelity for generic images.
These architectures have not only advanced the field of image classification but have
also been widely adopted as backbones or directly applied in various vision tasks to
expedite their respective objectives. Recent works in malware classification, such as those

Appl. Sci. 2024, 14, 4645 12 of 20

by Aslan et al. [11], Awan et al. [3], among others, have also begun leveraging SOTA image
classification models. While these methods have individually investigated a few SOTA
network architectures, a comprehensive evaluation of these image classification models is
still necessary.

This study aims to thoroughly evaluate existing SOTA image classification models to
assess their efficacy in malware classification tasks. To adapt these models for malware
classification, we modified their final layer to output probabilities for the 25 malware classes
present in our dataset. Additionally, we leveraged pre-trained weights from ImageNet
to initialize the models, aiming to achieve optimal performance. Table 3 summarizes the
performance of various SOTA image classification methods, providing insights into their
effectiveness when applied to malware classification.

This comprehensive evaluation illuminates the performance of different SOTA models
and facilitates a better understanding of their impact on malware classification tasks,
ultimately contributing to advancements in cybersecurity research.

Table 3. Comparison with state-of-the-art image classification models. The proposed DAMN can
outperform the SOTA image classification methods in malware image classification.

Model Accuracy Precision Recall F1-Score

VGG-16 [18] 97.86 0.9641 0.9614 0.9778
VGG-19 [18] 98.29 0.9713 0.9703 0.9833
AlexNet [51] 95.08 0.8943 0.9116 0.9501
Densenet121 [20] 98.72 0.9806 0.9838 0.9875
Efficientnet [76] 97.75 0.9528 0.9537 0.9775
GoogLenet [50] 97.97 0.9629 0.9666 0.9802
Mobilenet-v2 [19] 98.40 0.9673 0.9607 0.9837
Mobilenet-v3 [21] 99.03 0.9773 0.9790 0.9906
Resnet18 [22] 99.03 0.9835 0.9819 0.9906
Shufflenet-v2 [77] 98.08 0.9637 0.9710 0.9806
Squeezenet [78] 98.29 0.9721 0.9712 0.9820
Swin Transformer [79] 97.86 0.9594 0.9609 0.9778
VIT-B-16 [80] 96.26 0.9273 0.9322 0.9622
Wide ResNet [81] 95.94 0.9350 0.9259 0.9598

DAMN (Proposed) 99.36 0.9892 0.9879 0.9924

As Table 3 illustrates, the proposed method substantially outperforms the image
classification methods in all evaluation metrics. Also, it is worth noting that several SOTA
image classification methods, like VGG-19, Squeezenet, mobile net-v2, mobile net-v3,
densenet121, etc., can outperform the existing malware classification methods with a
marginal score.

4.2. Ablation Study

The impact of each novel block has been meticulously examined through sophisticated
experiments in this study. Initially, we stripped our proposed learning strategies, including
FSAM, auxiliary branch, MHA, etc., from the proposed network architecture. Subsequently,
we systematically reintroduced each proposed module to assess its impact on the final
output. The base model excludes all novel components, including FSAM, auxiliary branch,
and MHA. The FSAM variant includes an FSAM block with a base backbone. The SAMAUX
variant adds an auxiliary branch over the FSAM variant, and DAMN comprises all novel
components. Table 4 provides a comprehensive overview of the ablation study results,
clearly demonstrating the meaningful impact of these modules on the reported final results.

Moreover, the ablation results validate the feasibility and efficacy of these proposed
modules in malware classification. By systematically analyzing the network’s performance
with and without each module, we gain valuable insights into the contributions of individ-
ual components to enhancing the overall classification accuracy. These findings underscore

Appl. Sci. 2024, 14, 4645 13 of 20

the importance of each novel block and provide helpful guidance for future research and
development efforts in malware classification.

Our proposed components offer enhanced accuracy and lightweight design. Despite
significantly enhancing classification accuracy, these components impose minimal compu-
tational overhead. In summary, our innovative additions improve classification accuracy by
1.29% over the base variant, requiring only an additional 0.2 million trainable parameters.

Table 4. Ablation study with different network variants of the proposed DAMN. Our novel compo-
nents significantly improve the classification score by adding a small overhead.

Network Varient Backbone FSAM MHA Param. (M) Comp. (GFlops) Accuracy (%) Precision Recall F1-Score

Base X X X 3.76 0.6605 98.07 0.9660 0.9638 0.9799
FSAM Y X X 4.01 0.6728 98.93 0.9732 0.9780 0.9889

SAMAUX Y Y X 4.02 0.6748 99.04 0.9880 0.9865 0.9906
DAMN (Proposed) Y Y Y 4.08 0.6782 99.36 0.9892 0.9879 0.9924

Apart from the objective scores, we visualize the training phase’s validation accuracy
and loss. As Figure 7 shows, our proposed DAMN is more stable than its other variants.
Also, the dropout and our proposed auxiliary branch noticeably help our method to reduce
overfitting and learn more valuable features among the experimented variants.

Figure 7. Training procedures of proposed DAMN and its variants. (a) Validation accuracy vs. epoch.
(b) Training loss vs. epoch.

4.3. Learning Analysis

Figure 8 illustrates the class-wise malware prediction of the proposed DAMN and
its variants. It can be seen that malware from the same family (i.e., Swizzor.gen!I and
the Swizzor.gen!E) substantially affects the performance of deep networks. The malware
from homogeneous features is more complex to identify. Here, our proposed model can
learn even such hard-to-distinguish features to understand the disparity between close
malware.Our proposed auxiliary feature branches MHA and FSAM help our proposed
network learn and refine salient information from malware images.

Appl. Sci. 2024, 14, 4645 14 of 20

Figure 8. Confusion matrix of proposed DAMN and its variants. It is best viewed in zoom and
color. Red and yellow boxes highlight performance on critical malware classes of network variants.
(a) Base, (b) FSAM, (c) MHA, (d) DAMN (proposed).

5. Malware Detection on Edge Platform

Malware detection on edge platforms can be crucial in the security domain. In par-
ticular, efficient malware detection that can detect malware locally on edge devices can
change the paradigm of IoT security. It is worth noting that low-power edge devices mainly
power the IoT and 5G infrastructures. Therefore, for evaluating the proposed method
on any specific hardware infrastructure, the proposed method has been optimized and

Appl. Sci. 2024, 14, 4645 15 of 20

evaluated on a generic hardware platform like Jetson. It allowed the proposed method to
identify and address the challenges of deploying it on any infrastructure without knowing
its specific hardware or infrastructure requirements. Overall, we extensively evaluated the
practicability of a lightweight, efficient malware detection algorithm by deploying it on
low-power ARM-based hardware.

5.1. Optimization and Deployment

Deep learning optimization for edge devices is among the most challenging tasks [82].
The network architecture with attention mechanisms makes this difficult task even more
complicated [83]. To address these limitations, we proposed a novel optimization strategy
for optimizing malware detection on IoT devices. It is worth noting that Figure 9 illustrates
the overview of our proposed optimization strategy.

Figure 9. Overview of the proposed optimization and deployment strategy. We leverage quantization
and pruning to make our model faster on real edge devices.

We selected our best pre-trained weight for optimization to deploy and infer efficiently
on edge devices. To optimize the weight to achieve faster inference time, we downgraded
the precision of our pre-trained weights from float32 to float16. We leveraged the TensorRT
optimization library [84] to perform post-training quantization [83,85]. Also, the same
library allowed us to select the best precision values for a respective layer (depending on the
hardware) automatically without any human inputs. Also, we pruned the near-zero layers
by leveraging the same optimization tools [86]. Unfortunately, we found that the weight
normalization performed while designing the MHA is not executable on the edge devices.
Even NVIDIA’s most advanced edge hardware struggles to optimize the normalization
layers for efficient acceleration. Therefore, we pruned this normalization layer from our
optimized weights to achieve a smoother and faster inference time.

Apart from the optimization, we also deployed and tested our model on real edge
devices. It is worth noting that IoT and 5G infrastructures are powered mainly by low-
power edge devices. Therefore, for evaluating the proposed method on any specific
hardware infrastructure, the proposed method has been optimized and evaluated on a
generic hardware platform like Jetson. It allowed the proposed method to identify and
address the challenges of deploying it on any infrastructure without knowing any specific
hardware or infrastructure requirements. We selected an NVIDIA Jetson Orin board to
deploy and test our proposed strategy for malware detection. Our Jetson Orin comprises
8 Ampere GPU cores, 12 ARM Cortex-A78 CPU cores, and 32 GB HBM2e memory with
64 MB L2 and 4 MB L3 caches. We leveraged Docker to enable the utilization of CUDA
cores for GPU acceleration of the target edge board. We deployed the optimized weight on
our Docker environment and operated the hardware in its efficient mode (30 watts) [87] to
ensure the practicability of our proposed method on IoT platforms.

5.2. Inference Analysis

Table 5 illustrates the performance of the proposed method on numerous hardware
platforms. It can be seen that our proposed method can achieve over 100 FPS inference

Appl. Sci. 2024, 14, 4645 16 of 20

speed on a mid-level desktop GPU. Also, without optimizing or processing in the edge
platform, our mode can maintain a frame rate of over 30 FPS. Our method can achieve
real-time performance on such low-power devices without optimization. Our Mobilenet-v2
backbone and novel FSAM block helped us achieve higher accuracy while maintaining a
real-time inference speed on edge devices.

To push our model limit further, we optimized our model for the target device. Opti-
mizing our model can facilitate fast inference time on edge devices. It achieves 432.19 FPS
with float32 optimization and 545.29 FPS with float16 optimization. It is worth noting
that we performed post-training quantization techniques to perceive the maximum in-
ference speed and optimization process. We did not employ fine-tuning techniques like
quantization-aware training to improve the accuracy further. However, without fine-tuning,
our proposed method can still achieve an industry standard 95 (%) accuracy for detecting
malware on edge devices.

Table 5. Inference analysis of DAMN on different hardware platforms. We achieved 545.29 FPS by
optimizing our method for edge devices. It confirms the practicability of our proposed method, even
on low-power devices.

Acceleration Unoptimized Optimized

Architecture CPU (X64) GPU (GTX 3060) Jetson (ARM64) Jetson (ARM64)

Weight
Precision Float32 Float32 Float16

Accuracy 99.36 95.19 94.97
Precision 0.9892 0.95187 0.9497

Rrcall 0.9879 0.95187 0.9497
F1 0.9924 0.95187 0.9497

FPS 49.93 103.83 35.28 432.19 545.29

5.3. Discussion

The proposed method reveals several aspects of malware classification by incor-
porating sophisticated experiments. We illustrate how efficient feature learning with a
straightforward training strategy can achieve state-of-the-art performance for malware
classification. Despite there being a severe data imbalance in the benchmark dataset, the
proposed method outperforms existing methods without exploiting any class information.
Our FSAM, AB, and MHA help us learn salient features for malware classification. It is
worth noting that attention guidance modules like MHA incorporate mobile-unfriendly
normalization layers. Such layers can make the deployment of generic hardware impracti-
cal. We prune out such normalization layers to address the limitation while optimizing the
edge devices.

Apart from outperforming the existing method, we also illustrate the practicability of
malware detection on edge devices. The proposed method is generic and specially opti-
mized for mobile-friendly edge devices, including IoT and 5G infrastructures. Therefore,
the proposed method can be deployed on any ARM power edge platform with traditional
server or desktop-class hardware. Despite achieving a higher FPS on edge devices, our
method drops 4 (%) accuracy as a trade-off between speed and accuracy. Such accuracy
drops after optimization are shared among the research community [85]. Nevertheless,
quantization-aware training can help recover the dropped accuracy by fine-tuning the opti-
mized weights [86,88]. We planned to study the quantization-aware training for malware
detection in a future study. Apart from the dropped accuracy, our model enables inference
with a speed of 545 FPS. Notably, such a higher inference speed confirms the practicability
of an optimized malware detection algorithm in low-power hardware.

In addition, we evaluated our optimized weight on a single-edge board due to hard-
ware limitations. It would be an interesting future scope for the malware detection research
community to study the performance of deep learning-based malware detection algorithms
on numerous edge hardware from different manufacturers.

Appl. Sci. 2024, 14, 4645 17 of 20

6. Conclusions

This study proposes a two-branch dual-attention deep network to classify malware.
The proposed DAMN comprises an FSAM module to refine extracted features of a pre-
trained Mobilenet-v2. Additionally, our proposed model incorporates an auxiliary feature
branch, which aims to learn the salient missing features from low-quality malware images.
MHA has allowed us to correlate the extracted features to achieve a higher fidelity score.
Our proposed network illustrates significant performance gain without partial performance-
gaining techniques like weight balancing. We optimized our proposed method for edge
devices. Our optimization scheme achieved an FPS of over 545 in the edge platform. In
addition to that, we compared our method and extensively studied the performance of
different deep learning-based classification methods. Our proposed method can outperform
the existing classification method by a notable margin. The proposed study has been
planned to be extended by incorporating quantization-aware training into future research.

Funding: This research received no funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Acknowledgments: This research is a self-motivated, independent work and did not receive any
additional support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gibert, D.; Planes, J.; Mateu, C.; Le, Q. Fusing feature engineering and deep learning: A case study for malware classification.

Expert Syst. Appl. 2022, 207, 117957. [CrossRef]
2. Abusitta, A.; Li, M.Q.; Fung, B.C. Malware classification and composition analysis: A survey of recent developments. J. Inf. Secur.

Appl. 2021, 59, 102828. [CrossRef]
3. Awan, M.J.; Masood, O.A.; Mohammed, M.A.; Yasin, A.; Zain, A.M.; Damaševičius, R.; Abdulkareem, K.H. Image-Based Malware

Classification Using VGG19 Network and Spatial Convolutional Attention. Electronics 2021, 10, 2444. [CrossRef]
4. Rouissat, M.; Belkheir, M.; Alsukayti, I.S.; Mokaddem, A. A lightweight mitigation approach against a new inundation attack in

RPL-based IoT networks. Appl. Sci. 2023, 13, 10366. [CrossRef]
5. Pytorch. Cybercrime to Cost the World $10.5 Trillion Annually by 2025 Code. 2021. Available online: https://

cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021 (accessed on 12 November 2022).
6. Schultz, M.G.; Eskin, E.; Zadok, F.; Stolfo, S.J. Data mining methods for detection of new malicious executables. In Proceedings of

the 2001 IEEE Symposium on Security and Privacy. S&P 2001, Oakland, CA, USA, 14–16 May 2000; IEEE: New York, NY, USA,
2000; pp. 38–49.

7. Christodorescu, M.; Jha, S. Static analysis of executables to detect malicious patterns. In Proceedings of the 12th USENIX Security
Symposium (USENIX Security 03), Washington, DC, USA, 4–8 August 2003.

8. Ahmadi, M.; Ulyanov, D.; Semenov, S.; Trofimov, M.; Giacinto, G. Novel feature extraction, selection and fusion for effective
malware family classification. In Proceedings of the of the Sixth ACM Conference on Data and Application Security and Privacy,
New Orleans, LA, USA, 9–11 March 2016; pp. 183–194.

9. Zhang, Y.; Huang, Q.; Ma, X.; Yang, Z.; Jiang, J. Using multi-features and ensemble learning method for imbalanced malware
classification. In Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; IEEE: New York,
NY, USA, 2016; pp. 965–973.

10. Alzaidy, S.; Binsalleeh, H. Adversarial Attacks with Defense Mechanisms on Convolutional Neural Networks and Recurrent
Neural Networks for Malware Classification. Appl. Sci. 2024, 14, 1673. [CrossRef]

11. Aslan, Ö.; Yilmaz, A.A. A new malware classification framework based on deep learning algorithms. IEEE Access 2021,
9, 87936–87951. [CrossRef]

12. Yuan, B.; Wang, J.; Liu, D.; Guo, W.; Wu, P.; Bao, X. Byte-level malware classification based on markov images and deep learning.
Comput. Secur. 2020, 92, 101740. [CrossRef]

13. Gibert, D. Convolutional Neural Networks for Malware Classification; University Rovira i Virgili: Tarragona, Spain, 2016.
14. Kalash, M.; Rochan, M.; Mohammed, N.; Bruce, N.D.; Wang, Y.; Iqbal, F. Malware classification with deep convolutional neural

networks. In Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS),
Paris, France, 26–28 February 2018; IEEE: New York, NY, USA, 2018; pp. 1–5.

http://doi.org/10.1016/j.eswa.2022.117957
http://dx.doi.org/10.1016/j.jisa.2021.102828
http://dx.doi.org/10.3390/electronics10192444
http://dx.doi.org/10.3390/app131810366
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021
http://dx.doi.org/10.3390/app14041673
http://dx.doi.org/10.1109/ACCESS.2021.3089586
http://dx.doi.org/10.1016/j.cose.2020.101740

Appl. Sci. 2024, 14, 4645 18 of 20

15. Prajapati, P.; Stamp, M. An empirical analysis of image-based learning techniques for malware classification. In Malware Analysis
Using Artificial Intelligence and Deep Learning; Springer: Berlin/Heidelberg, Germany, 2021; pp. 411–435.

16. Singh, A.; Handa, A.; Kumar, N.; Shukla, S.K. Malware classification using image representation. In Proceedings of the Cyber
Security Cryptography and Machine Learning: Third International Symposium, CSCML 2019, Beer-Sheva, Israel, 27–28 June
2019; Proceedings 3; Springer: Berlin/Heidelberg, Germany, 2019; pp. 75–92.

17. Agarap, A.F. Towards building an intelligent anti-malware system: A deep learning approach using support vector machine
(SVM) for malware classification. arXiv 2017, arXiv:1801.00318.

18. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
19. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520.

20. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

21. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea,
28 October–2 November 2019; pp. 1314–1324.

22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

23. Syeda, D.Z.; Asghar, M.N. Dynamic Malware Classification and API Categorisation of Windows Portable Executable Files Using
Machine Learning. Appl. Sci. 2024, 14, 1015. [CrossRef]

24. Gyamfi, N.K.; Goranin, N.; Ceponis, D.; Čenys, H.A. Automated system-level malware detection using machine learning: A
comprehensive review. Appl. Sci. 2023, 13, 11908. [CrossRef]

25. Rey, V.; Sánchez, P.M.S.; Celdrán, A.H.; Bovet, G. Federated learning for malware detection in IoT devices. Comput. Netw. 2022,
204, 108693. [CrossRef]

26. Cheng, S.M.; Hong, B.K.; Hung, C.F. Attack detection and mitigation in MEC-enabled 5G networks for AIoT. IEEE Internet Things
Mag. 2022, 5, 76–81. [CrossRef]

27. Kumar, R.; Zhang, X.; Wang, W.; Khan, R.U.; Kumar, J.; Sharif, A. A multimodal malware detection technique for Android IoT
devices using various features. IEEE Access 2019, 7, 64411–64430. [CrossRef]

28. Mujtaba, G.; Ryu, E.S. Human character-oriented animated gif generation framework. In Proceedings of the 2021 Mohammad
Ali Jinnah University International Conference on Computing (MAJICC), Karachi, Pakistan, 15–17 July 2021; IEEE: New York,
NY, USA, 2021; pp. 1–6.

29. Zhao, D.; Ren, J.; Lin, R.; Xu, S.; Chang, V. On orchestrating service function chains in 5G mobile network. IEEE Access 2019,
7, 39402–39416. [CrossRef]

30. Rahman, A.u.; Mahmud, M.; Iqbal, T.; Saraireh, L.; Kholidy, H.; Gollapalli, M.; Musleh, D.; Alhaidari, F.; Almoqbil, D.; Ahmed,
M.I.B. Network Anomaly Detection in 5G Networks. Math. Model. Eng. Probl. 2022, 9, 397. [CrossRef]

31. Sharif, S.; Naqvi, R.A.; Biswas, M. SAGAN: Adversarial Spatial-asymmetric Attention for Noisy Nona-Bayer Reconstruction.
arXiv 2021, arXiv:2110.08619.

32. Sharif, S.; Mahboob, M. Evil method: A deep CNN model for Bangla handwritten numeral classification. In Proceedings of the
2017 4th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 28–30 September 2017;
IEEE: New York, NY, USA, 2017; pp. 217–222.

33. Wang, Z.; Cun, X.; Bao, J.; Zhou, W.; Liu, J.; Li, H. Uformer: A general u-shaped transformer for image restoration. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022;
pp. 17683–17693.

34. Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H. Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
19–24 June 2022; pp. 5728–5739.

35. Ahmed, I.; Anisetti, M.; Ahmad, A.; Jeon, G. A multilayer deep learning approach for malware classification in 5G-enabled IIoT.
IEEE Trans. Ind. Inform. 2022, 19, 1495–1503. [CrossRef]

36. Hasan, M.K.; Ghazal, T.M.; Saeed, R.A.; Pandey, B.; Gohel, H.; Eshmawi, A.; Abdel-Khalek, S.; Alkhassawneh, H.M. A review on
security threats, vulnerabilities, and counter measures of 5G enabled Internet-of-Medical-Things. IET Commun. 2022, 16, 421–432.
[CrossRef]

37. Narayanan, B.N.; Djaneye-Boundjou, O.; Kebede, T.M. Performance analysis of machine learning and pattern recognition
algorithms for malware classification. In Proceedings of the 2016 IEEE National Aerospace and Electronics Conference (NAECON)
and Ohio Innovation Summit (OIS), Dayton, OH, USA, 25–29 July 2016; IEEE: New York, NY, USA, 2016; pp. 338–342.

38. Kinable, J.; Kostakis, O. Malware classification based on call graph clustering. J. Comput. Virol. 2011, 7, 233–245. [CrossRef]
39. Anderson, B.; Storlie, C.; Lane, T. Improving malware classification: Bridging the static/dynamic gap. In Proceedings of the 5th

ACM Workshop on Security and Artificial Intelligence, Raleigh, CA, USA, 19 October 2012; pp. 3–14.
40. Nataraj, L.; Karthikeyan, S.; Jacob, G.; Manjunath, B.S. Malware images: Visualization and automatic classification. In Proceedings

of the 8th International Symposium on Visualization for Cyber Security, Pittsburgh, PA, USA, 20 July 2011; pp. 1–7.

http://dx.doi.org/10.3390/app14031015
http://dx.doi.org/10.3390/app132111908
http://dx.doi.org/10.1016/j.comnet.2021.108693
http://dx.doi.org/10.1109/IOTM.001.2100144
http://dx.doi.org/10.1109/ACCESS.2019.2916886
http://dx.doi.org/10.1109/ACCESS.2019.2895316
http://dx.doi.org/10.18280/mmep.090213
http://dx.doi.org/10.1109/TII.2022.3205366
http://dx.doi.org/10.1049/cmu2.12301
http://dx.doi.org/10.1007/s11416-011-0151-y

Appl. Sci. 2024, 14, 4645 19 of 20

41. Mushtaq, S.; Alandjani, G.; Abbasi, S.F.; Abosaq, N.; Akram, A.; Pervez, S. Hybrid geo-location routing protocol for indoor and
outdoor positioning applications. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 7. [CrossRef]

42. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

43. Luo, J.S.; Lo, D.C.T. Binary malware image classification using machine learning with local binary pattern. In Proceedings of the
2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; IEEE: New York, NY, USA,
2017; pp. 4664–4667.

44. Yeo, M.; Koo, Y.; Yoon, Y.; Hwang, T.; Ryu, J.; Song, J.; Park, C. Flow-based malware detection using convolutional neural network.
In Proceedings of the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 10–12 January
2018; pp. 910–913.

45. Alandjani, G.O. Blockchain Technology and Impacts on Potential Industries. In Proceedings of the 2023 IEEE 2nd International
Conference on AI in Cybersecurity (ICAIC), Houston, TX, USA, 7–9 February 2023; IEEE: New York, NY, USA, 2023; pp. 1–4.

46. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: New York, NY,
USA, 2009; pp. 248–255.

47. Alandjani, G.O.; Bouk, A.H. Meme Generation Using Deep Neural Network to Engage Viewers on Social Media. Yanbu J. Eng.
Sci. 2021, 18, 81–87. [CrossRef]

48. Rezende, E.; Ruppert, G.; Carvalho, T.; Theophilo, A.; Ramos, F.; Geus, P.d. Malicious software classification using VGG16 deep
neural network’s bottleneck features. In Information Technology-New Generations; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 51–59.

49. Khan, R.U.; Zhang, X.; Kumar, R. Analysis of ResNet and GoogleNet models for malware detection. J. Comput. Virol. Hacking
Tech. 2019, 15, 29–37. [CrossRef]

50. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

51. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 84–90. [CrossRef]

52. Gulatas, I.; Kilinc, H.H.; Zaim, A.H.; Aydin, M.A. Malware threat on edge/fog computing environments from Internet of things
devices perspective. IEEE Access 2023, 11, 33584–33606. [CrossRef]

53. Alandjani, G. Leveraging vulnerabilities in sensor based IOT edge computing networks. Int. J. Future Gener. Commun. Netw. 2021,
14, 11–20.

54. HaddadPajouh, H.; Dehghantanha, A.; Khayami, R.; Choo, K.K.R. A deep recurrent neural network based approach for internet
of things malware threat hunting. Future Gener. Comput. Syst. 2018, 85, 88–96. [CrossRef]

55. Medsker, L.R.; Jain, L. Recurrent neural networks. Des. Appl. 2001, 5, 2.
56. Su, J.; Vasconcellos, D.V.; Prasad, S.; Sgandurra, D.; Feng, Y.; Sakurai, K. Lightweight classification of IoT malware based on

image recognition. In Proceedings of the 2018 IEEE 42Nd Annual Computer Software and Applications Conference (COMPSAC),
Tokyo, Japan, 23–27 July 2018; IEEE: New York, NY, USA, 2018; Volume 2, pp. 664–669.

57. Alasmary, H.; Khormali, A.; Anwar, A.; Park, J.; Choi, J.; Abusnaina, A.; Awad, A.; Nyang, D.; Mohaisen, A. Analyzing and
detecting emerging Internet of Things malware: A graph-based approach. IEEE Internet Things J. 2019, 6, 8977–8988. [CrossRef]

58. Dovom, E.M.; Azmoodeh, A.; Dehghantanha, A.; Newton, D.E.; Parizi, R.M.; Karimipour, H. Fuzzy pattern tree for edge malware
detection and categorization in IoT. J. Syst. Archit. 2019, 97, 1–7. [CrossRef]

59. Vasan, D.; Alazab, M.; Venkatraman, S.; Akram, J.; Qin, Z. MTHAEL: Cross-architecture IoT malware detection based on neural
network advanced ensemble learning. IEEE Trans. Comput. 2020, 69, 1654–1667. [CrossRef]

60. Lu, N.; Li, D.; Shi, W.; Vijayakumar, P.; Piccialli, F.; Chang, V. An efficient combined deep neural network based malware detection
framework in 5G environment. Comput. Netw. 2021, 189, 107932. [CrossRef]

61. Zhou, Y.; Jiang, X. Dissecting android malware: Characterization and evolution. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; IEEE: New York, NY, USA, 2012; pp. 95–109.

62. Jeon, J.; Park, J.H.; Jeong, Y.S. Dynamic analysis for IoT malware detection with convolution neural network model. IEEE Access
2020, 8, 96899–96911. [CrossRef]

63. Sharif, S.; Mobin, I.; Mohammed, N. Augmented quick health. Int. J. Comput. Appl. 2016, 134, 1–6. [CrossRef]
64. Varsha, M.; Vinod, P.; Dhanya, K. Identification of malicious android app using manifest and opcode features. J. Comput. Virol.

Hacking Tech. 2017, 13, 125–138. [CrossRef]
65. Ankita, A.; Rani, S. Machine learning and deep learning for malware and ransomware attacks in 6G network. In Proceedings of

the 2021 Fourth International Conference on Computational Intelligence and Communication Technologies (CCICT), Sonepat,
India, 3 July 2021; IEEE: New York, NY, USA, 2021; pp. 39–44.

66. Sousa, B.; Dias, D.; Antunes, N.; C’amara, J.; Wagner, R.; Schmerl, B.; Garlan, D.; Fidalgo, P. MONDEO-Tactics5G: Multistage
botnet detection and tactics for 5G/6G networks. Comput. Secur. 2024, 140, 103768. [CrossRef]

67. Mahmood, I.; Alyas, T.; Abbas, S.; Shahzad, T.; Abbas, Q.; Ouahada, K. Intrusion Detection in 5G Cellular Network Using
Machine Learning. Comput. Syst. Sci. Eng. 2023, 47. [CrossRef]

http://dx.doi.org/10.14569/IJACSA.2019.0100701
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.53370/001c.29748
http://dx.doi.org/10.1007/s11416-018-0324-z
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/ACCESS.2023.3262614
http://dx.doi.org/10.1016/j.future.2018.03.007
http://dx.doi.org/10.1109/JIOT.2019.2925929
http://dx.doi.org/10.1016/j.sysarc.2019.01.017
http://dx.doi.org/10.1109/TC.2020.3015584
http://dx.doi.org/10.1016/j.comnet.2021.107932
http://dx.doi.org/10.1109/ACCESS.2020.2995887
http://dx.doi.org/10.5120/ijca2016908219
http://dx.doi.org/10.1007/s11416-016-0277-z
http://dx.doi.org/10.1016/j.cose.2024.103768
http://dx.doi.org/10.32604/csse.2023.033842

Appl. Sci. 2024, 14, 4645 20 of 20

68. Basnet, M.; Poudyal, S.; Ali, M.H.; Dasgupta, D. Ransomware detection using deep learning in the SCADA system of electric
vehicle charging station. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Conference-Latin America
(ISGT Latin America), Lima, Peru, 15–17 September 2021; IEEE: New York, NY, USA, 2021; pp. 1–5.

69. Anand, A.; Rani, S.; Anand, D.; Aljahdali, H.M.; Kerr, D. An efficient CNN-based deep learning model to detect malware attacks
(CNN-DMA) in 5G-IoT healthcare applications. Sensors 2021, 21, 6346. [CrossRef]

70. Sharif, S.; Mahboob, M. Deep hog: A hybrid model to classify bangla isolated alpha-numerical symbols. Neural Netw. World 2019,
29, 111–133. [CrossRef]

71. Mujtaba, G.; Khowaja, S.A.; Jarwar, M.A.; Choi, J.; Ryu, E.-S. FRC-GIF: Frame Ranking-Based Personalized Artistic Media
Generation Method for Resource Constrained Devices. IEEE Trans. Big Data 2023, 1–14. [CrossRef]

72. Wei, Y.; Xiao, H.; Shi, H.; Jie, Z.; Feng, J.; Huang, T.S. Revisiting dilated convolution: A simple approach for weakly-and
semi-supervised semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018; pp. 7268–7277.

73. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

74. Pytorch. PyTorch Framework Code. 2016. Available online: https://pytorch.org/ (accessed on 27 March 2024).
75. Sharif, S.; Mahboob, M. A comparison between hybrid models for classifying Bangla isolated basic characters. In Proceedings of

the 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 28–30 September 2017;
IEEE: New York, NY, USA, 2017; pp. 211–216.

76. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

77. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

78. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and< 0.5 MB model size. arXiv 2016, arXiv:1602.07360.

79. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021;
pp. 10012–10022.

80. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

81. Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146.
82. Sun, R.Y. Optimization for deep learning: An overview. J. Oper. Res. Soc. China 2020, 8, 249–294. [CrossRef]
83. Liu, Z.; Wang, Y.; Han, K.; Zhang, W.; Ma, S.; Gao, W. Post-training quantization for vision transformer. Adv. Neural Inf. Process.

Syst. 2021, 34, 28092–28103.
84. NVIDIA Corporation. TensorRT. Available online: https://developer.nvidia.com/tensorrt (accessed on 2 April 2024).
85. Hubara, I.; Nahshan, Y.; Hanani, Y.; Banner, R.; Soudry, D. Accurate post training quantization with small calibration sets. In

Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 4466–4475.
86. Liang, T.; Glossner, J.; Wang, L.; Shi, S.; Zhang, X. Pruning and quantization for deep neural network acceleration: A survey.

Neurocomputing 2021, 461, 370–403. [CrossRef]
87. NVIDIA Corporation. Jetson Orin NX Series and Jetson AGX Orin Series. Available online: https://www.nvidia.com/en-us/

autonomous-machines/embedded-systems/jetson-orin/ (accessed on 2 March 2024).
88. Nagel, M.; Fournarakis, M.; Bondarenko, Y.; Blankevoort, T. Overcoming oscillations in quantization-aware training. In

Proceedings of the International Conference on Machine Learning, Baltimore, MA, USA, 17–23 July 2022; pp. 16318–16330.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s21196346
http://dx.doi.org/10.14311/NNW.2019.29.009
http://dx.doi.org/10.1109/TBDATA.2023.3338012
https://pytorch.org/
http://dx.doi.org/10.1007/s40305-020-00309-6
https://developer.nvidia.com/tensorrt
http://dx.doi.org/10.1016/j.neucom.2021.07.045
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/

	Introduction
	Related Works
	Traditional Machine Learning
	Deep Learning
	Malware Detection on IoT and Edge Devices
	Malware Detection on 5G/6G Infrastructure

	Learning Malware Detection
	Model Architecture
	Faster Spatial-Asymmetric Attention Module
	Auxiliary Branch
	Multi-Head Attention (MHA)

	Dataset Preparation
	Training Details

	Results and Analysis
	Comparison
	Comparison with Malware Detection Methods
	Comparison with Image Classification Methods

	Ablation Study
	Learning Analysis

	Malware Detection on Edge Platform
	Optimization and Deployment
	Inference Analysis
	Discussion

	Conclusions
	References

