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Abstract: The short-loading cycle is a construction task where a wheel loader scoops material from a
nearby pile in order to move that material to the tipping body of a dump truck. The short-loading
cycle is a vital task performed in high quantities and is often part of a more extensive never-ending
process to move material for further refinement. This, together with the highly repetitive nature of the
short-loading cycle, makes it a suitable candidate for automation. However, the short-loading cycle is
a complex task where the mechanics of the wheel loader together with the interaction between the
wheel loader and the environment needs to be considered. This must be achieved while maintaining
some productivity goal and, concurrently, minimizing the used energy. The main objective of this
work is to analyze the short-loading cycle, assess the current state of research in this field, and discuss
the steps required to progress towards a minimal viable product consisting of individual automation
solutions that can perform the short-loading cycle well enough to be used by early adopters. This is
achieved through a comprehensive literature study and consequent analysis of the review results.
From this analysis, the requirements of an MVP are defined and some gaps which are currently
hindering the realization of the MVP are presented.

Keywords: short-loading cycle; automation; wheel loader; construction; data-driven approaches

1. Introduction

Over the last few decades, automation attempts in the construction industry have
increased in frequency. This is because automation of, for example, the used heavy-duty
machinery can bring with it a wide set of potential benefits. These benefits include but
are not limited to avoiding having humans working in harsh environments [1], more
predictable performance and efficiency in operating the machine [2], and redefinition of
wheel loader geometry [3].

One of the processes employed in the construction industry is the short-loading cycle
where a wheel loader moves material such as rocks, gravel, or dirt from a nearby pile and
transports that material to the tipping body of a stationary dump truck. The material is then
transported longer distances by the dump truck operator. In the literature, the short-loading
cycle is commonly divided into six different steps [4]. These steps include Approaching the
pile (1), Loading (2), Retracting from the pile (3), Approaching the dumper (4), Dumping (5),
and Retracting from the dumper (6), as seen in Figure 1.

The short-loading cycle is often performed in, for example, an open pit mine, where
material continuously flows from a crusher or conveyor belt into a pile, resulting in a never-
ending process where there is always material to be scooped. This material is then moved
elsewhere for further refinement. Thus, the short-loading cycle is typically performed early
on in a larger process, resulting in the need of high performance as any inefficiency has a
cascading effect.
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The short-loading cycle is a repetitive task performed in high quantities by human
operators, making it a great option for automation. The short-loading cycle is also highly
representative of the type of work for which wheel loaders will be used for [5]. This includes
but is not limited to scooping, dumping, and transporting smaller amounts of materials.
The experience from the short-loading cycle can potentially be used while attempting to
automate other tasks relevant to wheel loaders, but also similar tasks in other domains.
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Figure 1. An overview of the short-loading cycle. The leftmost vehicle is a stationary dump truck
ready to have material placed in its tipping body. The rightmost vehicle is the wheel loader starting
position ready to navigate towards the pile. The numbers indicate the steps of the short-loading cycle
as defined in [4]. These steps include the following: (1) Approach the pile, (2) Loading, (3) Retract
from the pile, (4) Approach the dumper, (5) Dumping, (6) Retract from the dumper. The red dot
shows the reversal point.

Due to the highly repetitive nature of the short-loading cycle, the work can be con-
sidered dull for the operators. Operators handle wheel loaders in dirty and dangerous
environments that can often be unsuitable for humans, such as underground mines. Au-
tomation of wheel loaders could alleviate these negatives while also allowing for enhanced
operator engagement where operators can focus on performing more complex tasks. Fur-
thermore, a well-designed driver assistance or automated system can lead to less variance
in the efficiency of the cycle [2]. Lastly, automation can allow for a complete transformation
of the geometry of the wheel loader, which in turn allows the vehicle easy access deep into,
for example, mines and also increases the number of types of environments in which the
machine can be used.

Even with decades worth of research, there exists no general autonomous solution
that can perform the short-loading cycle task to an acceptable level. The short-loading cycle
has been demonstrated in full by a rule-based system [6]; however, very low productivity
was demonstrated, where data-driven approaches have successfully addressed some sub-
steps such as scooping [7]. Previous standalone surveys have focused on a single type of
technology, such as computer vision [8], a single type of problem, such as examining how
we can assure safety for autonomous solutions [9], how the construction industry could be
automated in general [10], or examining the problem of the lack of adoption of automation
in the construction industry [11]. Most of these works have examined the challenges of
automation of different types of construction equipment or relevant technology assuming a
longer time horizon to realize an autonomous system. In addition, only a handful of survey
articles examined the automation of specifically wheel loaders in the short-loading task,
and many works focused on a diverse set of construction equipment.
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The lack of progress outlined above in the domain of the automation of the short-
loading cycle is surprising as the potential benefits of an autonomous solution are high.
This serves as motivation to explore the reason behind the slow progress and from this
identify a way forward towards a plausible defined minimal viable product (MVP) [12]. An
MVP is the idea of creating a product with a minimal amount of features to solve a given
problem, allowing for early adopters to provide feedback for further development. In this
case, an MVP should be comprised of a set of automation solutions for individual steps in
the short-cycle loading operation that are in reach for development and can be combined
into a coherent system capable of performing the entire cycle without human intervention.

The main objective of this work is to examine the following question: “From the
current status of the automation of the short-loading cycle, what is a reasonably defined
MVP and what challenges are currently hindering the realization of an MVP?”, with a
secondary question being the following: “Which challenges facing the automation of the
short-loading cycle can benefit from the use of deep learning methods?”.

In this work, identification and discussion of a set of automation challenges hindering
automating the short-loading cycle are presented. A systematic survey of relevant literature
is conducted in terms of the previously identified steps to structure and reason about
published solutions for automating the complete cycle. An MVP for automating the
short-loading cycle is proposed based on the literature presented in the systematic review.
A conceptual automation framework is introduced, leveraging finite-state machines (FSMs)
as a model to organize individual automation into a system for experimentation with
various solutions for the different steps, contributing to the realization of the proposed MVP.
Lastly, the literature synthesis prompts a discussion on future challenges for automating
the short-loading cycle.

The main contributions of this paper are as follows:

1. MVP identification based on the currently published literature together with best
practices performing the short-loading cycle.

2. An FSM-based high-level framework as a model for combining individual automation
solutions into a complete system and facilitating experiments on the automation of
the short-loading cycle.

3. Identification of open issues and gaps facing the automation of the short-loading cycle
and the realization of a reasonably defined MVP. The identified gaps relate to the
abstraction level due to rule-based interfaces, enforcement of safe behavior, the effect
of assumptions, and the considerations required when using data-driven and classical
control solutions in conjunction.

The remainder of the paper is structured as follows: Section 2 identifies and discusses
some of the challenges that are required to overcome to automate the short-loading cycle.
Section 3 presents the survey methodology, survey results, and a qualitative analysis of
said results. Section 4 proposes a set of requirements for an MVP capable of performing
the short-loading cycle autonomously. Section 5 presents a framework aimed to facilitate
experiments for the automation of the short-loading cycle. Section 6 discusses some of the
future challenges that need to be overcome to realize the defined MVP. Section 7 concludes
the paper and presents a clear direction for future research.

2. Automation Challenges

Automating construction tasks, such as the short-loading cycle, presents distinct chal-
lenges related to vehicle dynamics, environmental interactions, and the unpredictable move-
ments of other agents around the autonomous system. Not only should an autonomous
system be capable of comprehending, managing, and responding to these challenges, but it
should do so while also achieving a level of performance comparable to that of expert
operators regarding productivity, fuel efficiency, and overall effectiveness. The challenges
facing the automation of these types of construction tasks include but are not limited to
the environmental variables, the mechanics of the wheel loader, long-term dependencies
important during the short-loading cycle, and safety challenges.
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2.1. Environmental Challenges

The types of environments in which the short-loading cycle occurs consist of a series of
challenges that complicate the automation process. First, the wheel loader needs to gather
material from a pile using a bucket attachment. This interaction holds high significance
as an insufficient fill factor would necessitate another round of the cycle to fill the tipping
body. Consequently, an unnecessary amount of fuel is used while increasing the fill time of
the tipping body, resulting in a worse performance. Modeling the interaction between the
bucket and the pile during scooping is challenging due to the large amount of intra-pile
forces where each grain of material exerts force on another while also experiencing the
force from the bucket [4].

Another challenging interaction to model is the behavior of the wheel loader while
steering due to the tyre–terrain interaction. This challenge arises due to the large set
of variables that influence the steering mechanics during actuation. These include but
are not limited to terrain type, terrain conditions, and tyre thread [13]. The interaction
between tyre and terrain is further complicated due to the varying material weight in
the bucket, as different load distributions on the wheels affect the overall stability of the
wheel loader [14].

Not only are the interactions between the wheel loader and environment complex,
but the environment itself is rapidly changing due to operations. For instance, the shape of
the pile changes as a result of the scooping process, where the material might fall from the
bucket during navigation, and there may be some spillage during dumping. Furthermore,
the driving surface, often composed of softer materials, is likely to change over time as the
operator repeatedly performs the cycle. To address this, the operator of the wheel loader
cleans the work area to simplify operations and ensure that the terrain maintains a good
condition to minimize wear on the tyres. This is all achieved while awaiting a new dump
truck to load with the material.

2.2. Wheel Loader Mechanics

Wheel loaders are complex vehicles where the majority of actions are executed through
a hydraulic system. These actions include lifting the boom, tilting the bucket, and changing
the steering angle, which are all actions that are directly coupled together. The dynamics of
the hydraulic system within a wheel loader are stiff and highly nonlinear, posing challenges
in developing precise mathematical simulation models [15]. Due to the stiffness of the
hydraulics, there is a significant time delay between when the operator initiates an action,
such as the lift, and when the boom begins to move. This time delay is a consequence
of the way in which hydraulic systems work, where fluid has to move to create high
enough pressure in the cylinders, resulting in the boom moving. The combination of action
coupling, time delays, and nonlinearity of actions contribute to the complex nature of
automating the short-loading cycle.

Wear and tear on the machine parts such as tyre wear pose additional complications
for automation, as even regular wear can affect the amount of propulsion the machine
can generate. Wear on the tyres relates to cleaning the work area. If the work area is left
uncleaned, there is a greater likelihood that the tyre will wear faster or, in the worst case,
be damaged to such an extent to necessitates costly replacements [16]. This means that
any autonomous solution has to be capable of adapting to changes in the mechanics of the
wheel loader due to wear.

In addition, the choices that operators make during operation can affect the amount of
maintenance required for the vehicle due to wear. For example, a lower-skilled operator
might incorrectly leverage the lift and tilt functionality during the scooping of material
which leads to higher wheel spin that wears down the tyres. Changing the tyres is a large
expense [17] and will take the wheel loader out of effective work for some time, halting
the process.
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2.3. Long-Term Dependencies

The short-loading cycle encompasses numerous long-term dependencies crucial for
the optimization of the work cycle. As the short-loading cycle is typically performed early
in a larger process, such as ore refinement, any inefficiencies cascade downwards affecting
the downstream process. Because of this, during the cycle, operators attempt to maintain
a given productivity goal while minimizing the environmental impact. The operator’s
behavior can have a massive impact on both productivity and the environmental impact,
with a theoretical fuel efficiency increase of 200% and a theoretical productivity increase of
700% [18]. Even for experienced drivers, there can be a large difference in productivity and
fuel efficiency, where it can be difficult to determine whether the performance difference is
due to skill or minimization of personal workload [19].

To fill the dump truck’s tipping body, multiple rounds of the short-loading cycle are
necessary. To perform this task correctly, the operator needs to understand how the material
disperses within the tipping body during the dumping process. This can be achieved by
dumping in the front, middle, and back of the tipping body which, if performed correctly,
ensures even loading of material in the tipping body, facilitating stable navigation. This
means that information gathered from the first round of the cycle contains information
necessary to optimize performance of the cycle in subsequent rounds.

Lastly, the scooping and dumping position chosen by the operator during the cycle
affects the position of the reversal point. The operator must select the reversal point to
maximize productivity while minimizing the environmental impact.

2.4. Safety Concerns

When attempting to automate these large vehicles, we must pay close attention to the
relevant safety challenges. These safety challenges encompass various aspects, including
human-and-machine interaction, emergency handling, collision avoidance, and safety
guarantees for certification.

Heavy-duty construction machinery, like wheel loaders, operate in close vicinity of
both other vehicles with operators and other workers. Any autonomous system must be
not only capable but has assurances to prevent damage to vehicles and injuries to humans.
This is essentially emergency handling and collision avoidance. However, it is crucial
to emphasize the significance of safety guarantees for regulatory bodies to certify the
solution’s widespread deployment.

This means that any deployable autonomous system must be provably correct, which
can be challenging due to the technology solutions used within the autonomous system.

For example, when leveraging data-driven approaches, it can be difficult to reflect on
how a system will behave in different situations. Currently, incorrect behavior is often part
of the learning process leading to embedding the decision-making of safe behavior into the
policy. The consequence of this is that there is no guarantee of safe behavior, nor is it possible
to prove the solution safe, which leads to difficulties in certifying a solution for use.

3. Automation of Wheel Loaders

To define a plausible MVP for the automation of the short-loading cycle, together with
future challenges in improving said MVP, the currently published literature in this domain
was reviewed. This section aims to present the methodology, the results, and a qualitative
analysis of the review.

3.1. Review Methodology

The methodology used for this systematic literature review is based on the process
presented in [20], where the review is divided into 8 different steps, in three overarching
categories. The methodology is visualized in Figure 2. The first category of planning the
review includes Steps 1 and 2, where the problem is formulated and a review protocol
is developed. In this work, the background for the problem formulation is presented in
Section 1, resulting in the main question: “From the current status of the automation of the
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short-loading cycle, what is a reasonably defined MVP and what challenges are currently
hindering the realization of an MVP?”. The last step reporting the findings (Step 8) is
performed in the form of this review article.

Figure 2. An eight-step review methodology used to perform the survey. The figure is based on the
review methodology figure presented in [20].

Hence, this section and the following sections aim to cover Steps 2 to 7. This is
structured in the following way: Section 3.1.1 presents the inclusion criterion used in the
survey (Step 2). Section 3.1.2 presents how the initial literature identification was performed
(Step 3). Section 3.1.3 presents how the identified literature was screened for potential
inclusion in the survey (Step 4). Section 3.1.4 presents how the literature was screened
for quality and final eligibility in the survey (Step 5). Section 3.2 presents the extracted
data from each of the included works (Step 6). Lastly, Section 3.3 presents the qualitative
analysis of the extracted data (Step 7).

This study aims to investigate the state of the art directly related to operations to
assess the plausible possibility of defining an MVP capable of performing the short-loading
cycle autonomously. This makes works that are not directly tied to the automation of the
short-loading cycle relatively diminished in relevance, which is reflected in the inclusion
criterion and search terms defined below.

3.1.1. Inclusion Criterion

Only the literature that is directly tied to the automation of single or multiple steps
of the short-loading cycle, as defined in Figure 1, was included. This encompassed both
rule-based and data-driven approaches. The literature that exclusively examined passive
vision-based information extraction was excluded, for example, finding the bounding box
of different parts of the dump truck from a camera [21]. However, studies that used vision
to perform some tasks such as finding the scooping point and then navigating to it were
still included.

If a set of continuous articles were identified, the most complete version was included.
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In this work, the short-loading cycle is assumed to be performed by a wheel loader
with the bucket, meaning that other types of vehicles were not included in the survey. This
is because the structure and mechanics of the wheel loader are quite unique compared
to other vehicles used in the construction industry. Because of this, it can be difficult to
transfer the knowledge from, for example, an excavator to a wheel loader.

Lastly, only optimal control works that were directly relevant to performing the cycle
were included in the survey. This means studies that, for example, compared different
types of vehicles were outside the scope of this work.

These inclusion criteria will hopefully result in a literature synthesis that provides a
good reflection of the current status of the automation of the short-loading cycle and offers
a clear direction for future work.

3.1.2. Literature Identification

To identify the literature relevant to this work, a set of general domain search terms
were defined, such as “Automation of Wheel loaders” or “Automation of the short-loading
cycle”. These results were used to collect a set of relevant keywords that could be used for
literature identification. The keywords were divided into three categories: (1) Hardware-
specific, (2) Task-specific, and (3) Subtasks. The hardware-specific keywords are used to
capture the type of vehicle and machine that is being used within the task, such as wheel
loaders or construction equipment. The task-specific keywords capture the task of the
short-loading cycle and its set of synonyms that have been used historically within this
domain. Lastly, the sub-task-specific keywords try to encapsulate all the sub-tasks that
we are interested in such as automating the short-loading cycle, performing navigation,
or carrying out pathfinding.

To capture the relevant literature as effectively as possible, Boolean algebra was
leveraged, supported by many search engines, and a search query was built that fully
includes all three categories defined above. From these results, the title was used to gauge
the relevance of the paper. If the paper appeared relevant from the title and was written
in English, the full reference was included for further screening. In this work, Scopus
was used for the literature identification and to refine the keywords using Scopus filtering
functionality. In addition, Google Scholar was used for literature identification, and forward
and backward searches were utilized to decrease the chance of important literature being
missed. Table 1 shows the set of keywords and synonyms used to identify the literature in
this work.

This search resulted in 89 articles for further screening.

Table 1. The search terms used while performing literature identification.

Category Search Terms

Hardware synonyms
Wheel loader, Construction equipment/machinery, Loader,

Mining machinery,
Hydraulic machinery/equipment, Earthmoving machinery

Task synonyms Short-loading cycle, Y cycle, V cycle, Short-cycle loading, Loading cycles,
Y-shaped, Y path, V-shaped, Y path

Subtask

Autonomous, Automation, Controllers, Robots, Robotics, Plan,
Planning, Detection,

Follow, Following, Scoop, Scooping, Approach, Approaching, Reverse,
Reversing, Dump,

Dumping, Fill, Filling, Navigation, Shovel, Shoveling, Bucket-filling, Path

3.1.3. Screening for Inclusion

Screening the identified set of articles for preliminary inclusion was achieved by
reading the abstract. From the abstract, the reviewer deemed whether the article was
relevant enough for full-text review or not. When reading the abstract, the keywords
defined in Table 1 were verified to at least be partially present. Furthermore, the work was
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verified to include some type of actuation control or real-world data. Uncertainties were
presented and discussed to ensure minimal biases.

This resulted in 65 articles for continued assessment.

3.1.4. Quality and Eligibility Assessment

As mentioned, to assess the quality of each identified article, the full text was skimmed.
Peer-reviewed journal articles together with peer-reviewed conference articles were deemed
to have the highest quality of the identified articles. However, some non-peer-reviewed
journal and conference articles were included if they had high relevancy and the work
seemed to be of high quality. Books, online presentations, and patents were excluded.

From this last screening, a total of 37 articles were fully read, resulting in 17 being
included in this work. During the full manuscript assessment, all inclusion criteria were
verified, with real-world data or actuation control being essential. This included pure
simulation work showing some tasks being performed, such as scooping. If no task was
performed, such as in the case of performance analysis, there was a requirement for it to be
based on real-world data.

3.1.5. Iterations

To minimize the risk of important literature not being captured within the search due
to keyword choices, both a backward and a forward search were performed on the included
literature. The articles identified from the forward and backward search were also included
or excluded based on the same procedure as all other literature. The forward and backward
search produced articles that were screened for inclusion. Together with the 17 from the
previous section, 36 articles were included in the survey.

3.2. Survey

As previously mentioned, the short-loading cycle can be divided into six different
steps. These six steps have received different levels of investigation over time. For example,
as shown in Table 2 and Figure 3, 12 of the survey works focused on scooping, 15 focused
on navigation, and 0 fully focused on the dumping step.
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The survey is split into two parts. The first investigates what has been performed
in terms of the automation of the short-loading cycle by examining the bucket-filling,
the navigation, and the full cycle. This is achieved by including both data-driven and
rule-based approaches to investigate what steps have been examined using the two types
of approaches and whether one type of approach outperforms the other. In this case,
data-driven approaches encompass algorithms where data can be automatically leveraged
to create solutions, whereas rule-based solutions are built through direct observation by
the developer. In addition, investigations regarding the performance of human operators
are presented to obtain an understanding of what high performance is.

The second part of the survey is a qualitative analysis of the works to obtain an
overview of the types of approaches used for each step in the short-loading cycle and
the potential of using said approaches in an MVP capable of completing the task of the
short-loading cycle.

A summary of all the surveyed works, together with the addressed steps, can be found
in Table 2. The advantages and disadvantages of each work come from the perspective of
how these solutions or how knowledge from these solutions can be used when creating a
solution that correctly performs the short-loading cycle. Furthermore, the advantages and
disadvantages also try to encompass the importance of some type of optimization towards
productivity and energy efficiency.

3.2.1. Bucket-Filling

Bucket-filling, or scooping, has seen the most research activity when it comes to the
automation of the short-loading cycle. One explanation for this is that during the bucket-
filling phase, it is possible to receive direct feedback from the interactions between material
and bucket. Furthermore, the phase is short and also complex. Lastly, modeling the pile is
difficult because of the internal forces acting on each other when there is interaction with
the pile [4].

Rule-based solutions attempt to mimic observed human operator behavior through
handwritten rules. One of these behaviors is lifting the bucket from the ground to the exit
height while simultaneously tiling the bucket [19]. This was found to be the optimal strategy
when examining bucket-filling in simulations. However, this could unfortunately not be
verified to be the optimal bucket-filling strategy for expert operators on real machines.
Tentatively, the authors still concluded that this is the best strategy for human operators
when filling the bucket.

Fuzzy logic was used to formulate another observed operator behavior programmat-
ically to perform the scooping of material [22] together with an FSM that executed the
programmed behavior, successfully matching operator performance in terms of energy
and payload. This seems to indicate that there is not one unique strategy that will result in
meeting the recommended fill factor after scooping on real machines.

Following this, a three-step algorithm was proposed based on the three observed
bucket-moving phases during scooping [23]. It is concerned with the way the bucket
moves inside the pile throughout the bucket-filling process. This solution was tested on
a miniature wheel loader and the fill factor was estimated through stereo vision and a
column model of the pile, but it was not compared to real operators.

Multiple early attempts were made to generate the path towards the scooping point
using different algorithms such as a mixture of clothoid curves and straight lines [24],
where a clothoid is a curve whose curvature is proportional to the length of the path [25].
This, together with the column model and the stereo vision setup to detect the pile, was
used to scoop material from a pile. The authors used a method similar to that which has
been used to generate the V path between the scooping point and the dump truck [26].
Not comparing the performance of the autonomous system to expert operators or the
recommended fill factor for the machine is problematic due to the importance of matching
the performance of expert operators in the short-loading cycle.
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As previously mentioned, the first step of scooping material from a pile is to determine
a spot from where to scoop. Some attempts have been made to create a system that
leverages Light Detection and Ranging (LIDAR) to find the optimal scooping point [27].
Here, four algorithms were tested. These include column-model estimates, the two-part
bucket model, the three-part bucket model, and quadric fitting. The authors concluded that
the quadratic fitting was the best-performing solution for determining a scooping position.
However, the authors found that it seems to be difficult to create a dataset or determine the
ground truth of the best scooping position. The authors found that when operators of the
same skill level were presented with a pile, they offered multiple different answers for the
optimal scooping point, making it difficult to determine a true optimal scooping point for
each pile shape.

In later years, deep learning solutions were applied to the problem of autonomous
bucket-filling since modeling the internal forces within a pile during the bucket-filling
phase is difficult, for example, when teaching a time-delayed neural network to perform
regression by classification and using that solution to autonomously scoop material using a
real wheel loader [7]. This time-delayed neural network was trained on 100 bucket-filling
examples by an expert operator and could match the operator in terms of the fill factor.
However, the solution could still not beat the operator in terms of bucket-filling time. This
time-delayed neural network was later adapted to learn how to scoop another type of
material through the use of reinforcement learning [28]. Within 40 bucket-filling trials,
the bucket-filling solution improved the productivity by 5–10% over directly deploying the
old network.

A simple random forest controller has successfully performed bucket-filling in summer
conditions, outperforming a neural network controller in the same environment [29],
trained on data collected from non-expert operators and using both low-level signals
and vision-based sensors as input. However, when the complexity of the environment
increased such as when the temperature decreased, a random forest controller started
failing, hence requiring a more complex controller such as that that adapting the attention
mechanism [30]. Furthermore, adding pressure sensors as input to the controller also
increased the performance of the controller. The results presented in the above two works
indicate that data-driven approaches are capable of effectively operating in more complex
environments under challenging conditions.

Both of these solutions were tested on real machines in realistic environments, showing
good performance. Furthermore, the former could match the expert operator in terms of
fill factor, which shows that this type of approach has the potential to result in a higher-
performing solution.

Lastly, reinforcement learning (RL) has been used to attempt to perform bucket-filling.
RL has the benefit of allowing us training of an agent to perform the bucket-filling without
having to collect data from a real operator, as this can be expensive. Furthermore, in the
future, there might not exist human data to train from, hence RL might be the only way to
train an agent.

A deep RL controller has been trained in simulation to perform the approach towards
the pile and scooping of material [31]. The controller was trained using the actor–critic
DPPG algorithm [32], purely by exploring the environment. Both the actor and the critic had
three hidden layers, mapping a 12 d vector containing sensor data to the wheel loader’s tilt,
lift, and velocity. The controller was transferred to a miniature wheel loader and tested with
no additional training. The solution showed good performance compared to the simulation
in terms of the weight of the material within the bucket and the bucket-filling time.

Two sequential deep learning agents learned how to perform the approach and scoop-
ing of material in a high-fidelity 3D simulation [33]. The two sequential agents were
a mucking position agent which determined the scooping point from camera input and
a mucking agent which approached and scooped from the determined scooping point.
The mucking agent used a variety of sensors such as position, velocity, force, and LIDAR to
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navigate towards the scooping point and scoop. This type of solution achieved an average
of 75% of the max loading capacity.

Q-learning has also been applied to the bucket-filling problem. This was achieved by
removing the physical model of the wheel loader and instead using a statistical model pre-
dicting the state of the wheel loader at some time step [34]. From this model, an agent was
trained to perform the bucket-filling process. The trained agent showed good performance
in terms of fuel consumption, adaptability, and convergence even with the absence of a
physical model. Furthermore, the trained agent could, with transfer learning, be adapted
to other types of material.

Many of the solutions presented above, rule-based and data-driven alike, relied on
the reaction forces between bucket and pile, or pressure in the hydraulics, as input to
the system. This seems like a reasonable input choice for an autonomous bucket-filling
system, even if it does not translate to what human operators use generally, as with this
information autonomous systems can outperform human operators at least in terms of fuel
efficiency [35]. The optimal depth that the bucket should be pushed into in the pile while
preserving the fill factor was around 400 mm [36], which decreased the operational time by
15% and fuel consumption by 5%.

In terms of bucket-filling, there exists a large, varied solution pool consisting of
different approaches using a wide set of different sensor setups. This gives us a good idea
of what is the highest-performing solution and what type of solution could be a part of
an MVP in the domain of the short-loading cycle. From the literature synthesis above, it
appears that for scooping, deep learning-based approaches outperform rule-based systems
in terms of matching expert operator performance. This seems to lead to using some
deep learning-based system for scooping in the MVP, and currently, the network should
probably be trained through collected human data and adapted to new material using deep
reinforcement learning.

3.2.2. Navigation

When it comes to navigation between the pile and the tipping body, very little has been
achieved in terms of examining how data-driven approaches can be used for navigation;
however, quite a lot of rule-based solutions have been proposed. Very few of these solutions
have been demonstrated on a real wheel loader in a realistic environment.

Clothoid-based path generation and tracking have been used not only to navigate
towards the pile but also to navigate between the pile and the dump truck [37]. The
generated path consists of two symmetrical clothoids connected at the reversal point,
where the first clothoid is tracked during reversing and the second is tracked during
forward motion. Due to wheel loaders being a type of actuated vehicle, the tracking point
on the wheel loader has to change throughout navigation. While reversing, the tracking
point is the centre of the back axle and while moving forward, the tracking point is the
centre of the front axle.

This clothoid solution is extended to include a larger amount of types of path gen-
eration situations, including the generating a path between pile and dump truck [38].
A canonical path skeleton is defined between a set of points costing three line segments and
two clothoids, which is then optimized using two different methods. The first method is a
genetic algorithm and the second is a form of quadratic programming. The methods search
through the variables and parameters for a set amount of time and once finished, the semi-
optimal path is retrieved, where it is optimally defined as the length of the path. A similar
optimization algorithm is based on a genetic algorithm, where the path is assumed to
include a straight line, a clothoid curve, and a circle line [39]. The optimization criterion
is the path length, and the genetic algorithm runs for 1000 iterations before returning the
semi-optimal path. Both of these solutions are validated on a miniature wheel loader,
showing that both solutions have potential.

An extended version of the Reeds–Shepp [40] algorithm has been used to generate the
trajectory between the pile and the tipping body [41]. The generated optimal path, where
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the optimality criteria are based on distance and cusp minimization, consists of circular
arcs and straight segments. To perform the path following the generated trajectory, a PID
is used to control the lateral position with constant velocity. Ref. [42] used an algorithm
based on RRT* and CC steer to plan the trajectory between the pile and the tipping body.
The generated trajectory was tracked using an AMPC tracking system that considers the
curvature disturbances in the trajectory resulting from the wheel loader’s acceleration
and deceleration. Neither of these solutions considered the lift speed of the boom in the
proposed solutions.

Most of the previous work has examined cases where a trajectory needs to be generated
between a single loading and unloading point. However, the short-loading cycle consists of
multiple scooping and unloading points as it takes more than a single bucket to fill the tipping
body of a dump truck. Ref. [43] proposed an algorithm that calculates multiple scooping
points for a single unload point and tested it in a simulation. This was achieved by creating a
score space containing the length of each path in the global space and generating, from this
score space, all paths using CC paths. The solution was validated on a miniature wheel loader.

Furthermore, ref. [44] proposed another solution to generate paths between multiple
arbitrary loading points and a single unloading point. This was achieved by decomposing
the problem into three distinct tasks. The first task revolves around finding a set of
candidate scooping points from a cost map. The second task ranks these points using
reinforcement learning to obtain the actual set of scooping points. From this, the last task
uses CC paths to generate the continuous path to excavate the gravel pile and transfer the
material to the tipping body of the dump truck.

Lastly, optimal control has been used to perform path generation for both pile-to-truck
and truck-to-pile [45]. The authors of the aforementioned reference tested a set of different
controllers to control the articulation angle (steering) in a 3D simulation and found that the
LVP-MPC controller performed the best. Due to a high time complexity, the path had to be
generated offline, while tracking could be performed online. To track the generated paths,
in addition to the articulation controller, a Stanley controller for acceleration, deacceleration,
and shifting was used.

Multiple different techniques have been applied to examine the optimal trajectory
during the short-loading cycle. Based on 2D space discretization, ref. [46] formulated the
path planning problem as an optimal control problem, where optimally was defined by fuel
efficiency and environmental impact. To find the optimal path, a discrete dynamic program-
ming approach was used. The best performing was the free path, where no working area
limitation existed, and adding an obstacle increased the fuel usage; however, compared to
measured data, the optimal path reduced the fuel consumption by 14%. Furthermore, this
solution was later extended to optimize a path within a known construction environment
while also considering the terrain information [47].

From an a priori optimal path, the optimal tracking and switching time from reversing
to forward was examined [48]. The wheel loader was modeled using three modes: reversing,
forward, and stopping. Adaptive dynamic programming was used to solve the optimal
control problem where a neural network was trained to approximate the optimal cost.

A driver-in-the-loop model was proposed to examine trajectory traversal optimization
in terms of energy flow and energy loss during the short-loading cycle [49]. The analyzed
human behavior was embedded into the driving model using a linear quadratic regulator
and model predictive control. By applying the driving model to three predefined paths,
the authors examined where losses and gains could be found. For example, a longer path
increased the travelled length but decreased the steering actuation amount.

Therefore, it seems that very few of the mentioned solutions considered the lifting speed
of the boom, which is an important variable due to the coupled nature of the wheel loaders.
The boom speed dictates the absolute minimum time the navigation can take as the boom has
to be raised high enough to make sure the bucket clears the rim of the tipping body before
dumping. When examining energy optimization for navigation during the short-loading
cycle, boom speed and correct steering movements were found to be essential [50].
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Reinforcement learning has been applied to the problem of navigation [51]. The
authors used two agents: one that performed the reversal and another that performed the
approach towards the dump truck. The agents controlled the vehicle through lift, velocity,
and steering. The task was possible for two agents to learn, whereas a single agent trained
on the same reward functions failed to learn. The results indicate that task decomposition
can facilitate the automation of the short-loading cycle, especially when attempting to
leverage deep learning techniques.

It is not yet clear what approach is superior due to a small amount of research using
data-driven approaches and the lack of validation on real vehicles. However, what is
clear is that validating on either miniature or real wheel loaders appears to accelerate the
development and is something that should be leveraged for the development of an MVP.

3.2.3. The Full Cycle

In terms of the attempts to automate the full short-loading cycle, only a handful of
solutions have been proposed. Furthermore, only a single solution demonstrated the full
cycle on a real machine, whereas the majority of works only examined the theoretical
benefits of this type of automation.

The demonstrated solution was based on three different subsystems: measuring and
modeling the environment, task planning, and motion control [6]. This solution was
capable of detecting the pile, navigating towards the pile, scooping, navigating to the
tipping body, and dumping material in the tipping body. This was performed in a semi-
realistic environment; however, it was at low productivity, probably due to safety concerns
of controlling such a large vehicle autonomously and not pushing the limits of the solution.
All of the subsystems were first tested on miniature wheel loaders, further showing that
the development pipeline of transferring the solution from miniature wheel loaders to real
wheel loaders can be successful.

In terms of data-driven approaches, long-short-term memory (LSTM) has been used
to predict the brake pedal aperture [52]. The model was trained on real data from an expert
operator and the model could successfully predict the brake pedal aperture. Furthermore,
a set of sequential LSTMs has been used to predict the throttle and state variables of
the wheel loader throughout the short-loading cycle [53]. The state variable includes tilt
pressure, lift pressure, engine speed, and velocity of the wheel loader.

The theoretical benefits of automation of the short-loading cycle are, however, sub-
stantial, such as a 14% increased fuel efficiency compared to real operators [54]. This makes
the pursuit of an autonomous solution worthwhile. Some of the behaviors required for op-
timality can be difficult for human operators to maintain during long periods. For example,
one optimal control formulation showed that it is optimal to perform very fast steering
changes throughout the short-loading cycle [55], something that is difficult to maintain over
a long time. Furthermore, a multistage optimization problem has been defined where both
the transport and the bucket-loading operation were included [56]. The control solution
showed a fuel usage decrease of 42.1% over human operators.

The theoretical benefits of automation depend not only on the operator choices but also
on external variables. This includes the positioning of the dump truck, where a 20-degree
change in the orientation of the dump truck increases the fuel consumption during the
short-loading cycle by 18% [57]. In addition, if the dump truck is positioned optimally,
the trajectory for both time and fuel efficiency is identical.

From these attempts at automation of different parts of the short-loading cycle, it is
unclear which is the best approach; however, it is clear that there is a requirement of some
type of structured pipeline for development. This includes either decomposing the problem
into smaller parts having different systems be in charge of different functionality or having
some platform that allows for fast testing. This includes having, for example, an LSTM
be responsible for the braking aperture while other systems are responsible for the other
actions, or creating a development platform such as a miniature wheel loader.
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Table 2. Summary, advantages, and disadvantages of the surveyed articles. Each article is categorized
based on the steps of the short-loading cycle. The steps are the following: (1) Approach the pile,
(2) Loading, (3) Retract from the pile, (4) Approach the dumper, (5) Dumping, (6) Retract from
the dumper [4].

Publ. Steps Summary Advantages Disadvatanges

[24] 1
Path generation towards scooping

point. Clothoid-based. Determining
the scooping direction.

High explainability due to being a
rule-based solution. The solution is

evaluated on a real miniature
wheel loader.

The solution makes a set of
assumptions for the generated path
that might not hold in all situations.

Does not discuss the fill factor or
similar metrics.

[27] 1

Selecting attack point. Achieved by
estimating convexity and sideload

of the pile. Point cloud data.
Outperforms the previously

published techniques.

Identifies good attack poses from
both simulated and real data. The
proposed method does not require
creating an elevation map, leading

to good time complexity.

Difficulties in finding the ground
truth for the optimal attack pose
due to the complexity of the task.
The solution is only tested on a

single gravel pile.

[31] 1, 2

Deep deterministic policy
gradient [32]. Approach and scooping.
Simulation-to-scale-model transfer.

65% fill factor.

Simulation-to-reality transfer with
comparable performance shows that

this type of pipeline has potential.
The average cycle time is quite low.

Low fill factor compared to the
usually desired fill factor

(100–110% depending on material).

[33] 1, 2

Soft Actor–Critic [58]. Teaching one
agent to find the scooping point.

The second agent performs
approach and scooping. Trained in

a high-fidelity simulation.

Shows the potential of a purely
data-driven solution in this use

case. Embedded energy usage in
the reward function.

No validation towards real data or
real vehicles. Low fill factor

compared to the desired fill factor
during operation.

[22] 2

Automated digging. Fuzzy logic for
behavior formulation. Finite-state

machine to create the
formulated behavior.

The solution uses only production
sensors. Tested on multiple

different pile materials. Good
performance compared to expert

operators in terms of
energy/payload.

Worse performance than operators
in terms of the most important
metric—productivity. A faster

pulling rate might have allowed for
even closer performance compared

to operators.

[23] 2

Automated digging. Based on
acting bucket forces. A three-step

algorithm. Stereo vision for
scooped volume estimation.

Tested on a different set of pile
slopes. Validated on a scale model.

High explainability due to the
white-box nature of the

proposed solution.

Fill factor or similar performance
not reported. Pile modeling is

difficult due to the intra-pile forces.
Only tested on a single material.

[19] 2

Examined different bucket-filling
strategies using DEM simulation. A
wide set of different trajectory types
is examined. Qualitatively “slicing

cheese” is the top-performing
strategy in both simulation and

real-world applications.

The optimal control is compared to
real-world expert operators for

validation. Provides insight into the
specifics of how operators

perform bucket-filling.

Issues in measuring setup make it
difficult to conclude the best

bucket-filling strategy. Not all
type-E trajectories can be tested due

to computing limitations. Only
gravel was considered as

the material.

[7] 2

Autonomous scooping. Uses a
time-delayed neural network.

Trained using imitation learning on
96 examples. Scooped from a pile
containing medium coarse gravel.

Matches human performance.

Matches performance in terms of
weight in the bucket while only

having a 26% longer fill time
compared to teleoperated. Trained
offline and tested on real machines.

Only trained on a single type of
material. The throttle is to a
constant value, meaning the

network cannot optimize
this variable.

[28] 2

Adapts a previous
machine-learning model [7]. From

medium coarse gravel to cobble
gravel. Deterministic actor–critic
reinforcement learning algorithm.

Tested on a real wheel loader.

The proposed solution is tested on a
real vehicle. Requires a low amount

of trials to adapt the solution to
new material. Not learning from
human operators allows for the

model to learn tasks where human
data might not be available.

No test of whether the model
retains the knowledge of shovelling

medium coarse gravel after
adaptation. Trained online, leading
to high safety risk as training of an
RL model requires exploration. The
productivity-based reward function

fails to improve productivity.
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Table 2. Cont.

Publ. Steps Summary Advantages Disadvatanges

[29] 2

Compares a neural network and
random forest for autonomous
scooping. Trained using human

demonstrations. Data was collected
during the summer months.

Random forest using low-level
signals and vision performs the best.

A simple RF controller successfully
learns and performs scooping from
a pile. Tested over multiple weather
conditions, daytime, and two types

of pile material.

Uncertainty of the skill of the
operator whose demonstrations are
used. The performance is reported
in terms of success classes rather

than the fill factor.

[30] 2

Based on previous work [29].
Examines how the control would

perform during winter months. The
simple RF controller that functions

during the summer months
struggles during the winter months.

Shows that the difficulty differences
due to seasons can impact what

type of controller performs the best.
The new proposed controller has

higher robustness to changing
conditions and a superior success

rate compared to the author’s
previous work.

Same as above.

[34] 2

Q-learning to perform
bucket-filling. The model also
covers the working state of the

wheel loader. Outperforms human
operators in terms of fuel

consumption. The trained model
can be transferred to

other materials.

Due to being based on a predictive
model, there is no need for direct

interaction with the real
environment during training.
Improves the fuel efficiency

compared to the operator data.

Not tested on an actual vehicle;
however, it is based on real data.

Because it is not being tested on an
actual vehicle, it is difficult to say

how well the predictive model
performs compared to a dynamical

model or online training.

[36] 2

Develops a test platform to test the
operational performance of wheel

loaders. Tests and analyzes 9
different bucket trajectories during
bucket-filling. The optimal shovel

depth is found to be 400 mm.

Data and model based on a real
wheel loader. The model shows

that the optimal scooping depth is
400 mm, outperforming human

operators in terms of fuel usage and
operational time.

Total energy consumption is higher
for the given solution compared to

the human operator. Unclear
whether an autonomous solution
can have mm preciseness when

scooping in a real situation.

[35] 2

Formulates the bucket filling as a
control problem. Proposes a
bucket-filling strategy using

optimal control in simulation.

The proposed method reduces fuel
consumption by around 30%. The

model is validated using a real
wheel loader. The proposed

algorithm is compared to real
drivers. The proposed algorithm

can be used online.

The skill level of the human drivers
is unclear. Unclear whether the
proposed algorithm is tested on

multiple different types of material.

[50] 3

Examines the path planning from
the scooping point to the reversal

point. Formulates the problem as a
control of a switching system at
some time. Uses approximate

dynamic programming to solve this
formulation. Finds a

near-optimal solution.

Compared to other work,
the authors consider the lifting

action as it is vital for the efficiency
of the cycle. The proposed

closed-loop solution is insensitive
to different initial conditions.

The solution is not tested on a real
wheel loader or compared to real

operator data. The model does not
seem to be validated towards a real

wheel loader, making the results
very dependent on the model used.

[37] 3, 4

Clothoid-based path generation
and path tracking. Tested on a
miniature wheel loader. The

tracking point is changed during
navigation, the rear axle during

reversing, and the front axle during
forward motion.

Highly explainable due to the low
randomness in the solution. The

solution is validated on a miniature
wheel loader.

Because it is a clothoid-based
solution, assumptions might not
hold in every situation. The lift is

not considered in this work, where
the lift speed is one of the important

factors determining the path.
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Table 2. Cont.

Publ. Steps Summary Advantages Disadvatanges

[38] 3, 4

Presents a semi-optimal path
generation scheme. Clothoid-based
solution. Optimizes a path skeleton

using genetic optimization and
quadratic programming

optimization. Optimality is defined
as the wheel loader’s

moving distance.

Still a clothoid-based solution;
however, there is some type of

optimization from the generated
skeleton path. Tests a wide set of
different setups, not only paths
during the short-loading cycle.

No real-world tests. Optimality for
the optimization is defined as the
total moving distance rather than
productivity or energy efficiency.
The lift is not considered in this

work, where the lift speed is one of
the important factors determining

the path.

[26] 3, 4

Models the pile as a set of columns.
Approximates all the forces that

would act on the bucket and uses
that approximation to decide the

scooping direction. Plans a
V-shaped trajectory consisting of

two symmetrical clothoid and three
line segments. Minimizes the

V-shaped trajectory in terms of
length. Tested on a miniature

wheel loader.

Considers path generation together
with a scooping point detection

procedure. The solution is tested on
a miniature wheel loader.

Modeling the pile is difficult
because of the intra-pile forces,

meaning that the column model
might not result in the optimal
scooping point. Clothoid-based

solution without any type of
optimization. The lift is not

considered in this work, where the
lift speed is one of the important

factors determining the path.

[39] 3, 4

Performed path planning between
the scooping point and the

unloading point. Uses GA to
optimize the path by having each
chromosome include the wheel

loader’s motion in one term.
Optimizes the formulation over
1000 generations. Tested on a

miniature wheel loader.

Optimizes the path using GA
resulting in a shorter path

compared to the typical path
generation strategies.

Quasi-optimization as finding the
true optimum is too

time-consuming, leading to a
reasonable execution time. The
solution is tested on a miniature

wheel loader.

Distance optimization might not
offer the best result in terms of

important metrics such as
productivity and energy efficiency.

The lift is not considered in this
work, where the lift speed is one of
the important factors determining

the path.

[41] 3, 4

Extended Redd and Shepps
algorithm [40] to perform path

planning during the short-loading
cycle. Uses a PID to follow the

generated path, while the vehicle
velocity is constant. The algorithm

finishes when the minimum
path is found.

The given solution does not require
the path to be symmetrical as that
assumption does not always hold
depending on the scooping and
unloading points. Optimizes the

path in terms of distance while still
validating all the constraints.

The lift is not considered in this
work, where the lift speed is one of
the important factors determining

the path. Optimizing distance
might not lead to the most efficient

path in terms of productivity or
energy efficiency. The solution is

only tested in simulation.

[55] 3, 4

Compares data from different
skilled operators with an improved

optimal control formulation.
Examines the effect different

variables have on total productivity.
The optimal control solution shows
very fast steering inputs, difficult

for humans to perform for
long periods.

The wheel loader model is
validated against real-world data,

showing that the model could
estimate fuel consumption closely.
Functionality regarding the lifting
operation is included in the model.
The results show the potential of

autonomous solutions.

No attempt to test the proposed
optimal control on a real vehicle

using some set of controllers.

[46] 3, 4

Examines the optimal path during
the short-loading cycle. Models the

wheel loader. Two-dimensional
space discretization. Dynamic

programming to find the optimal
path through search. Optimally is
defined in terms of fuel efficiency

and environmental impact.

Optimality is defined as fuel
efficiency and environmental

impact which are very relevant
metrics. The model includes the
lifting operation. The model is

validated against a real
wheel loader.

No attempt is made to validate the
suggested optimal control by

implementing it on a real vehicle.
As the author states, it is unclear

how discretization influences
the control.
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Table 2. Cont.

Publ. Steps Summary Advantages Disadvatanges

[47] 3, 4

Extension of previous work [46].
Path optimization based on

topological information from the
construction site. Compares three

lift strategies. To solve the
optimization problem, a grid-based

dynamic programming search
is used.

The given solution takes the terrain
of the construction site into account,
which is an important factor during
operation. Solutions are analyzed
in terms of important metrics such

as production rate and
fuel consumption.

No attempt to test the proposed
optimal control on a real vehicle

using some set of controllers. The
lift functionality is only considered
using 3 strategies, none of which

seem similar to what
operators offer.

[48] 3, 4

Examines the optimal switching
time instant between backwards,

stopping, and forward while
tracking an a priori path.
Approximate dynamic

programming is used together with
a neural network. The optimal
switching time is found to be

after 2.86 s.

The model is validated on data
from a real wheel loader. Lift

included in the model.

The optimal path is an a priori and
it is unknown in what sense this

path is optimal. The given solution
is optimal in terms of switching

times; however, it is unclear how
this relates to metrics such as

productivity and energy efficiency.

[42] 3, 4

An algorithm is proposed based on
RRT* and CC steer to plan the

trajectory between the scooping
and the unloading point. Uses

adaptive model predictive control.
Does not control the lift or tilt.

Performs both path planning and
path following. Considers the

changes in the path depending on
the velocity of the vehicle.

The solution does not seem to take
productivity or energy efficiency

into account during path planning.
Uncertain whether the model has
been validated using data from a
real wheel loader. Lift action is

not considered.

[45] 3, 4

Proposes a two-step algorithm for
trajectory planning and trajectory

tracking. Offline trajectory
planning is performed using MPC
due to computational requirements.

Linear parameter varying model
predictive control is used to follow

the planned path. The solution
does not consider tilt or lift.

The tracking algorithm tracks the
generated path with a low error

and fast online computation time.
The solution is tested in a

high-fidelity simulator, verifying
the model. High explainability due

to low reliance on randomness.

The solution does not consider the
lift action which is important for an
efficient cycle. Uncertainty of how
realistic it is to perform the path

generation offline in terms of
adoption in real operators.

[51] 3, 4

Trains reinforcement learning
agents to perform the navigation

between the scooping point and the
dumping point. This is achieved by

having one agent perform the
reversal and another agent

performs the approach to the
dumping point. This is carried out

in a low-fidelity simulation.

Results indicate that task
decomposition can aid in the

automation of the short-loading
cycle, especially when attempting

to automate it using deep
learning techniques.

Very low fidelity simulation where
the agent can actuate the vehicle

much faster than possible in reality.
Does not consider productivity or

energy efficiency in the reward
function. No tests on real machines.

[43] 1, 3, 4

Generates paths between multiple
arbitrary loading points and a

single unloading point. An
algorithm based on CC paths to

generate a set of paths. The set of
paths is scored using a novel

scoring system to find the optimal
path. Does not consider lift or tilt.

Considers multiple scooping points
with a single unloading point and
considers the multiple rounds an

operator has to perform throughout
the full short-loading cycle. The
effectiveness of the solution is

validated on a miniature
wheel loader.

The solution does not consider the
lift action which is important for an
efficient cycle. The solution is based
on minimizing the distance of the
paths which, as mentioned earlier,

is not a good metric in terms of
productivity and/or

energy efficiency.
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Table 2. Cont.

Publ. Steps Summary Advantages Disadvatanges

[44] 1, 3, 4

Novel solution of finding multiple
scooping points with a single
unloading and reversal point.

Achieved by decomposing the task
into 3 different tasks, where a cost
map is used to find the scooping
points, RL is used to rank said

points, and CC paths are used to
find the path.

Minimizes mileage of the vehicle
rather than travelled distance

where mileage is believed to be
closely tied to fuel consumption.
Considers the multiple scooping
points for the entire task of the

short-loading cycle. The solution
ranks all possible scooping points

and is capable of doing so until the
entire pile is expedited.

The solution does not appear to
consider the lift during path

generation. The solution is built
using a column model for the pile,
where it is unclear whether it is a
good enough approximation. The
solution is not tested on some type

of real vehicle or real data.

[56] 2, 3, 4

Examines optimal fuel usage and
productivity during the

short-loading cycle. Formulates a
multistage optimization problem to

capture multiple steps of the
short-loading cycle.

Unifies the scooping and transport
phase for optimization. Shows a
fuel consumption reduction of

42.1% compared to real operators.
Includes automatic gear shifting.

Solution not used to control a real
vehicle. Appears to assume a

singular dumping and loading
position. Cycle time is used as a

substitute for productivity.

[49] 3, 4, 6

Implements a driver-in-the-loop
model. Analyzes actual driver data

from the V-pattern work cycle.
From this, MPC and LQR are used

to determine the throttle, brake,
and steering inputs. The trajectory

is predicted and analyzed
regarding the optimal path, energy

flow, and loss.

Analyzes real operator data to
create the driver model. The given

regulators correctly track the
trajectory by controlling the

steering, throttle, and brake. The
energy flow identifies acceleration
as a large contributor to fuel usage.

Only compares the model with real
data and does not test the control

setup on an actual system. Lift and
tilt are considered during modeling,

but they seem to not have been
considered during control.

[6] Full

Demonstrates the full short-loading
cycle autonomously on a real

vehicle. The solution consists of
three subsystems: measuring and
modeling the environment, task
planning, and motion control.

Demonstrates the full short-loading
cycle on a real vehicle under
specific circumstances. Fully

explainable solution.

Low productivity and efficiency as
the solution takes around 60 s to

perform a single cycle.

[57] Full

Examines the fuel efficiency and
cycle time for the short-loading

cycle. Formulates the short-loading
cycle as an optimal control problem.

Shows that the optimal path is
unique and identical for the

minimum fuel usage and minimum
cycle time. Small perturbations to
the boundary conditions, such as

load receiver orientation angle, can
remove this uniqueness.

Gives good insight into the impact
of changes in the setup for the

short-loading cycle and its effect on
fuel efficiency. Furthermore,

the work sets a good baseline of a
cycle time of 25 s for any

autonomous system.

It is unclear how close the model
used is to a real vehicle as the

solution has not been tested on a
real machine.

[54] Full

Formulates gravel scooping during
the short loading cycle as an

optimal control problem. Simulates
the gravel pile using a discrete

element simulation. The optimal
path is assumed to be known.

Dynamic programming is used to
find the optimum concerning

fuel efficiency.

Compares the proposed optimal
control to real operators, showing
the optimal control to have 15%

higher fuel efficiency. Considers all
the main actuators throughout the

entire cycle.

As the author states, further
validation is needed for the

proposed control, as the result
might change due to the machine

and environment modeling.
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Table 2. Cont.

Publ. Steps Summary Advantages Disadvatanges

[52] Full

Proposes a deep LSTM network for
brake aperture during the

short-loading cycle. The network is
trained on time-series data from
different operators in different
environments. The proposed

network can correctly predict the
braking aperture throughout

the cycle.

Solution based on data from
multiple expert operators in

different types of environments.
The solution shows that an

LSTM-based solution can handle
long-term dependencies, which are
important during the short-loading
cycle. Performance of the solution

compared to real data.

It is unclear how this type of
single-action system can work

together with a set of other systems
for automation. The amount of

braking differs depending on skill
level, where the absolute highest
skilled operators rarely use the
break, as the necessity to break
signifies excessive acceleration,

wasting fuel.

[53] Full

Trains an LSTM and neural
network on real operator data for
the short-loading cycle to predict
the throttle and state values of the
wheel loader. The state consists of
tilt pressure, lift pressure, engine
speed, and velocity. Qualitatively,
the network can correctly predict
both the state and throttle value.

Data are collected from skilled
drivers performing the

short-loading cycle on a real vehicle
scooping either small or large

gravel. The results indicate that an
LSTM can correctly predict the next

state. This can be very helpful if
correctly modeling parts of the
wheel loader interaction with

the pile.

Due to the black-box nature of deep
learning methods, this type of

solution has low explainability and
there might be edge cases that lead

to unexpected behavior. If some
autonomous solution relies on this
type of state prediction, the long tail
of prediction (the last 1% accuracy
is very difficult to reach), but it is

very important for state prediction.

3.3. Qualitative Analysis

From the results of the survey, it is clear that there have been attempts to automate
different parts of the short-loading cycle using a wide range of techniques. None of these
solutions have resulted in a generally applicable solution capable of performing the short-
loading cycle in any environment. However, the solutions presented above have different
levels of maturity, where some are more ready than others.

Technology readiness level (TRL) [59] is a systematic measurement that assesses the
maturity of a given technology. To assess maturity, TRL consists of nine levels, where a
higher level corresponds to a higher maturity of the technology. It is important to note that
TRL begins with applied research, hence one could consider there existing an additional
level of zero that encompasses fundamental research.

The nine levels are defined as follows: (Level 1) Basic principles are observed, where
scientific research is conducted and begins to be translated into applied research but with
no experimental proof of concept. None of the surveyed articles fall under this category
as most works include types of practical applications. (Level 2) The technology concept
is formulated, where basic principles and concepts are established with some feasibility
assessment such as initial experiments. For example, simulations examining path gen-
eration without testing on miniature vehicles or high-fidelity simulations [38]. (Level 3)
Experimental proof of concept is introduced, where separate elements of the system are
validated within a lab, for example, performing Steps 1 and 2 in a high-fidelity simulation
using reinforcement learning [33]. (Level 4) Technology is validated in the lab, where the
basic technology is validated in a relatively low-fidelity environment to verify different
components working together, for example, when training in a simulation and then per-
forming scooping on a miniature wheel loader with no additional training [31]. (Level 5)
Technology is validated in a relevant setting, where the basic technology is validated in a
high-fidelity environment to confirm the integration of components. (Level 6) Technology
is demonstrated in a relevant setting, where a prototype is showcased in an environment
that surpasses TRL 5, for example, when training an agent through imitation learning
to scoop material with a real vehicle or performing the full cycle on a real vehicle us-
ing rule-based systems. (Level 7) System prototype demonstration is carried out in the
operational environment, where the prototype is demonstrated in an actual operational
environment. (Level 8) The system is complete and qualified, where the system is proven
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to work under specific conditions and is in some way certified by regulators to be deployed
in said environment. (Level 9) The actual system is proven in an operational environment,
where the system is proven correct through tests and evaluations. The system at this point
can potentially keep improving throughout the years. None of the surveyed articles reach
Levels 7–9; thus, all articles are contained within Levels 2–6. The qualitative TRL for each
work is summarized in Table 3.

From Table 3, we can see that the two data-driven approaches have a TRL of six,
where both of these works study the bucket-filling phase matching operator performance.
Two rule-based solutions have a TRL of six; however, both were only tested in a single
environment and only the scooping work was capable of good performance. This means
that it is unclear whether or not they can match the reported performance when some
variables change. It is clear to us that any future MVP should be capable of scooping
material from a pile of small to medium-sized material at a very similar level to an expert
operator in terms of fill factor.

When it comes to locating and navigating to the scooping point, some work has shown
potential in simulation but it is currently unclear what the best approach is. This also
holds for the navigation towards the dump truck. However, there is a requirement for
some type of system that allows the system to perceive the world to locate these positions.
Furthermore, there might be a need for the system to translate the position in, for example,
a camera feed to some other position, such as GPS, to facilitate navigation. Here, more
research is needed, both in terms of rule-based and data-driven approaches to reach the
required level for an MVP.

Table 3. The technology readiness of each surveyed work. The individual numbers coincide with a
single citation. The blue-marked citations are rule-based, the red citations are data-driven, and the
green citations use a mix of both.

Technology Readiness Level

1 2 3 4 5 6 7 8 9

Pu
bl

ic
at

io
n

ye
ar

2001 37 22

2004 23

2005 24

2006 38 26

2008 6

2011 27

2013 41 39

2014 57

2015 49 43

2016 55

2017 46 19

2018 47 54

2019 48 7

2020 42 52 29 28

2021 33, 34, 53, 44 31, 30

2022 45, 36

2023 35 50, 51 56

From Figure 3, only a single data-driven approach [51] has been applied to the naviga-
tion problem; hence, further exploration of such solutions for navigation and observing
their performance compared to rule-based systems could be interesting. This also includes
Step 6, since in order to fill a tipping body of a dump truck, the cycle has to be performed
3–4 times; therefore, the system needs to navigate to the start position after finishing dump-
ing material. There should be inspiration that can be taken from similar domains due to
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the nature of the navigation task. However, it is important to note the actuated nature of
the wheel loader together with the wheel loader mechanics.

From our survey, no identified work has examined Step 5, dumping, which is not
surprising when only considering an empty tipping body. However, when the tipping
body has had at least one bucket of material dumped into it, there is a need for long-term
memory as the system should not dump material in the same spot. Furthermore, when
dumping material in the tipping body, the material needs to be spread both horizontally
and vertically, making the process potentially complex. This means that when examining
multiple rounds, which is a requirement for an MVP for the automation of the short-loading
cycle, this seems to be non-trivial. Hence, this is an area where more research is needed.

Figure 3 shows what steps of the short-loading cycle have been examined throughout
the years, together with the type of technology used. The vast majority of the work has
been rule-based, especially for Steps 3 and 4. Steps 3 and 4 seem to mostly be examined
together, which is probably a result of the highly coupled nature of these steps. This is due
to many of the variables such as the reversal point, orientation towards, and ending point
being important for both steps, making them difficult to optimize separately. Furthermore,
very little amount of work has used data-driven solutions to examine these steps.

Data-driven solutions have almost exclusively examined scooping or scooping to-
gether with the approach towards the pile while showing good results. Pile data are often
difficult to model and the material can often act in a stochastic way, adding to the difficulty
of writing a rule-based system which can maintain high productivity.

Only a single rule-based work has demonstrated the full short-loading cycle in a
relevant environment. Rather than demonstrating the full cycle, the rest of the rule-based
systems examine the optimal control from some modeling. The data-driven solutions
attempted to predict a single or a few actions from real data such as brake aptitude.

4. Plausible MVP

From the discussion above, it is clear that there is still a large set of challenges that need
to be overcome to realize a fully autonomous solution which is ready for deployment. How-
ever, the continuation of the presented approaches is furthering the domain progressively.
To continue this positive trend, we attempt to present a reasonable MVP that manages to
capture the most important metrics, which are productivity and energy efficiency, while
also showing consideration for the challenges outlined in Section 2. Furthermore, this MVP
attempts to capture what is required to see some adoption in the industry while considering
the current status of the domain together with what appears to be possible to achieve in a
shorter time horizon.

Prescooping: Prescooping entails both the task of identifying the scooping position
and navigating towards it while positioning the wheel loader and bucket in the correct
scooping position. From previously presented work, it can be difficult to obtain the ground
truth for the optimal scooping point, as different expert operators choose different scooping
points on the same pile structure. However, it is clear that operators choose the scooping
point at a convex point of the pile to simplify the correct loading of the bucket.

The MVP should thus be capable of determining a good scooping point through some
vision system, such as LIDAR or cameras, based on where the pile is convex. Furthermore,
the MVP should be able to navigate towards the identified scooping point while positioning
the bucket and making the rest of the vehicle ready for scooping under some assumptions.

Scooping: As previously mentioned, the step that has been given the most amount of
attention is the scooping step, where multiple different approaches have been able to match
expert operator performance of small and medium grain-sized materials. The majority of
these high-performing solutions leveraged deep learning-based solutions to deal with the
difficulties of modeling the pile–bucket interactions during scooping.

Due to this, we consider that a scooping system for the MVP is capable of matching expert
operators in terms of both fill factor and fill time on any small- and medium-sized material.
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Navigation under load: After the scooping step is completed, the operator reverses
from the pile while moving the bucket upwards until the bucket is sufficiently high, at
which point the operator changes direction to approach the tipping body of the dump truck.
During navigation, the operator has to understand how much steering actuation is proper
depending on the load in the bucket, ground material, and conditions. As discussed in
Section 2, these interactions can be difficult to model.

Many of the previously proposed solutions abstract away many of the difficult vari-
ables of the navigation steps, such as lift timing. However, understanding and dealing with
at least some of these variables is a requirement of any MVP to see adoption. Furthermore,
the MVP should be capable of autonomously deciding both the dumping and the reversal
point depending on the relevant variables. Once these points are established, the MVP has
to be capable of navigating between the identified points.

Dumping: While dumping, the operator spreads the scooped material in the tipping
body to balance the load for the operator of the dump truck. This is achieved by leveraging
forward and backward motion while emptying the bucket which allows better dispersion
of the material in the tipping body. Furthermore, the chosen dumping point depends on
where the operator dumped in the previous rounds of the cycle.

Very little work has been carried out in terms of optimizing the dumping phase,
especially over time. This step is important as a correctly loaded dump truck is able to
safely carry more material at a time. An important consequence of an underloaded dump
truck is that the overall efficiency of the entire process decreases considerably.

Because of the importance of this step, we consider that the MVP is required to be
capable of performing the dumping in an efficient way to be able to safely fit the same
amount of material in the tipping body as an expert operator. Furthermore, this solution
should focus on minimizing spillage rather than maximizing productivity or fuel efficiency
to reduce the amount of cleaning required between cycles.

Repeating: Lastly, the MVP needs to be capable of performing many rounds of the
cycle autonomously to completely fill the tipping body. This requires the solution to be
able to navigate back after dumping, determining multiple scooping points and multiple
dumping points. Furthermore, as mentioned, the dumping points depend on the previous
dumping points, meaning that the MVP is required to understand and deal with some
long-term dependencies.

Limitations: This MVP is not a generally applicable solution, meaning that there are a
set of limitations that have to be addressed after the initial feedback.

First, because of the safety concerns outlined in Section 2, this system is treated as
a conventional autonomous system where any safety concerns or uncertainties lead to
a complete halt of the system. This is to minimize the risk of damage to the vehicle,
infrastructure, and other agents.

Second, the MVPs only need to work with a set of different materials where larger
types of materials, such as boulders, are not considered. This is because scooping these
types of materials is more complex compared to smaller, more homogenous materials. In
addition, from this survey, no literature was identified which has examined this type of
scooping task.

Third, the MVP does not have to be capable of dealing with very loose ground while
navigating under load, as this introduces very complex navigation, especially under load.
Furthermore, because only hard ground is considered and the MVP should minimize
spillage, the MVP does not have to be capable of cleaning the work area between cycles.
This allows for us to make the assumption that the MVP only considers the current cycle
and does not have to change the behavior in order to maximize efficiency over a very long
time horizon.

Fourth, the MVPs only have to consider very high-level wear variables, such as wheel
spin, and not very small ones, such as internal wear variables. These include but are
not limited to brake wear due to hard braking habits, transmission wear due to shifting,
and bucket wear due to scooping habits.
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Lastly, the MVP does not perform the cycle with optimal productivity and fuel ef-
ficiency; however, the MVP should be capable of improving over time in terms of pro-
ductivity and fuel efficiency. Furthermore, when it comes to the steps where very good
performance is observed, such as scooping, the MVP should be able to match these systems.

The limitations outlined above are made to be able to obtain, as quickly as possible,
a reasonable solution in real environments to collect valuable feedback. However, all
these limitations have to be addressed at some point over time to realize a generally
applicable solution.

5. Framework for Automation
5.1. Background

As previously discussed, the short-loading cycle can be divided into a series of distinct
steps to perform in succession. Each of these steps need to have a set of different possible
solutions leveraging various technologies, where it is unclear which is the best-performing
one. One solution might be the best-performing solution for single-step validation; however,
it might not perform as well when combined with other solutions to carry out the full cycle.

The ability to test new novel solutions that only address one or a few steps of the
short-loading cycle in the context of the entire cycle is preferred as it allows quantification
of how well it performs in terms of full-cycle efficiency. For example, there might be
one solution that seems to perform the navigation between the pile and the tipping body
without any load in the bucket while performing poorly with load in the bucket.

Furthermore, productivity and energy efficiency are defined in terms of the amount of
either material moved or fuel used over a longer period, which requires either full cycle
experiments or assumptions concerning the other steps.

Some previous work has explicitly leveraged FSMs within their solution; alternatively,
the solution can be described as an FSM, for example, decomposing the scooping task into
fuzzy behaviors using finite-state machines [22], flow charts of modeling and action [34],
or step-based solution [6].

Thus, the features that we want the finished system to include are heavily associated to
easily changing and comparing different solutions for each substep, the ability to perform
such a comparison in terms of the full task, facilitation of describing the given task as a set
of an arbitrary number of complex finite state machines, and the possibility for each state
to be defined as any function.

Furthermore, the system should allow for any data to be accessible between states,
and each function should be able to read information from, for example, the sensors.

From this, we propose and present a proof-on-concept finite-state machine-based
(FSM) framework to aid in the research of automation of the short-loading cycle and,
in addition, to be a tool in the pursuit of an MVP.

5.2. Framework Design

The proposed framework (the implementation of the given framework can be found
at https://github.com/Felmrt-0/PyFSMwDB (accessed on 23 May 2024)) is an FSM-based
solution where each state in the FSM is defined as any arbitrary function or a nested FSM.
An arbitrary function is any function that can be described within the language. In the case
of automating the short loading cycle, this could, for example, be a neural network that
performs scooping, a rule-based system that identifies the reversal point, or an agent trained
through reinforcement learning that navigates towards the dump truck. Furthermore, if it
is instead easier to describe a sub-step as an FSM, it is possible to nest an FSM within a
state rather than having a function. The goal of this is the ability to define each sub-step
in terms of a single arbitrary function or as a nested FSM in case a sub-step needs to be
decomposed further.

To transition between states, conditions or a set of conditions are defined within the
arbitrary function that allows for transition from the current state to the corresponding
connecting states. This means that a single state can have multiple transitions, allowing for

https://github.com/Felmrt-0/PyFSMwDB
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some terminal state that, for example, can act as a “kill switch”, where, if something goes
wrong, the system is completely halted and the physical machine stops.

Sometimes it is needed to propagate collected information through the transitions or
unnesting as information collected in a previous step is needed in a later state, for example,
if in some state the scooping point is selected from a sensor, such as a camera, and then
this identified scooping point is propagated to the next state where the defined function
uses that to navigate towards the pile. Because of this, any amount of information can be
sent through the transitions if it is only required during runtime. The information that is
required to be propagated between states is provided by the sub-processes at termination
and received by the main process. It is then the main process’s responsibility to propagate
this to the next state and process. If the data needs to be stored persistently, such as new
training data, this is possible to achieve either through database integration or through just
persistent saving.

5.3. Example Use Case of the Automation Framework

To explain the idea of the automation framework further, Figure 4 shows a small
use case. In this use case, the task is to reverse from the pile after scooping material to
the reversal point and navigate to the dump truck, stopping before the material is to be
dumped into the tipping body. This means that when in the initial state, the vehicle has
just finished scooping, and the terminal state is when the loader is in a position ready to
dump material.

Figure 4. Example of the proposed framework. This example consists of two sequential agents
performing the navigation between the pile and dump truck (Steps 3 and 4). In this case, the nodes
are defined by two functions which are both given predefined data and sensor data used to complete
the navigation task.

As mentioned, each state within the FSM is defined by an arbitrary function that
executes until one of the swapping conditions is met. We assume that, for this use case,
the two arbitrary functions defining the two states (navigation) are two sequential rein-
forcement learning agents [51]. Furthermore, we also assume, for this example, that the
sequential agents function correctly in reality. Here, there is no requirement to send infor-
mation between the two states as they have been developed in isolation and the second state
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is not dependent on any of the information from the first. However, both require reading
from a set of different sensors to correctly perform the task, and a swapping condition
is required.

There exists a large amount of different possible swap conditions that could be used to
transition between states. One possible set of transitions is to leverage the vehicle’s vicinity
to the reversal point together with the vehicle’s current speed. Once the vehicle is close
enough to the reversal point with low speed, we consider the function in the first state to
be completed. To transition from navigation to the end state, one possible condition is to
use lift height together with the distance from the dump truck, as once the bucket is over
the tipping body, the material can be dumped into the dump truck.

For this example, the termination criterion is simply that the process contained within
the approach load receiver state terminates, and once it does, we assume that the full
process is finished. However, the same holds for the termination condition as for the swap
conditions, where any arbitrary function can be used to determine whether to terminate
or not.

6. Open Issues and Gaps

As the research area of automation of the short-loading cycle continues to evolve,
several challenges lie ahead to realize the MVP. These challenges include but are not limited
to abstraction level due to rule-based interfaces, delimitation of the solution to enforce
a set of behaviors, understanding the effect of different assumptions, and balancing of
rule-based and data-driven solutions. Overcoming these challenges is crucial for realizing
the full potential of automation of the short-loading cycle and facilitating the integration
into daily operations.

6.1. Abstraction Level Due to Rule-Based Interfaces

There exists a wide set of abstraction levels that can be enforced using rule-based
interfaces to limit the behavior of the solution. These abstraction levels can simplify the
learning of neural networks due to decreasing the relevant search space. However, these
types of abstractions can also interfere with the proximity with which the solution can
reach a global optimum.

Some possible abstraction levels include high-level commands, trajectory planning,
and environmental abstractions.

1. High-level commands allow for a rule-based system to provide high-level commands
such as “turn left” or “turn right” which can act as abstractions to guide the behavior
without explicitly defining low-level motor control.

2. Trajectory planning leverages some heuristics to generate abstract trajectories that the
network could follow. This allows for the network to focus on following the trajectory
rather than dealing with complexities such as reversal point identification or slip
angle minimization.

3. Environmental abstraction can provide a higher abstraction level for the network
when perceiving the environment. For example, rather than feeding raw sensor data
to the network, we could instead pre-process the data to extract objects and important
features. This would allow the network to not have to first learn low-level perception,
and the network could instead only focus on learning higher-level decision-making.

Providing this type of high-level directive can facilitate the learning possibility of a
learning agent; however, it comes with the trade-off of not being able to reach the theoretical
global optimum. Currently, it is unclear what abstraction level offers the best trade-off
in terms of learning and important properties. Is an abstraction hiding the lower-level
control signals the best approach, or could an end-to-end solution still be a superior
option? Could data-driven approaches be used for modeling the system when, for example,
trying to use a PID regulator, or could the PID be completely tuned using some type of
a data-driven approach?
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In addition, the ways in which feedback is collected and the assumptions are made can
play a big role especially when performing development by some proxy such as simulation
or miniature wheel loaders. Sensors are not perfect, leading to small differences in the
outputted values. The ways in which they are attached differ between machines, and the
way in which a machine ultimately works is unique from machine to machine. This is
important to consider when defining the abstraction level due to rule-based interfaces
together with well-known issues such as time delays, noise, and sensor failure.

6.2. Enforce Safe Behavior

It does not seem reasonable that we will see autonomous wheel loaders freely roam
around during day-to-day operations in the near future. Furthermore, even driver assis-
tance systems based fully on data-driven approaches seem quite far away. A significant
reason for this is that there is currently no possible way to ensure safe operations for the
human inside the machine, the humans around the machine, and machine-to-machine
safety. However, safety is relevant throughout the full-time axis of automation of the
short-loading cycle.

Due to data-driven approaches currently suffering from low explainability, we cur-
rently require some other system to enforce the safe behavior of the system. It is not enough
to attempt to embed safe behavior into the data as learning edge cases is difficult due to the
statistical nature of data-driven approaches.

Some options to enforce safe behavior are formal verification, which is highly complex
and time-consuming, and hard limits or prohibited actions, both of which might prevent
us from reaching the desired efficiency. However, currently, it is unclear how this should
be enforced and how that will affect the final efficiency of the solution.

6.3. Effect of Assumptions

When looking to create an autonomous system, it is important to understand the set
of assumptions that are made and the effect they will have on the system, especially when
these assumptions fail. Solutions often make assumptions about the possible sensor data
available and the accuracy of said sensor. For example, often, some type of positioning
sensors are used where the assumptions are that there is 100% availability and that the
value is very accurate. This does not always hold due to failure in the sensor system or
some type of drift in the measurement. Furthermore, it is not always possible to even use
global positioning; for example, in deep mines where the signal cannot pass through the
ground and/or walls.

It might be possible to use some other sensor to extract positioning, such as vision,
but that would lead to another set of assumptions to be considered.

These assumptions need to be evaluated and validated towards real-world operation
iteratively, making sure they align with the conditions and situations that the system will
encounter. Failing to do so might lead to a poor system, while correct assumptions can
refine the system, making it more robust and efficient.

6.4. Consideration Using Data-Driven Approaches Together with Classical Control Theory

When examining different types of solutions, it becomes clear that they all have
strengths and weaknesses which have to be considered. This holds when using data-
driven approaches together with classical control theory solutions. It seems improbable
to completely use deep learning methods to solve different control problems as there
are always trade-offs to consider. Furthermore, control theory methods have quite a few
properties that are preferred when automating this type of task.

These methods are particularly well-suited for tasks that are safety-critical, such as the
automation of the short-loading cycle, where system stability, explainability, robustness,
and analytical design are crucial. However, some challenges that exist for these types of
methods include modeling complexity, model error sensitivity, and design complexity
and tuning.
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This means that some type of cooperation between the two types of solutions is
probably preferable; however, it is currently unclear to what extent data-driven approaches
should be used in the domain of automation of the short-loading cycle.

7. Conclusions and Future Work

One common task in the construction industry is the short-loading cycle, which
involves using a wheel loader to move material from a pile to the tipping body of a nearby
dump truck. The short-loading cycle is a representative and repetitive task performed in
large volumes, making it a great candidate for automation.

In this paper, a survey and an analysis of the literature regarding the automation of
the short-loading cycle are presented. The examination delves into the challenges that
are making this type of automation difficult to realize. A comprehensive literature review
assesses the current state of short-loading cycle automation, providing an overview of
the advantages and disadvantages associated with each solution. From the survey and
subsequent analysis, the requirements for a minimal viable product capable of performing
the short-loading cycle autonomously are defined. An automation tool based on finite-state
machines is presented to facilitate the automation of the short-loading cycle and allow for
the validation of different solutions for each substep. Lastly, future challenges are identified
which relate to topics such as abstraction levels, enforcing safe behavior, the effect of
assumptions, and considerations using data-driven approaches together with classical
control theory.
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