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Abstract: In free-space optical communication, the transmission of signal light and beacon light
of differing wavelengths through the same atmospheric channel encounters variations in how the
atmospheric refractive index absorbs and scatters light. This leads to distinct degrees of wavefront
aberrations between the signal and beacon lights. In this study, we employed statistical optics to de-
rive wavefront phase structure functions for both signal and beacon lights under conditions of strong
turbulence. We explored how wavefront distortion varies among beams of different wavelengths after
propagation through such turbulent conditions. Our findings revealed that as the turbulence outer
scale escalates, the difference in wavefront distortion between signal and beacon lights stabilizes after
an initial increase, assuming constant wavelengths. Furthermore, we observed significant changes
in the relative wavefront aberrations when the inner scale of turbulence surpasses the separation
between two points on the receiving apertures. As the disparity in wavelength decreases, so does
the difference in wavefront aberrations. Finally, we propose a method for correcting wavefront
aberrations based on coefficients of Zernike polynomials corresponding to beams with different
wavelengths. This approach is validated through simulation and experimentation, demonstrating an
11% enhancement in the signal-to-optical Strehl ratio and a 0.072 increase in spot energy after the
addition of correction coefficients compared with before their inclusion. These results solidify the
efficacy of our method in improving adaptive optics correction accuracy.

Keywords: adaptive optics; strong turbulence; wavefront distortion; wavefront-free correction;
Zernike polynomials

1. Introduction

Atmospheric turbulence is typically classified by its intensity into strong turbulence,
weak turbulence, and moderate turbulence. Strong turbulence refers to turbulence with
high intensity accompanied by significant fluctuations. In regions of strong turbulence, a
beam experiences significant phase and logarithmic amplitude fluctuations induced by
atmospheric disturbances. The turbulent atmosphere fragments the beam’s wavefront into
numerous small speckles, creating a discontinuous phase surface marked by numerous
phase singularities. This phenomenon leads to pronounced fluctuations in light intensity,
causing flickering. During such conditions, the wavefront sensor struggles to accurately
measure the complete distribution of the wavefront phase, resulting in a notable reduction
in the efficacy of conjugate phase correction [1,2]. In contrast, wavefront sensor-less adap-
tive optics do not require a wavefront sensor to measure the distortion information of the
signal light. Instead, it utilizes the control signal as an optimization parameter. Furthermore,
parameters, such as imaging clarity, received optical energy, and other system performance
indicators, can directly serve as objective functions for optimization algorithms. Leveraging
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these algorithms can yield nearly optimal correction outcomes. Hence, this technology is
suitable for rectifying wavefront aberrations in free-space laser communication systems
operating amidst strong turbulence conditions [3,4]. In a free-space optical communication
system, when the selected signal wavelength has poor penetration or severe attenuation
in the atmospheric channel, the system employs beacon light with a wavelength differ-
ent from signal light, in conjunction with the Acquisition, Pointing, and Tracking (APT)
system, to achieve capture, aiming, and tracking, thereby establishing the communication
link [5,6]. However, because of the different wavelengths of signal light and beacon light,
atmospheric dispersion and beam diffraction effects may lead to differences in wavefront
phase aberrations after atmospheric turbulence transmission [7,8]. When the correction
system adjusts the signal light by measuring the beam quality of the beacon light emitted
from the same optical path as the signal light, such as the Strehl Ratio (SR), an optimization
parameter for wavefront correction algorithms, a divergence emerges between the beam
SR value captured by the CCD camera, which measures the beacon light, and the actual SR
value of the signal light. This discrepancy ultimately leads to a certain degree of residual
aberration within the transmission even after the correction system has been applied.

In recent years, numerous studies have delved into the disparities in wavefront aber-
rations between signaling light and beacon light within dual-wavelength free-space optical
communication systems. In 2007, Li discovered that the wavelength of a beam, alongside
atmospheric turbulence and receiving aperture characteristics, influences the performance
of adaptive optics systems [9]. Subsequently, in 2008, Nicholas identified variations in
wavefront aberrations among different wavelengths transmitted through atmospheric
turbulence, underscoring their significant impact on the correction of higher-order aber-
rations by adaptive optics systems [10]. In 2015, Gorelaya conducted an indoor space
laser communication experimental link featuring the co-optical transmission of signal and
beacon lights. Using a Shack–Hartmann wavefront sensor at the receiving end, Gorelaya
measured the wavefront phase aberrations of optical signals at wavelengths of 530 nm and
1060 nm [11]. Additionally, in 2020, Xu scrutinized the polarization chromatic aberration
between 1300 nm and 589 nm beams arising from the surface coating of the optical original
in the Cassegrain optical antenna. The findings revealed that this type of polarization
chromatic aberration encompasses out-of-focus aberration and a small amount of spher-
ical aberration, with the out-of-focus aberration potentially reaching up to 1.14 rad [12].
Further contributing to the understanding of wavefront variances, Ke derived a formula
for the overall undulation variance in the wavefront for beams of different wavelengths,
highlighting differences in wavefront variance under identical transmission conditions [13].
Finally, in 2023, Wu discussed the wavefront distortion differences among beams induced
by wavelength disparities in weak turbulence regions [14].

In general, wavefront aberration disparities in beams across weak turbulence, mod-
erate turbulence, and strong turbulence regions are well-documented, albeit with less
emphasis on the intricacies of the strong turbulence domain. Moreover, the challenge
of effectively addressing aberration differences among beams of varying wavelengths in
the strong turbulence region remains largely unresolved. In this article, we meticulously
analyze the variances in wavefront phase aberrations within the received cross-section sub-
sequent to the transmission of signal and beacon lights of disparate wavelengths through
the strong turbulence region. Additionally, we propose a corrective coefficient method
employing wavefront-free correction. This method relies on the relationships of Zernike
polynomial coefficients corresponding to beams of different wavelengths. Ultimately, the
efficacy of our proposed method is validated through simulation and experimentation.

2. Differential Analysis of Beam Wavefront Aberrations at Different Wavelengths in
Regions of Strong Turbulence

Signal light with wavelength and beacon light with wavelength are Gaussian beams,
which, after long-distance transmission through the atmospheric channel, arrive at the
surface of the receiving antenna. This process can be approximated as plane wave incidence.
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In the region of strong turbulence, the phase of the beam is torn into a discontinuous scatter-
ing distribution across the receiving cross-section. According to the Markov approximation,
the following holds [15].

〈n(R1)n(R2)〉 = Bn(R1 − R2) = δ(z)A(r1 − r2) (1)

where n(·) denotes the refractive index of the air at a point on the cross-section of the
transmission path, R1 and R2 represent any position vector on the transmission path cross-
section, respectively, and Bn denotes the correlation function between different points.
Furthermore, A(r1 − r2) denotes the proportionality coefficient, where r1 and r2 represent
the position vector on the receiving cross section, and its value in the strong turbulence
region is tentatively set to 1 to guarantee uniform homogeneity. δ(z) is the shock response
function that describes the response function to the effect of the turbulent phase, where
z represents the transmission distance along the propagation path. The wavefront phase
functions of the signal beam and the beacon beam at the receiving end can be approximated
as response functions with phases modulated by turbulence. These can be expressed as
follows [15]:

φλ1 = k1

∫ L

0
δn(
→
r , z)dz (2)

φλ2 = k2

∫ L

0
δn(
→
r , z)dz (3)

where φλ1 and φλ2 denoted the wavefront phase functions for wavelengths λ1 and λ2,
respectively. L denotes the length of the transmission link, and r denotes the position
vector in the receiver cross-section. Furthermore, δn(

→
r , z) denotes the shock response

function; k1 and k2 denote the wave numbers corresponding to wavelengths λ1 and λ2,
respectively. According to Equations (2) and (3), it is evident that the phase function
response to atmospheric turbulence at a certain point on the receiving cross-section is
related to the shock response function δn(

→
r , z) and the wave number k = 2π/λ. Therefore,

the wavefront phase aberration of beams with different wavelengths after turbulence will
differ. This dispersion non-equal halo error between the phases of beams of different
wavelengths is represented by ∆φ and can be expressed as:

∆φ
(→

r
)

= φλ1 − φλ2

= k1
∫ L

0 δn(
→
r , z)dz− k2

∫ L
0 δn(

→
r , z)dz

(4)

Based on Equation (4), it can be observed that ∆φ is affected by the wavelength
difference, transmission distance, distance between the two points in the received cross-
section, and atmospheric turbulence. In regions of strong turbulence, the wavefront phase
changes rapidly, which in turn leads to rapid and random changes in the aberration
difference between the two wavefronts. These changes do not satisfy the conditions
of a strictly smooth stochastic process [16]. The average value can only be maintained
constant over a fairly short period. To solve this problem, instead of studying the difference
value ∆φ

(→
r
)

directly, we examine the rate of change in the difference value, denoted as

∆φ
(→

r
)
− ∆φ

(→
r , ∆t

)
. We consider the relative rate of change to satisfy the conditions of

a smooth stochastic process, and the values that change slowly can be described by the
structure function D∆φ

(→
ρ
)

of the phase difference as follows:

D∆φ

(→
ρ
)
=

〈[
∆φ
(→

ρ +
→
r
)
− ∆φ

(→
r
)]2
〉

(5)

where
→
ρ denotes the position vector between two points on the receiving cross-section

and 〈·〉 represents ensemble average. From Equation (5), it can be observed that the total
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amount of the phase structure function is composed of a stabilizing quantity and small
portion that exhibits slight variations. The spatial distribution of these variations in the
receiving cross-section can be expressed as follows:

D∆φ

(→
ρ
)

=

〈[
∆φ
(→

ρ +
→
r
)
− ∆φ

(→
r
)]2
〉

= 2
[

Bn

(→
ρ
)
− Bn

(→
r
)] (6)

where Bn denotes the mutual coherence function. The phase response function is defined as
the response to a unit impulse that is uniformly distributed across the receiving surface. At
this point, the impact of atmospheric turbulence on the optical phase front can be described
by the distribution of refractive index variations, which establishes a relationship between
the structure function of phase difference and structure function for the random distribution
of refractive index. This relationship is denoted as follows:

D∆φ

(→
r
)

=

〈[(
k1
∫ L

0 δn

(→
r 1, z

)
dz
)
−
(

k2
∫ L

0 δn

(→
r 2, z

)
dz
)]2
〉

= (k1 − k2)
2
〈[(∫ L

0 δn

(→
r 1, z

)
dz
)
−
(∫ L

0 δn

(→
r 2, z

)
dz
)]2
〉

= (k1 − k2)
2Dn

(→
r
) (7)

where Dn

(→
r
)

denotes the phase structure function of atmospheric turbulence. Based on
the relationship between the turbulent power spectrum and phase structure function, the
following relationship for Dn

(→
r
)

can be obtained [17] as follows:

Dn

(→
ρ
)

= 2
[

Bn

(→
r +

→
ρ
)
− Bn

(→
r
)]

= 8π
∫ ∞

0 κ2Φ(κ)

[
1− sin(kρ)

kρ

]
dκ

(8)

where Bn

(→
r
)

represents the number of interrelationships between two points on the spot,
κ denotes the number of spatial waves, and Φ(κ) denotes the spatial power spectrum of
the turbulence. The modified von-Kármán power spectrum is used here, and it can be
expressed as:

Φ(κ) = 0.033C2
n

exp
(
−κ2/κ2

m
)(

κ2 + κ2
0
)11/6 , 0 ≤ κ < ∞ (9)

In the above equation, the relationship between the parameter κ2
0 and outer scale L0 of

turbulence can be expressed as κ0 = c0/L0, where c0 denotes a proportionality parameter.
Typically, its value is 8π in the region of strong turbulence. Furthermore, C2

n denotes
the atmospheric refractive index structure constant, which characterizes the strength of
the turbulence and is a constant in horizontal transport. When C2

n < 10−17 m−2/3, tur-
bulence intensity is weak; C2

n > 10−13 m−2/3 indicates strong turbulence intensity; and
10−17 m−2/3 < C2

n < 10−13 m−2/3 corresponds to moderate turbulence intensity [17]. κm
denotes a parameter that is related to l0 and can be expressed as κm = 5.92/l0, where l0
denotes the internal scale of turbulence. The expansion

[
1− sin(κρ)

κρ

]
in Equation (8) can be

expressed using the Maclaurin series as [17]:[
1− sin(κρ)

κρ

]
=

∞

∑
n=1

(−1)n−1

(2n + 1)!
(κρ)2n (10)
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By substituting Equations (9) and (10) into Equation (8) and integrating, Equation (8)
becomes [17]:

Dn

(→
ρ
)
= 1.685C2

nκ−2/3
m

[
1F1

(
− 1

3 ; 3
2 ;− κ2

mρ2

4

)
− 1
]

+1.050C2
nκ−2/3

0

[
1− 0F1

(
−; 2

3 ;− κ2
0ρ2

4

)]
, κ0 � κm

(11)

By substituting Equation (11) into Equation (7) and transforming, Equation (7) can be
expressed as:

D∆φ

(→
r
)
= 1.685C2

n(k1 − k2)
2κ−2/3

m

[
1F1

(
− 1

3 ; 3
2 ;− κ2

mρ2

4

)
− 1
]

+1.050C2
n(k1 − k2)

2κ−2/3
0

[
1− 1F1

(
1; 2

3 ; κ2
0ρ2

4

)]
, κ0 � κm

(12)

where function 1F1(a; c; x) is a type of confluent hypergeometric function. It can serve as
an approximation for large parameters when the distance ρ between two points on the
receiver’s cross-section satisfies the condition l0 � ρ� L0. This approximation for large
parameters is provided in [17]:

1F1(a; c;−x) ∼ Γ(c)
Γ(c− a)

x−a (13)

where Γ(·) denotes the gamma function.
When distance ρ between two points on the receiving cross-section satisfies the condi-

tion of ρ� l0. The following small parameter approximation can be used [17]

1F1(a; c;−x) ∼ 1− a
c

x (14)

When the above-mentioned equation is combined with Equation (12), it can be ob-
served that the beam wavefront aberration difference is not only related to the beam
wavelength but also closely related to the inner and outer turbulence scales.

The wavefront sensor fails to capture the continuous phase distribution within the
strong turbulence region, rendering the phase relationship unusable for correcting wave-
front aberrations. Additionally, conventional geometric optics analysis proves insufficient
for analyzing wavefront phase across different wavelengths. Consequently, we opted
for the statistical optics method, also termed as the phase structure function method. In
statistical optics, the coefficient average, also referred to as the ensemble average, can be
considered equal to the time average of a single stochastic process under the preconditions
of a generalized stochastic smooth process. Leveraging the definitions of the coefficient
average and root mean square (RMS), we derive the RMS of the error between beams of
varying wavelengths by squaring the mean square value of Equation (12), which can be
expressed as:

RMS =

√
D∆φ

(→
r
)

(15)

It is assumed that the values of the outer scale of turbulence L0 correspond to 20 m,
30 m, 50 m, 60 m, or 80 m, the turbulence inner scale parameter l0 is 0.1 m, and the atmo-
spheric refractive index structural parameter value is C2

n = 1× 10−12 m−2/3. When signal
light with a wavelength of 1550 nm and beacon light with a wavelength of 632.8 nm are
transmitted in the atmospheric channel in a co-optical path with L = 10 km, the variation
curves of the difference RMS in the wavefront phase aberration between different points
on the received cross-section are shown in Figure 1. Figure 1 illustrates the beam wavefront
aberration difference at the receiving end cross-section with the augmentation of the outer
scale of turbulence when the distance between the two points is held constant. Notably,
beyond an outer scale of 40 m, the rate of change in wavefront aberration diminishes,
suggesting a gradual reduction in the impact of the turbulence outer scale on beam modu-
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lation. Furthermore, when the outer scale of turbulence is fixed, an increase in the distance
between the two points at the receiver does lead to a higher wavefront aberration at the
receiver’s cross-section; however, this overall variation magnitude remains relatively small.
This observation underscores that, while different distances between two points influence
the wavefront aberration at the receiver’s cross-section to some extent, the effect is not
substantial.

Figure 1. The influence of the distance between two points on the wavefront phase aberration
difference for beams with different wavelengths.

It is assumed that the turbulence inner scale l0 values range from 0.01 m to 0.15 m
and from 0.2 m to 0.4 m, with a turbulence outer scale parameter of L0 = 40 m and an
atmospheric refractive index structural constant value of C2

n = 1× 10−12 m−2/3. When
signal light with a wavelength of 1550 nm and beacon light with a wavelength of 632.8 nm
are transmitted through the atmospheric channel on a co-optical path with L = 10 km, the
influence of the turbulence inner scale on the RMS difference in wavefront phase aberration
across various points on the received cross-section is shown in Figure 2. Upon comparing
Figure 2a,b, it becomes apparent that when the separation between the two points is
smaller than the inner scale of turbulence, there is a discernible effect on the wavefront
phase aberration difference. As the distance between the points increases and approaches
the inner scale of turbulence, this effect gradually diminishes, and the curves begin to
overlap significantly. Subsequently, when the distance between the points surpasses the
inner scale of turbulence, the wavefront phase aberration differences stabilize and the
curves’ slopes exhibit no significant changes. This outcome may be attributed to beam
diffraction within small-scale turbulence. However, as the distance between the points
extends beyond the inner scale of turbulence, the light undergoes refraction once more,
leading to a diminished influence of small-scale turbulence on the beam.

Figure 2. Influence of the turbulence inner scale on the difference in wavefront aberrations of beams
with different wavelengths: (a) l0 = 0.01 m ~ l0 = 0.15 m and (b) l0 = 0.20 m ~ l0 = 0.40 m.



Appl. Sci. 2024, 14, 4692 7 of 14

It is assumed that the turbulence inner scale l0 is 0.10 m, turbulence outer scale L0 is 50 m,
and atmospheric refractive index structure constant corresponds to C2

n = 1× 10−12 m−2/3.
Signal light with a wavelength of 1550 nm and beacon lights with wavelengths of 632.8 nm,
530 nm, 850 nm, and 950 nm traverse the atmospheric channel along a shared optical path
spanning 10 km. Variations in wavefront phase aberration across different points on the
received cross-section are influenced by these wavelength discrepancies, as depicted in
Figure 3. In Figure 3a, within the receiving aperture cross-section, the distance between
two points exhibits minimal impact on the wavefront aberration difference between beams
of distinct wavelengths, consistently maintaining a stable level. Notably, when the beacon
light wavelength is 1280 nm, the disparity between the signal light and beacon light wave-
front aberration remains below 1, rendering it practically negligible. Figure 3b highlights
that as the wavelength disparity between the signal light and the beacon light diminishes,
the wavefront aberration difference progressively decreases. When the wavelengths of
the signal light and the beacon light align, the wavefront aberration difference reaches 0.
Thus, only when the signal light and beacon light wavelengths closely match, the accuracy
of adaptive optics for wavefront correction can be maximized. Consequently, in practical
applications, the wavelength difference between beacon light and signal light should be
considered a critical factor when selecting the beacon light wavelength.

Figure 3. The difference in beam wavefront phase distortion between different points on the receiving
cross-section. (a) Different wavelengths. (b) Difference between different wavelengths.

3. Signal Optical Wavefront Aberration Correction for Dual-Wavelength Free-Space
Optical Communication Systems
3.1. Theory

Zernike polynomials are a set of mutually orthogonal polynomials defined within
a unit circle. Their coefficients, which are linear combinations of basis functions, can
accurately describe different types of wavefront aberrations. Wavefront aberration, φ(ρ, θ),
can be expressed as a linear combination of Zernike polynomials [17]:

φ(ρ) =
N

∑
i=1

aizi(ρ, θ) (16)

where N denotes the total aberration order, ai denotes the coefficient of the Zernike polyno-
mial of order i, (ρ, θ) denotes the polar coordinate, and Zi(ρ, θ) denotes the expression of
the Zernike polynomial of order i in polar coordinates as follows:

Zi =


√

n + 1Rm
n (ρ)
√

2 cos(mθ) m 6= 0 and m is even√
n + 1Rm

n (ρ)
√

2 sin(mθ) m 6= 0 and m is odd√
n + 1Rm

n (ρ) m = 0
(17)
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where

Rm
n (ρ) =

n−m
2
∑
s=0

(−1)s(n− s)!
s![(n + m/2)− s]![(n−m/2)− s]!

ρn−2s (18)

where m and n denote the angular and radial numbers in polar coordinates of the Zernike
polynomials, respectively. The essence of employing Zernike polynomials to model wave-
front aberrations lies in determining both the order of the polynomials and the coefficients
associated with each order. Essentially, higher-order Zernike polynomials encompass a
broader spectrum of aberrations, thereby yielding greater fitting accuracy. Following the fit-
ting of Zernike polynomials to the wavefront aberration phase for signal and beacon lights
of varying wavelengths, discrepancies emerge in the coefficient matrices of the Zernike
polynomials corresponding to the two beams within the same Zernike mode order.

The coefficients of the Zernike polynomials, which represent wavefront aberrations
for signal light at wavelength λ1 and for beacon light at wavelength λ2, can be expressed
as follows [17]:

a1(λ1), a2(λ1), a3(λ1), . . . . . . , aj(λ1)
a1(λ2), a2(λ2), a3(λ2), . . . . . . , aj(λ2)

(19)

The numerical relationship between the coefficients of Zernike polynomials of the
same order can be established through the wavelength function, which can be expressed as:

a1(λ1) = f1[a1(λ2), λ1]
a2(λ1) = f2[a2(λ2), λ1]

...
aj(λ1) = f j

[
aj(λ2), λ1

] (20)

Based on the actual transmission process of laser communication, we established a
mode analysis model to determine the functional relationship among polynomial coeffi-
cients. We selected an infinitesimal region, denoted as ∆δ, on the wavefront phase plane
and directed the signal light and beacon light into a common optical path. Assuming
perfect alignment, the corresponding region ∆δ experiences the same transmission path
through the atmospheric channel and the same variations in refractive index. Based on
“Taylor’s” frozen-flow hypothesis [18], we selected a particular instant as the time for anal-
ysis. At this moment, the combined fluctuations in the atmospheric refractive index along
the path of the beam can be approximated by a lens with an inhomogeneous refractive
index distribution. This approximation can be analyzed using the formula for refractive
index dispersion, which is commonly used for engineering materials. The relationship
between the coefficients of the Zernike polynomials and wavelength can be expressed as
follows [19]:

ai = Ai +
Bi
λ

+
Ci

λ3.5 (21)

where ai denotes the coefficient of the Zernike polynomial of order i, and Ai, Bi, and Ci
denote the coefficients of the Conrady–Zernike polynomial. When the wavelengths differ,
the relationship between their corresponding coefficients can be expressed as follows:

ai(λ1) =

[(
Ai +

Bi
λ1

+
Ci

λ3.5
1

)
/

(
Ai +

Bi
λ2

+
Ci

λ3.5
2

)]
ai(λ2) (22)

The proportionality correction factor between the ith order Zernike polynomial coeffi-
cients corresponding to the signal light and beacon light is as follows:

Zi =

[
(Ai +

Bi
λ1

+
Ci

λ3.5
1

)/(Ai +
Bi
λ2

+
Ci

λ3.5
2

)

]
(23)
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Considering the 15th-order Zernike polynomial as an example, the Zernike polynomial
coefficient vector corresponding to beacon light can be expressed as:

A15(λ2) = [a1, a2, a3, · · · , a15]
T (24)

After multiplying the coefficient vector of the beacon light with the corresponding
correction vector, we obtain:

A’
15(λ2) =


z1, 0, 0, . . . , 0
0, z2, 0, . . . , 0
...
0, 0, 0, . . . , z15

[a1, a2, a3, · · · , a15]
T

= [z1a1, z2a2, z3a3, · · · , z15a15]
T

(25)

Furthermore, the mutual covariance matrix of the modified polynomial coefficients
can be expressed as [20]:

C’ = E
[

A′15(λ2) · A′T15(λ2)
]

=


E(z1a1, z1a1) E(z1a1, z2a2) · · · E(z1a1, zN aN)
E(z2a2, z1a1) E(z2a2, z2a2) · · · E(z2a2, zN aN)

...
...

. . .
...

E(zN aN , z1a1) E(zN aN , z2a2) · · · E(zN aN , zN aN)

 (26)

The covariance matrix C’ is known as a Hermitian matrix [20]. Hence, there exists a
unitary matrix X such that it is a diagonal array. We perform singular value decomposition
of the covariance matrix C’ as follows:

C’ = XSXT (27)

It is assumed that the coefficient vector of another linear combination B of wavefront
Zernike polynomials of the same dimension as A is B = [b1, b2, . . . , bN ]

T. Then, the Zernike
polynomial coefficients of the wavefront of the corresponding signal optical distortion are:

A’ = X · B (28)

3.2. Simulation Verification

The wavefront correction system uses a charge-coupled device (CCD) camera to mea-
sure the spot energy, Strehl ratio, and other beam parameters of the laser beam, which are
used as optimization indicators for the control program and converted into control signals
for the deformable mirror [20,21]. The working principle of the system is shown in Figure 4,
which mainly includes the following three parts: wavefront controller, wavefront corrector
(deformable mirror, DM), and imaging detector (CCD). The parallel light generated by
the light source forms distorted beams carrying aberrations after undergoing atmospheric
turbulence transmission. This distorted beam is projected onto the deformable mirror,
which corrects the distortion for the first time and reflects the remaining distorted beam
onto the CCD. Next, the wavefront controller drives the intelligent algorithm to recalculate
the control instructions of the deformable mirror based on the system performance indi-
cators collected by the CCD. The deformable mirror corrects the wavefront distortion of
the beacon light by adjusting its surface morphology. This process is cyclic, and after each
round of correction, the deformable mirror further adjusts its shape based on the newly
obtained feedback information of the light spot, gradually approaching the ideal correction
state and achieving multiple closed-loop corrections of the distorted beam.
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Figure 4. The working principle of the wavefront correction system.

The control system adopts the stochastic parallel gradient descent (SPGD) algorithm.
The algorithm first generates the basic voltage command for the deformable mirror and
superimposes a random perturbation voltage signal that conforms to the Bernoulli distribu-
tion. On this basic voltage, forward and reverse voltage disturbances are applied separately,
and then the change in the system objective function under each disturbance voltage is
calculated. Finally, based on the calculation principles shown in Figure 5, the voltage signal
that should be applied during the iteration cycle is determined. This process continues to
loop until the system objective function reaches the preset optimization conditions.

Figure 5. Schematic diagram of the correction of wavefront aberration differences without wavefront
correction.

In conditions characterized by an atmospheric coherence length r0 = 0.01 m, a dis-
turbance amplitude δ = 0.006, a high gain coefficient of γ = 1.6/(1 + J) (where J denotes
the value of the system’s objective function), and 100 iterations, numerical simulations
were conducted to investigate the performance of dual-wavelength wavefront-free sensing
adaptive optics technology in correcting far-field spot SR under atmospheric turbulence.
The simulations employed the multi-phase screen method to model laser beam propagation
through a turbulent atmosphere, with phase screens generated using Zernike polynomi-
als [22]. The specific parameters for the simulation included a signal wavelength of 1550 nm,
a beacon wavelength of 632.8 nm, a transmission distance of 10 km, a phase screen interval
of ∆z = 1500 m, and a phase screen size of D = 0.4 m. The Zernike coefficient matrices for
the beacon light, both pre- and post-correction, were integrated into the adaptive optics
control system to rectify the wavefront aberration of the signal light. The resulting changes
in SR for the signal light are depicted in Figure 6. Analysis of the figure reveals that over
100 iterations of correction, the SR value of the signal beam within the correction system
lacking additional correction coefficients exhibits slow convergence, reaching a limit of
0.89, accompanied by notable jitter during the correction process. Conversely, the system
augmented with correction coefficients realizes a higher SR value limit of 0.982, marking
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an 11% enhancement over the initial convergence target of 0.89. Furthermore, it attains
convergence more rapidly, stabilizing at 70 iterations with significantly reduced jitter.

Figure 6. Signal light SR value variation curve with the number of iterations. (a) Without the
wavefront correction coefficient. (b) With the wavefront correction coefficient.

3.3. Experimental Research

The wavefront-free adaptive optics correction system is constructed indoors, with the
experimental design principle illustrated in Figure 7. Both the signal light and the beacon
light, emanating from a shared optical path, traverse through polarizer P1 before entering a
4F system comprising lenses L1 and L2 for beam expansion and collimation. Subsequently,
the collimated beam proceeds to a spatial light modulator after being split by beam splitter
BS1. Loaded with a phase screen, the spatial light modulator modulates the collimated light,
and the modulated beam is reflected by mirror PM. Following reflection, the beam is again
divided by BS2 and directed to the deformable mirror (DM). Here, the DM undertakes
the initial correction of the distorted light, which is then converged through lens L3 and
directed to the CCD. Furthermore, the CCD captures the intensity of the distorted beam
and transmits this information to the computer. Utilizing optimization algorithms, the
computer generates control signals for the deformable mirror, thereby executing multiple
closed-loop corrections of the wavefront aberrations. The detailed equipment parameters
employed in the experiment are outlined in Table 1.

Figure 7. Experimental schematic diagram of wavefront sensor-less adaptive optics.
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Table 1. Parameters of experimental equipment.

Equipment Name Type Equipment Parameter

Liquid crystal spatial
light modulator RL-SLM-R2

Target size: 0.78′′

Pixel size: 12.3 mm
Operating wavelength: 400~1620 nm

Phase modulation capability: 0~2π@532 nm

Deformable mirror ALPAO-DM

Number of actuators: 69
Pupil diameter: 10.5 mm

Oblique wavefront modulation: 60 mm
Bandwidth: >750 Hz
Setting time: 800 µs

Analog response time: <10 µs

CCD MW-GX-650
Pixel Size: 5.5 mm × 5.5 mm

Frame rate: 8 fps
Exposure time: 300–1,000,000 ms

In the experiments, we selected wavelengths of 1550 nm as the signal light and
632.8 nm as the beacon light, respectively. The turbulent phase screen based on the Zernike
polynomial method was loaded into the liquid crystal spatial light modulator (LC-LSM) to
cause wavefront distortion of the beam [23–25]. The SPGD algorithm based on the variable
gain coefficient was used to correct the wavefront distortion. We used the average grey
scale value of 10 × 10 pixel area centered on the spot’s center of mass, as captured by
the CCD camera, to evaluate the calibration effect in terms of spot brightness. The size
of the phase screen was D = 0.4 m. For the SPGD algorithm, we selected a perturbation
amplitude value of δ = 0.006 and a gain coefficient value of γ = 1.6/(1 + J). In order
to simulate strong turbulence conditions, we set the atmospheric coherence length to
r0 = 0.01 m [26,27]. We conducted closed-loop correction experiments, and the results are
shown in Figure 8a,b. By comparing the two figures, we can observe that the system
without wavefront correction has a significant correction effect on the wavefront aberration
in regions of strong turbulence. The SR value of the spot prior to correction stands at 0.112.
Post-correction, it notably increases to 0.74, signifying a substantial enhancement in spot
energy convergence. Upon employing the SPGD algorithm to generate the adaptive mirror
voltage control signal, correction coefficients are incorporated to address the aberrations
of the signal light. As depicted in Figure 8c, the results illustrate heightened spot energy
compared with Figure 8b, where the dark spot is rectified. Notably, the beam’s SR value
escalates to 0.812, underscoring the effectiveness of this approach in further refining the
system’s correction accuracy without wavefront correction.

Figure 8. The change in the light pattern in the picture correction experiment. (a) Before correction;
(b) correction without the correction factor, and (c) after adding the correction factor correction.

4. Conclusions

The discrepancy in wavefront distortion aberrations within an adaptive optical system
represents a systematic error stemming from the disparity in wavefront lengths between
the system’s signal and beacon lights. By adjusting system parameters and adopting
advanced correction algorithms, the impact of turbulence on beam transmission can be
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effectively reduced. In our study, theoretical and experimental results show that when the
turbulence external scale is greater than 40 m, the speed of wavefront aberration change
decreases. Wavelength matching optimization can reduce phase difference, that is, the
closer the wavelengths of the beacon light and signal light are, the closer the wavefront
aberration is to 0. In numerical simulation, the introduction of correction coefficients in
the wavefront correction system increased the SR value from the basic 0.89 to 0.982, by
about 11%, and accelerated the convergence speed. In the experiment, the SR value of
the spot before and after the implementation of wavefront correction technology jumped
from 0.112 to 0.74. After further adding the correction factor, the SR value reached 0.812,
an increase of about 10% compared with the initial correction, clearly demonstrating the
additional enhancement effect of secondary correction on system accuracy. The further
improvement in spot energy and the SR value verifies that this method can effectively
improve correction accuracy.
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