Selenium Content of Goose Breast Meat Depending on the Type of Heat Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meat Samples
2.2. Heat Processing
2.3. Chemical Analysis
2.4. Calculation of Indices
2.5. Statistical Analysis
3. Results and Discussion
3.1. Cooking Loss
3.2. Moisture Content
3.3. Ash Content
3.4. Ash Retention
3.5. Selenium Content and Retention
3.6. Coverage of Selenium Intake Standards
Meat | Se (μg /100g) | DACH (2013) [51] AI (μg) | EFSA (2014) [52] HCNL (2018) [53] AI (μg) | NCM (2014) [54] RI (μg) | WHO/FAO (2004) [21] RI (μg) | NIPH-NIH (2020) [55] IOM (2000) [56] EAR (μg) | NIPH-NIH (2020) [55] IOM (2000) [56] RDA (μg) | NRV-R [57] (μg) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
60 ♀ | 70 ♂ | 70 ♀♂ | 50 ♀ | 60 ♂ | 25–26 ♀ | 33–34 ♂ | 45♀ ♂ | 55♀ ♂ | 60 ♀♂ | ||
Raw meat without skin | 17.4 | 29.0 | 24.9 | 24.9 | 34.8 | 29.0 | 69.6–66.9 | 52.7–51.2 | 38.7 | 31.6 | 29.0 |
Raw meat with skin | 13.2 | 22.0 | 18.9 | 18.9 | 26.4 | 22.0 | 52.8–50.8 | 40.0–38.8 | 29.3 | 24.0 | 22.0 |
Water bath cooking without skin | 20.0 | 33.3 | 28.6 | 28.6 | 40.0 | 33.3 | 80.0–76.9 | 60.6–58.8 | 44.4 | 36.4 | 33.3 |
Water bath cooking with skin | 23.3 | 38.8 | 33.3 | 33.3 | 46.6 | 38.8 | 93.2–89.6 | 70.6–68.5 | 51.8 | 51,8 | 38.3 |
Grilled without skin | 24.3 | 40.5 | 34.7 | 34.7 | 48.6 | 40.5 | 97.2–93.5 | 73.6–71.5 | 54.0 | 44.2 | 40.5 |
Grilled with skin | 26.9 | 44.8 | 38.4 | 38.4 | 53.8 | 44.8 | 107.6–103.5 | 81.5–79.1 | 59.8 | 48.9 | 44.8 |
Oven convection roasting without skin | 26.7 | 44.5 | 38.1 | 38.1 | 53.4 | 44.5 | 106.8–102.7 | 80.9–78.5 | 59.3 | 48.5 | 44.5 |
Oven convection roasting with skin | 24.9 | 41.5 | 35.6 | 35.6 | 49.8 | 41.5 | 99.6–95.8 | 75.5–73.2 | 55.3 | 45.3 | 41.5 |
Pan-fried without skin | 24.9 | 41.5 | 35.6 | 35.6 | 49.8 | 41.5 | 99.6–95.8 | 75.5–73.2 | 55.3 | 45.3 | 41.5 |
Pan-fried with skin | 23.7 | 39.5 | 33.9 | 33.9 | 47.4 | 39.5 | 94.8–91.1 | 71.8–69.7 | 52.7 | 43.1 | 39.5 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kieliszek, M. Selenium in the Prevention of SARS-CoV-2 and Other Viruses. Biol. Trace Elem. Res. 2023, 201, 655–662. [Google Scholar] [CrossRef]
- Alshammari, M.K.; Fatima, W.; Alraya, R.A.; Khuzaim Alzahrani, A.; Kamal, M.; Alshammari, R.S.; Alshammari, S.A.; Alharbi, L.M.; Alsubaie, N.S.; Alosaimi, R.B.; et al. Selenium and COVID-19: A Spotlight on the Clinical Trials, Inventive Compositions, and Patent Literature. J. Infect. Public Health 2022, 15, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Loscalzo, J. Keshan Disease, Selenium Deficiency, and the Selenoproteome. N. Engl. J. Med. 2014, 370, 1756–1760. [Google Scholar] [CrossRef] [PubMed]
- dos Reis, A.R.; El-Ramady, H.; Santos, E.F.; Gratão, P.L.; Schomburg, L. Overview of Selenium Deficiency and Toxicity Worldwide: Affected Areas, Selenium-Related Health Issues, and Case Studies. In Selenium in Plants: Molecular, Physiological, Ecological and Evolutionary Aspects; Pilon-Smits, E.A.H., Winkel, L.H.E., Lin, Z.-Q., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 209–230. ISBN 978-3-319-56249-0. [Google Scholar]
- Vinceti, M.; Mandrioli, J.; Borella, P.; Michalke, B.; Tsatsakis, A.; Finkelstein, Y. Selenium Neurotoxicity in Humans: Bridging Laboratory and Epidemiologic Studies. Toxicol. Lett. 2014, 230, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M.; Błażejak, S. Current Knowledge on the Importance of Selenium in Food for Living Organisms: A Review. Molecules 2016, 21, 609. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological Activity of Selenium and Its Impact on Human Health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef] [PubMed]
- Geldenhuys, G.; Hoffman, L.C.; Muller, N. The Fatty Acid, Amino Acid, and Mineral Composition of Egyptian Goose Meat as Affected by Season, Gender, and Portion. Poult. Sci. 2015, 94, 1075–1087. [Google Scholar] [CrossRef] [PubMed]
- Jäger, T.; Drexler, H.; Göen, T. Human Metabolism and Renal Excretion of Selenium Compounds after Oral Ingestion of Sodium Selenate Dependent on Trimethylselenium Ion (TMSe) Status. Arch. Toxicol. 2016, 3, 149–158. [Google Scholar] [CrossRef] [PubMed]
- El Sabry, M.I.; Almasri, O. Global Waterfowl Production: Stocking Rate Is a Key Factor for Improving Productivity and Well-Being-a Review. Trop. Anim. Health Prod. 2023, 55, 419. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/?#data/QCL/visualize (accessed on 12 December 2023).
- Pathare, P.B.; Roskilly, A.P. Quality and Energy Evaluation in Meat Cooking. Food Eng. Rev. 2016, 8, 435–447. [Google Scholar] [CrossRef]
- Wereńska, M. Comparative Study on the Effects of Sous-Vide, Microwave Cooking, and Stewing on Functional Properties and Sensory Quality of Goose Meat. Poult. Sci. 2023, 102, 103064. [Google Scholar] [CrossRef] [PubMed]
- Tornberg, E. Effects of Heat on Meat Proteins—Implications on Structure and Quality of Meat Products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Goluch, Z.; Pilarczyk, B. Goose Meat As a Nutritional Source of Dietary Selenium. J. Elem. 2022, 27, 521–531. [Google Scholar] [CrossRef]
- van Boekel, M.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.; Somoza, V.; Knorr, D.; Jasti, P.R.; Eisenbrand, G. A Review on the Beneficial Aspects of Food Processing. Mol. Nutr. Food Res. 2010, 54, 1215–1247. [Google Scholar] [CrossRef] [PubMed]
- Thippareddi, H.; Sanchez, M. Thermal Processing of Meat Products. In Thermal Food Processing. New Technologies and Quality Issues; Sun, D.-W., Ed.; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2006; pp. 155–196. ISBN 1-57444-628-2. [Google Scholar]
- Zhang, Z.H.; Wang, L.H.; Zeng, X.A.; Han, Z.; Brennan, C.S. Non-Thermal Technologies and Its Current and Future Application in the Food Industry: A Review. Int. J. Food Sci. Technol. 2019, 54, 1–13. [Google Scholar] [CrossRef]
- Stangierski, J.; Lesnierowski, G. Nutritional and Health-Promoting Aspects of Poultry Meat and Its Processed Products. Worlds Poult. Sci. J. 2015, 71, 71–82. [Google Scholar] [CrossRef]
- USDA National Nutrient Database for Standard Reference Release. Available online: https://fdc.nal.usda.gov/fdc-app.html#/?query=goose,meat (accessed on 17 December 2022).
- World Health Organization/Food and Agriculture Organization of the United Nations (WHO/FAO). Vitamin and Mineral Requirements in Human Nutrition. In Report of a Joint FAO/WHO Expert Consultation, 2nd ed.; World Health Organization: Bangkok, Thailand, 1998. [Google Scholar]
- Lombardi-Boccia, G.; Aguzzi, A.; Cappelloni, M.; Di Lullo, G.; Lucarini, M. Total-Diet Study: Dietary Intakes of Macro Elements and Trace Elements in Italy. Br. J. Nutr. 2003, 90, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Goluch, Z.; Barbara, K.; Haraf, G.; Wołoszyn, J.; Okruszek, A.; Wereńska, M. Impact of Various Types of Heat Processing on the Energy and Nutritional Values of Goose Breast Meat. Poult. Sci. 2021, 100, 101473. [Google Scholar] [CrossRef] [PubMed]
- USDA Duck and Goose from Farm to Table. Food Safety Information. Available online: https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/poultry/duck-and-goose-farm-table#21 (accessed on 31 January 2024).
- ISO 9831:1998; Animal Feeding Stuffs, Animal Products, and Faeces or Urine—Determination of Gross Calorific Value—Bomb Calorimeter Method (ISO 9831:2004). The International Organization for Standardization EN: Geneva, Switzerland.
- Association of Official Analysis Chemists International. Official Methods of Analysis of AOAC International, 20th ed.; Latimer, G.W., Jr., Ed.; Association of Official Analysis Chemists International: Rockville, MD, USA, 2016; ISBN 9780935584875. [Google Scholar]
- Grzebuła, S.; Witkowski, P. The Determination of Selenium Trace Levels in Biological Materials with Fluorometric Method. Selenium Determination in Tissues and Bodily Fluids. Pol. Arch. Weter 1977, 20, 125–138. (In Polish) [Google Scholar]
- Wołoszyn, J.; Wereńska, M.; Goluch, Z.; Haraf, G.; Okruszek, A.; Teleszko, M.; Król, B. The Selected Goose Meat Quality Traits in Relation to Various Types of Heat Treatment. Poult. Sci. 2020, 99, 7214–7224. [Google Scholar] [CrossRef] [PubMed]
- Bognár, A.; Piekarski, J. Guidelines for Recipe Information and Calculation of Nutrient Composition of Prepared Foods (Dishes). J. Food Compos. Anal. 2000, 13, 391–410. [Google Scholar] [CrossRef]
- Data Analysis Software System; StatSoft Inc. Statistica: Tulsa, OK, USA, 2022.
- Hassoun, A.; Aït-Kaddour, A.; Sahar, A.; Cozzolino, D. Monitoring Thermal Treatments Applied to Meat Using Traditional Methods and Spectroscopic Techniques: A Review of Advances over the Last Decade. Food Bioproc. Tech. 2021, 14, 195–208. [Google Scholar] [CrossRef]
- Wereńska, M.; Haraf, G.; Okruszek, A.; Marcinkowska, W.; Wołoszyn, J. The Effects of Sous Vide, Microwave Cooking, and Stewing on Some Quality Criteria of Goose Meat. Foods 2023, 12, 129. [Google Scholar] [CrossRef] [PubMed]
- Belinsky, D.L.; Kuhnlein, H.V. Macronutrient, Mineral, and Fatty Acid Composition of Canada Goose (Branta Canadensis): An Important Traditional Food Resource of the Eastern James Bay Cree of Quebec. J. Food Compos. Anal. 2000, 13, 101–115. [Google Scholar] [CrossRef]
- Oz, F.; Celik, T. Proximate Composition, Color and Nutritional Profile of Raw and Cooked Goose Meat with Different Methods. J. Food Process Preserv. 2015, 39, 2442–2454. [Google Scholar] [CrossRef]
- Satpute, M.; Annapure, U.; Marg, P. Approaches for Delivery of Heat Sensitive Nutrients through Food Systems for Selection of Appropriate Processing Techniques: A Review. J. Hyg. Eng. Des. 2013, 4, 71–88. [Google Scholar]
- Gerber, N.; Scheeder, M.R.L.; Wenk, C. The Influence of Cooking and Fat Trimming on the Actual Nutrient Intake from Meat. Meat Sci. 2009, 81, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Baowei, W.; Guoqing, H.; Qiaoli, W.; Bin, Y. Effects of Yeast Selenium Supplementation on the Growth Performance, Meat Quality, Immunity, and Antioxidant Capacity of Goose. J. Anim. Physiol. Anim. Nutr. 2011, 95, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Horak, K.; Chipman, R.; Murphy, L.; Johnston, J. Environmental Contaminant Concentrations in Canada Goose (Branta Canadensis) Muscle: Probabilistic Risk Assessment for Human Consumers. J. Food Prot. 2014, 77, 1634–1641. [Google Scholar] [CrossRef] [PubMed]
- Łukaszewicz, E.; Kowalczyk, A.; Jerysz, A. Effect of Dietary Selenium and Vitamin E on Chemical and Fatty Acid Composition of Goose Meat and Liver. Anim. Sci. Pap. Rep. 2016, 34, 181–19439. [Google Scholar]
- Geldenhuys, G.; Hoffman, L.C.; Muller, N. Aspects of the Nutritional Value of Cooked Egyptian Goose (Alopochen Aegyptiacus) Meat Compared with Other Well-Known Fowl Species. Poult. Sci. 2013, 92, 3050–3059. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, A.; Gutyj, B.; Grynevych, N.; Bilkevych, V.; Mashkin, Y. Enrichment of Meat Products with Selenium by Its Introduction to Mixed Feed Compounds for Birds. Regul. Mech. Biosyst. 2017, 8, 417–422. [Google Scholar] [CrossRef]
- Gómez, I.; Janardhanan, R.; Ibañez, F.C.; Beriain, M.J. The Effects of Processing and Preservation Technologies on Meat Quality: Sensory and Nutritional Aspects. Foods 2020, 9, 1416. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences; Engineering and Medicine. In Dietary Reference Intakes for Sodium and Potassium; Stallings, V.A.; Harrison, M.; Oria, M. (Eds.) National Academies Press: Washington, DC, USA, 2019; ISBN 978-0-309-48834-1. [Google Scholar]
- Chen, S.S.; Lin, Y.W.; Kao, Y.M.; Shih, Y.C. Trace Elements and Heavy Metals in Poultry and Livestock Meat in Taiwan. Food Addit. Contam. Part B Surveill. 2013, 6, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Wideman, N.; O’bryan, C.A.; Crandall, P.G. Factors Affecting Poultry Meat Colour and Consumer Preferences—A Review. Worlds Poult Sci J 2016, 72, 353–366. [Google Scholar] [CrossRef]
- Stoffaneller, R.; Morse, N.L. A Review of Dietary Selenium Intake and Selenium Status in Europe and the Middle East. Nutrients 2015, 7, 1494–1537. [Google Scholar] [CrossRef] [PubMed]
- Mora, B.; Curti, E.; Vittadini, E.; Barbanti, D. Effect of Different Air/Steam Convection Cooking Methods on Turkey Breast Meat:Physical Characterization, Water Status and Sensory Properties. Meat Sci. 2011, 88, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Goluch, Z.; Haraf, G. Goose Meat as a Source of Dietary Manganese—A Systematic Review. Animals 2023, 13, 840. [Google Scholar] [CrossRef] [PubMed]
- Sobral, M.M.C.; Cunha, S.C.; Faria, M.A.; Ferreira, I.M. Domestic Cooking of Muscle Foods: Impact on Composition of Nutrients and Contaminants. Compr. Rev. Food Sci. Food Saf. 2018, 17, 309–333. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority Tolerable Upper Intake Levels for Vitamins and Minerals. Available online: http://www.efsa.eu.int (accessed on 6 April 2024).
- Nutrition Societies in Germany and Austria and Switzerland (D-A-CH). 2013. Referenzwerte Für Die Nährstoffzufuhr. Neustadt an Der Weinstraße, Duitsland. Available online: https://www.dge.de/wissenschaft/referenzwerte/?L=0 (accessed on 26 May 2024).
- EFSA Scientific Opinion on Dietary Reference Values for Selenium. EFSA J. 2014, 12, 3846. [CrossRef]
- Health Council of the Netherlands. An Evaluation of the EFSA’s Dietary Reference Values (DRVs), Part 1. Dietary Reference Values for Vitamins and Minerals for Adults, No. 2018/19A; Health Council of the Netherlands, Ed.; Health Council of the Netherlands: The Hagu, The Netherlands, 2018. [Google Scholar]
- Nordic Council of Ministers. Nordic Nutrition Recommendations 2012. Integrating Nutrition and Physical Activity, 5th ed.; Nordic Council of Ministers: Copenhagen, Denmark, 2014.
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Dietary Reference Values for the Polish Population and Their Application; National Institute of Public Health-National Institute of Hygiene: Warszwa, Poland, 2020; ISBN 9788365870285. [Google Scholar]
- Institute of Medicine (IOM). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar]
- Regulation (EU). No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. Off. J. Eur. Union 2011, 54, 18–41. [Google Scholar]
- Fairweather-Tait, S.; Hurrel, R.F. Bioavailability of Minerals and Trace Elements. Nutr. Res. Rev. 1996, 9, 295–324. [Google Scholar] [CrossRef] [PubMed]
- Grosicka-Maciąg, E.; Szumiło, M.; Kurpios-Piec, D.; Rahden-Staroń, I. Biomedical Effects of Selenium in a Human Organism. J. Elem. 2017, 22, 1269–1284. [Google Scholar] [CrossRef]
- Lewis, J. Codex Nutrient Reference Values; Food and Agriculture Organisation of the United Nations and World Health Organisation: Rome, Italy, 2019; ISBN 9781626239777. [Google Scholar]
Item | Meat | Raw | Heat Processing | SEM | Level of Significance | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Water Bath Cooking (WBC) | Grilled (G) | Oven Convection Roasting (OCR) | Pan-Fried (PF) | Total | ||||||||
Meat (M) | Heat Processing (HP) | M × HP | ||||||||||
Cooking loss (%) | without skin | - | 27.2 b | 42.5 a | 40.6 a | 34.9 b | 36.3 Y | 1.84 | 0.001 | 0.001 | 0.032 | |
with skin | - | 40.4 b | 51.7 a | 43.6 ab | 45.7 ab | 45.4 X | 1.52 | |||||
Total | - | 33.8 B | 47.1 A | 42.1 A | 40.3 A | 40.8 | 1.50 | |||||
SEM | 3.43 | 2.15 | 0.82 | 2.50 | ||||||||
Moisture (%) | without skin | 73.3 | 65.3 | 54 | 56.9 | 58 | 61.5 X | 1.88 | 0.018 | 0.001 | 0.084 | |
with skin | 64.5 | 62.5 | 56.2 | 55.1 | 54.5 | 58.6 Y | 1.41 | |||||
Total | 68.9 A | 63.9 A | 55.1 B | 56.0 B | 56.2 B | 60.0 | 1.19 | |||||
SEM | 2.66 | 1.30 | 0.68 | 0.78 | 1.21 | |||||||
Ash (%) | without skin | 1.41 | 1.34 | 1.63 | 2.45 | 1.56 | 1.48 | 0.19 | 0.102 | 0.001 | 0.727 | |
with skin | 1.38 | 1.06 | 1.63 | 1.96 | 1.23 | 1.25 | 0.16 | |||||
Total | 1.39 C | 1.20 B | 1.63 AB | 2.21 A | 1.39 B | 1.36 | 0.12 | |||||
SEM | 0.07 | 0.18 | 0.07 | 0.20 | 0.13 | |||||||
Ash retention (%) | without skin | - | 75.3 | 70.7 | 75.9 | 72.0 | 73.5 | 4.80 | 0.336 | 0.045 | 0.117 | |
with skin | - | 94.0 | 59.9 | 73.8 | 44.8 | 68.1 | 6.06 | |||||
Total | - | 84.6 a | 65.3 | 74.9 | 58.4 b | 70.8 | 3.83 | |||||
SEM | 5.84 | 5.51 | 7.91 | 8.03 |
Item | Meat | Raw | Heat Processing | SEM | Level of Significance | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Water Bath Cooking (WBC) | Grilled (G) | Oven Convection Roasting (OCR) | Pan-Fried (PF) | Total | ||||||||
Meat (M) | Heat Processing (HP) | M × HP | ||||||||||
Se (μg/100 g FM) | without skin | 17.4 Bb | 20.2 | 24.3 a | 26.7 A | 24.9 a | 21.8 | 1.01 | 0.559 | 0.001 | 0.001 | |
with skin | 13.2 B | 23.3 A | 26.9 A | 24.9 A | 23.7 A | 20.9 | 1.46 | |||||
Total | 15.3 B | 21.8 A | 25.6 A | 25.8 A | 24.3 A | 21.3 | 0.89 | |||||
SEM | 0.99 | 1.22 | 1.29 | 0.96 | 1.12 | |||||||
Se retention (%) | without skin | - | 85.1 | 79.9 | 91.1 | 93 | 87.3 | 3.28 | 0.082 | 0.087 | 0.913 | |
with skin | - | 113.4 | 101.5 | 111.4 | 99.2 | 106.4 | 8.61 | |||||
Total | - | 99.3 | 90.7 | 101.3 | 96.1 | 96.8 | 4.92 | |||||
SEM | - | 15.4 | 7.78 | 10.7 | 4.78 |
PC1 | PC2 | |
---|---|---|
CL | 0.87 | −0.26 |
Se retention | 0.45 | 0.37 |
NRV | 0.56 | −0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goluch, Z.; Bąkowska, M.; Haraf, G.; Pilarczyk, B. Selenium Content of Goose Breast Meat Depending on the Type of Heat Processing. Appl. Sci. 2024, 14, 4693. https://doi.org/10.3390/app14114693
Goluch Z, Bąkowska M, Haraf G, Pilarczyk B. Selenium Content of Goose Breast Meat Depending on the Type of Heat Processing. Applied Sciences. 2024; 14(11):4693. https://doi.org/10.3390/app14114693
Chicago/Turabian StyleGoluch, Zuzanna, Małgorzata Bąkowska, Gabriela Haraf, and Bogumiła Pilarczyk. 2024. "Selenium Content of Goose Breast Meat Depending on the Type of Heat Processing" Applied Sciences 14, no. 11: 4693. https://doi.org/10.3390/app14114693
APA StyleGoluch, Z., Bąkowska, M., Haraf, G., & Pilarczyk, B. (2024). Selenium Content of Goose Breast Meat Depending on the Type of Heat Processing. Applied Sciences, 14(11), 4693. https://doi.org/10.3390/app14114693