Experimental Study on Pore Structure Evolution of Unloaded Rock Mass during Excavation of Reservoir Slope under Dry–Wet Cycle
Abstract
:1. Introduction
2. Test Overview
2.1. Sample Preparation
2.2. Preparation of Unloaded Samples
2.3. Test Flow
- (1)
- Laboratory mechanical test
- (2)
- Preparation of unloaded samples
- (3)
- Dry–wet cycle test
- (4)
- NMR
3. Wave Velocity and Mass Variation of Unloaded Samples under Dry–Wet Cycle
3.1. P-Wave Velocity
3.2. Mass
4. Pore Evolution Characteristics of Unloaded Samples under Dry–Wet Cycle
4.1. T2 Spectrum Distribution
4.2. T2 Spectrum Area
5. Discussion
6. Conclusions
- (1)
- As the dry–wet cycles increase, P-wave velocity and mass change trends both reflect the progressive deterioration process of unloaded samples. Both P-wave velocity and mass show a three-stage change trend of “rapid decrease-slow decrease-stability”. As the dry–wet cycle gradually intensifies, the pores of the sample continue to increase and the cumulative damage increases.
- (2)
- Analysis of T2 spectrum distribution and spectrum area shows that the smaller the initial confining pressure, the more significant the confining pressure unloading effect on samples, and the higher the degree of deterioration of the sample. As the cycles increase, the damage accumulation of unloaded samples intensifies, and the overall pore diameter and number further increase. The overall trend is that smaller pores evolve towards larger pores, accompanied by the generation of new cracks.
- (3)
- The effects of unloading and dry–wet cycles cause changes in the microstructure of the specimen, resulting in significant degradation of the mechanical properties. The unloading effect causes the initial pores of the sample to increase, providing channels for the dry–wet cycle. During the dry–wet cycle, the soluble cements existing between the particles inside the sample gradually dissolve and connect, which weakens the cohesion and friction between the particles inside the sample, resulting in a gradual reduction in the internal skeleton constraints of the sample; the particle structure becomes loose, and the original microcracks continue to develop and expand.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rinaldi, M.; Casagli, N. Stability of streambanks formed in partially saturated soils and effects of negative pore water pressures: The sieve river (Italy). Geomorphology 1999, 26, 253–277. [Google Scholar] [CrossRef]
- Li, J.L. Unloading Rock Mass Mechanics; China Water and Power Press: Beijing, China, 2003. [Google Scholar]
- Qiu, S.L.; Feng, X.T.; Xiao, J.Q.; Zhang, C.Q. An Experimental Study on the Pre-Peak Unloading Damage Evolution of Marble. Rock Mech. Rock Eng. 2014, 47, 401–419. [Google Scholar] [CrossRef]
- Panaghi, K.; Takemura, T.; Asahina, D.; Takahashi, M. Effects of stress path on brittle failure of sandstone: Difference in crack growth between tri-axial compression and extension conditions. Tectonophysics 2021, 810, 228865. [Google Scholar] [CrossRef]
- Walton, G.; Gaines, S.; Alejano, L.R. Validity of continuous-failure-state unloading triaxial tests as a means to estimate the residual strength of rocks. J. Rock Mech. Geotech. Eng. 2021, 13, 717–726. [Google Scholar] [CrossRef]
- Abierdi, Y.X.; Zhong, H.; Gu, X.; Liu, H.L.; Zhang, W.G. Laboratory Model Tests and DEM Simulations of Unloading-Induced Tunnel Failure Mechanism. CMC-Comput. Mater. Con. 2020, 63, 825–844. [Google Scholar] [CrossRef]
- Huang, D.; Li, Y.R. Conversion of strain energy in Triaxial Unloading Tests on Marble. Int. J. Rock Mech. Min. 2014, 66, 160–168. [Google Scholar] [CrossRef]
- Walton, G.; Gaines, S. Evaluation of stress path and load rate effects on rock strength using compression testing data for Stanstead Granite. Int. J. Rock Mech. Min. 2023, 169, 105455. [Google Scholar] [CrossRef]
- Wang, R.B.; Xu, B.; Wan, Y.; Wang, H.; Wang, W.; Meng, Q. Characteristics of unloading damage and permeability evolution of sandstone under hydro-mechanical coupling. Eur. J. Environ. Civ. Eng. 2020, 27, 2566–2575. [Google Scholar] [CrossRef]
- Sheng, M.Q.; Mabi, A.; Lu, X.G. Study on Permeability of Deep-Buried Sandstone under Triaxial Cyclic Loads. Adv. Civ. Eng. 2021, 2021, 6635245. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, W.K.; Hu, R.L.; Li, C.H. Fracture Evolution and Energy Characteristics During Marble Failure Under Triaxial Fatigue Cyclic and Confining Pressure Unloading (FC-CPU) Conditions. Rock Mech. Rock Eng. 2020, 54, 799–818. [Google Scholar] [CrossRef]
- Li, D.Y.; Sun, Z.; Xie, T.; Li, X.; Ranjith, P. Energy evolution characteristics of hard rock during triaxial failure with different loading and unloading paths. Eng. Geol. 2017, 228, 270–281. [Google Scholar] [CrossRef]
- Abi, E.; Yuan, H.C.; Cong, Y.; Wang, Z.; Jiang, M. Experimental Study on the Entropy Change Failure Precursors of Marble under Different Stress Paths. KSCE J. Civ. Eng. 2023, 27, 356–370. [Google Scholar] [CrossRef]
- Zhang, H.X.; Lu, K.P.; Zhang, W.Z.; Li, D.; Yang, G. Quantification and acoustic emission characteristics of sandstone damage evolution under dry-wet cycles. J. Build. Eng. 2022, 48, 103996. [Google Scholar] [CrossRef]
- Guo, P.Y.; Gu, J.; Su, Y.; Wang, J.; Ding, Z. Effect of cyclic wetting-drying on tensile mechanical behavior and microstructure of clay-bearing sandstone. Int. J. Coal Sci. Technol. 2021, 8, 956–968. [Google Scholar] [CrossRef]
- Wang, Z.J.; Liu, X.R.; Fu, Y.; Liang, Z.; Wen, Y. Erosion analysis of argillaceous sandstone under dry-wet cycle in two pH conditions. Rock Soil Mech. 2016, 37, 3231–3239. [Google Scholar] [CrossRef]
- Chen, X.X.; He, P.; Qin, Z. Damage to the Microstructure and Strength of Altered Granite under Wet-Dry Cycles. Symmetry 2018, 10, 716. [Google Scholar] [CrossRef]
- Qin, Z.; Fu, H.L.; Chen, X.X. A study on altered granite meso-damage mechanisms due to water invasion-water loss cycles. Environ. Earth Sci. 2019, 78, 428. [Google Scholar] [CrossRef]
- Ma, J.W.; Niu, X.X.; Xiong, C.R.; Lu, S.; Xia, D.; Zhang, B.; Tang, H. Experimental Investigation of the Physical Properties and Microstructure of Slate under Wetting and Drying Cycles Using Micro-CT and Ultrasonic Wave Velocity Tests. Sensors 2020, 20, 4853. [Google Scholar] [CrossRef]
- An, R.; Kong, L.W.; Zhang, X.W.; Li, C. Effects of dry-wet cycles on three-dimensional pore structure and permeability characteristics of granite residual soil using X-ray micro computed tomography. J. Rock Mech. Geotech. Eng. 2022, 14, 851–860. [Google Scholar] [CrossRef]
- Fang, J.C.; Deng, H.F.; Li, J.L.; Assefa, E. Study on the seepage characteristics and degradation mechanism of a single-jointed sandstone under the cyclic dry-wet process in the Three Gorges reservoir. Bull. Eng. Geol. Environ. 2021, 80, 8123–8136. [Google Scholar] [CrossRef]
- Dang, C.; Sui, Z.L.; Yang, X.Y.; Ge, Z. Pore Changes in Purple Mudstone Based on the Analysis of Dry-Wet Cycles Using Nuclear Magnetic Resonance. Shock Vib. 2022, 2022, 5578401. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Z.J.; Liu, X.R.; Wen, Y.; Miao, L.-L.; Liu, J.; Dun, Z.-Y. Meso damage evolution characteristics and macro degradation of sandstone under wetting-drying cycles. Chin. J. Geotech. Eng. 2017, 39, 1653–1661. [Google Scholar] [CrossRef]
- Liu, X.R.; Jin, M.; Li, D.; Zhang, L. Strength deterioration of a Shaly sandstone under dry–wet cycles: A case study from the Three Gorges Reservoir in China. Bull. Eng. Geol. Environ. 2018, 77, 1607–1621. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.R.; Fu, Y. Study on Deterioration of Strength Parameters of Sandstone Under the Action of Dry-Wet Cycles in Acid and Alkaline Environment. Arab. J. Sci. Eng. 2018, 43, 335–348. [Google Scholar]
- Huang, X.; Pang, J.Y.; Liu, G.C.; Chen, Y. Experimental Study on Physicomechanical Properties of Deep Sandstone by Coupling of Dry-Wet Cycles and Acidic Environment. Adv. Civ. Eng. 2020, 2020, 2760952. [Google Scholar] [CrossRef]
- Wang, L.L.; Bornert, M.; Héripré, E.; Yang, D.; Chanchole, S. Irreversible deformation and damage in argillaceous rocks induced by wetting/drying. J. Appl. Geophys. 2014, 107, 108–118. [Google Scholar] [CrossRef]
- Yang, X.J.; Wang, J.M.; Zhu, C.; He, M.; Gao, Y. Effect of wetting and drying cycles on microstructure of rock based on SEM. Environ. Earth Sci. 2019, 78, 183. [Google Scholar] [CrossRef]
- Ma, D.H.; Yao, H.Y.; Xiong, J.; Zhu, D.; Lu, J. Experimental Study on the Deterioration Mechanism of Sandstone under the Condition of Wet-Dry Cycles. KSCE J. Civ. Eng. 2022, 26, 2685–2694. [Google Scholar] [CrossRef]
- Zhao, B.Y.; Li, Y.F.; Huang, W.; Yang, J.; Sun, J.; Li, W.; Zhang, L.; Zhang, L. Mechanical characteristics of red sandstone under cyclic wetting and drying. Environ. Earth Sci. 2021, 80, 738. [Google Scholar] [CrossRef]
- Deng, H.F.; Zhang, H.B.; Li, J.L.; Wang, C.; Zhang, Y.; Wang, W.; Hu, Y. Effect of water-rock interaction on unloading mechanical properties and microstructure of sandstone. Rock Soil Mech. 2018, 39, 9. [Google Scholar] [CrossRef]
- GB/T 50266-2013; Standard for Test Methods of Engineering Rock Mass. China Planning Press: Beijing, China, 2013.
- Chen, X.Z.; Chen, L.L.; Ma, B.; Zhang, X.; Du, W.; Wang, X.; Yang, C. Mechanical-characteristic evaluation of excavation unloading rock mass subject to high-temperature conditions. Eng. Fail. Anal. 2021, 130, 105757. [Google Scholar] [CrossRef]
- Fu, Y. Study on Water-Rock Interaction with the Cyclic Drying-Wetting Effect on Rock; Chongqing University: Chongqing, China, 2010. [Google Scholar]
- Liang, N.H.; Liu, X.R.; Bao, T.; Wei, Q.P. Experimental Study on the Characteristic of Seepage with Unloading Rock Mass. J. Chongqing Univ. Nat. Sci. Ed. 2005, 28, 136–138. [Google Scholar]
- Grove, J.R.; Croke, J.; Thompson, C. Quantifying different riverbank erosion processes during an extreme flood event. Earth Surf. Process. Landf. 2013, 38, 1393–1406. [Google Scholar] [CrossRef]
- Jin, P.H.; Hu, Y.Q.; Shao, J.X.; Liu, Z.; Feng, G.; Song, S. Influence of temperature on the structure of pore-fracture of sandstone. Rock Mech. Rock Eng. 2020, 53, 1–12. [Google Scholar] [CrossRef]
Diameter/mm | Height/mm | Mass/g | Density/(g/cm3) | Wave Velocity/(km/s) | Porosity |
---|---|---|---|---|---|
49.84 | 100.15 | 457.16 | 2.36 | 2.83 | 9.49% |
Test Types | Maximum Axial Pressure/(MPa) | Confining Pressure during Unloading Failure/(MPa) |
---|---|---|
Uniaxial Compression Test | 48 | —— |
Triaxial Compression Test (Confining pressure 9 MPa) | 115 | —— |
Triaxial Compression Test (Confining pressure 12 MPa) | 127 | —— |
Triaxial Compression Test (Confining pressure 15 MPa) | 140 | —— |
Triaxial Unloading Test (Confining pressure 9 MPa) | 81 (115 × 0.7) | 2.5 |
Triaxial Unloading Test (Confining pressure 12 MPa) | 89 (127 × 0.7) | 4 |
Triaxial Unloading Test (Confining pressure 15 MPa) | 98 (140 × 0.7) | 5.4 |
Number of Cycles | Initial Confining Pressure | Confining Pressure of Unloading | Total Spectrum Area | The First Peak Area | The First Peak Proportion | The Second Peak Area | The Second Peak Proportion | The Third Peak Area | The Third Peak Proportion |
---|---|---|---|---|---|---|---|---|---|
0 | 9 | 5.4 | 4389.35 | 4194.54 | 95.58% | 194.80 | 4.42% | ||
5 | 4539.15 | 4411.48 | 97.19% | 127.67 | 2.81% | ||||
10 | 4905.95 | 4544.73 | 92.91% | 219.03 | 4.37% | 142.19 | 2.72% | ||
15 | 5004.06 | 4705.57 | 94.05% | 263.10 | 5.27% | 35.39 | 0.68% | ||
20 | 5454.88 | 5197.32 | 95.28% | 240.79 | 4.41% | 16.77 | 0.31% | ||
0 | 12 | 6.4 | 2701.28 | 2590.86 | 95.92% | 110.42 | 4.08% | ||
5 | 2971.24 | 2847.40 | 95.83% | 123.84 | 4.17% | ||||
10 | 3565.12 | 3411.49 | 95.69% | 153.63 | 4.31% | ||||
15 | 3621.99 | 3491.41 | 96.40% | 130.57 | 3.60% | ||||
20 | 3788.88 | 3683.43 | 97.22% | 105.45 | 2.78% | ||||
0 | 15 | 8.0 | 2231.34 | 2119.74 | 95.00% | 111.60 | 5.00% | ||
5 | 2721.35 | 2600.96 | 95.58% | 120.39 | 4.42% | ||||
10 | 2854.54 | 2730.00 | 95.64% | 124.54 | 4.36% | ||||
15 | 2925.39 | 2824.83 | 96.55% | 100.56 | 3.45% | ||||
20 | 3108.30 | 2984.03 | 96.00% | 124.27 | 4.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Chen, X.; Gong, S.; Li, Z.; Su, Z. Experimental Study on Pore Structure Evolution of Unloaded Rock Mass during Excavation of Reservoir Slope under Dry–Wet Cycle. Appl. Sci. 2024, 14, 4716. https://doi.org/10.3390/app14114716
Chen L, Chen X, Gong S, Li Z, Su Z. Experimental Study on Pore Structure Evolution of Unloaded Rock Mass during Excavation of Reservoir Slope under Dry–Wet Cycle. Applied Sciences. 2024; 14(11):4716. https://doi.org/10.3390/app14114716
Chicago/Turabian StyleChen, Lili, Xingzhou Chen, Sheng Gong, Zhenhan Li, and Zhenkun Su. 2024. "Experimental Study on Pore Structure Evolution of Unloaded Rock Mass during Excavation of Reservoir Slope under Dry–Wet Cycle" Applied Sciences 14, no. 11: 4716. https://doi.org/10.3390/app14114716
APA StyleChen, L., Chen, X., Gong, S., Li, Z., & Su, Z. (2024). Experimental Study on Pore Structure Evolution of Unloaded Rock Mass during Excavation of Reservoir Slope under Dry–Wet Cycle. Applied Sciences, 14(11), 4716. https://doi.org/10.3390/app14114716