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Abstract: The Issue Tracking System (ITS) repositories are rich sources of software development
documentation that are useful in assessing the status and quality of software projects. An original
model is proposed for tracing issue handling activities and their impact on project progress. As
opposed to classical data mining of software repositories, we consider fine-grained features of issues
which provide a better insight into project evolution. A thorough analysis of repository contents
allows us to define useful metrics for characterizing issue handling schemes. These metrics are
derived from the introduced graph model and developed original data mining algorithms targeting
timing, issue flow progress and project actor activity aspects. This study is associated with issue
processing states and their sequences (handling paths), leading to problem resolution. The introduced
taxonomy of issue processing schemes facilitates the creation of a pertinent knowledge database and
the identification of both bad (anomalies) and good practices. The proposed approach is illustrated
with experimental results related to a representative set of ITS project repositories. These results
enhance experts’ knowledge of the project and can be used for correct decision-making actions. They
reveal weak points in project development and possible directions for improvement.

Keywords: software development; exploring software repositories; issue handling patterns; data
feature recognition; anomaly detection

1. Introduction

Software development and maintenance processes are documented in project reposito-
ries. The most interesting repositories are provided by the Issue Tracking (ITS) and Version
Control (VCS) Systems, which are used by project stakeholders to manage their activities.
The importance and practical usefulness of the ITS and VCS is underlined in [1–3]. Data
collected in software repositories are the basis for diverse practical and research studies
in the software engineering domain. Here, we can distinguish the following aspects con-
sidered in the literature on software repositories: the detection of duplicate issues [4,5],
bug prediction and issue classification [6,7], bug triaging [8], and issue report textual
analysis [9,10]. Most papers related to software bugs focus on a single selected problem
considering coarse-grained data from repositories. Other types of issues also have a high
impact on development processes and are underestimated. The issue handling schemes
have a significant impact on software reliability. Numerous models have been proposed to
address this problem, such as [11]. In [12], we showed the need to investigate fine-grained
data in issue reports to obtain a deeper view regarding issue handling processes. Devel-
oping a holistic methodology of assessing the effectiveness of issue handling processes
enriched with anomaly detection capabilities is a consequence of these studies.

The multitude and diversity of data in the ITS and VCS are challenges in data explo-
ration targeting specific investigation problems. Issue management consists of identifying
project requirements, planning development tasks, handling, and explaining appearing
problems. All of these activities are documented in ITS repositories that describe diverse
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issue features (attributes), processing progress, project actor activities, etc. Having exam-
ined many ITS repositories, we observed an abundance of diverse data relevant to project
development and maintenance, which are not adequately exploited by project stakehold-
ers. Moreover, our experience with developing and analyzing software projects [12–14]
motivated us to formulate two research questions:

Q1—What is the scope of issue specification, information accuracy, statistical properties
(static and dynamic), and their impact on handling processes?
Q2—How should we evaluate and improve issue handling processes on the basis of
ITS reports?

The main contributions of our study are as follows:

- Introducing an original issue handling model: a processing activity graph targeted at
diverse observation perspectives and linked with issue repository databases.

- Developing analysis schemes supported by original metrics and algorithms.
- Verifying the efficiency and usefulness of the proposed approach in experiments with

real project repositories.

The issue handling model (IHM) with conceptualization entities and derived property
profiles (fine-grained and aggregated) constitutes a body of represented knowledge on
project development/maintenance processes. The IHM considers various issue attributes
neglected in other approaches which impact the accuracy of the analysis. It enables the
tracing of issue handling paths and defining quality analysis criteria related to issue
processing phases or scenarios, handling times, and resolution coverage. The presented
methodology and algorithms allow us to accumulate experience and facts in the knowledge
database on software projects. Discussing the analysis results with project stakeholders
facilitates making decisions on improving developed projects, avoiding bad practices, or
transferring the identified good practices to new projects.

The organization of the remainder of this paper is as follows. Section 2 outlines the
related work and addresses our research scope. Section 3 presents general features of issue
tracking repositories and formulates challenges in their analysis. Section 4 introduces a
generalized graphical model (IHM) of issue handling processes and issue flow metrics.
This is complemented by a set of developed data processing algorithms. Section 5 provides
illustrative analysis results for a representative set of software projects. The capabilities and
limitations of the proposed approach are discussed in Section 6. Our concluding remarks
are summarized in Section 7.

2. Literature Review and Problem Statement

Software repositories are used in numerous studies on diverse software engineering
aspects such as the classification of issues, bug localization (diagnostics), task allocation,
issue lifecycle tracing, and predicting specified issue or project features. Reported issues
have different levels of importance specified by priority or severity attributes. They can be
fixed by issue reporters, modified by other project actors, or derived from issue descriptions.
In [15], a two-stage approach is proposed to predict the goal of opening an issue and its
priority. This approach uses feature engineering methods and text classifiers. A survey
on issue severity predictions based on issue descriptions is given in [16], confirming the
usefulness of text mining (machine learning) supported by unstructured text features.
Security-related issues need special attention due to their criticality. Security bug reports
are predicted based on constructed knowledge graphs and finding security-related words
in bug reports [17]. Issues reporting security vulnerabilities can be identified by checking
for the presence of security-related keywords with appropriate filtering [18] to avoid
mislabeling. Issue importance (criticality) impacts the order of issue resolution, so its
correct specification is compelling.

ITS repositories comprise diverse issue types, e.g., bugs, new functionalities, perfor-
mance improvements, code merging, and system reconfiguration, and thus require need
appropriate handling services. In practice, reported issues may not be labelled or may be
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labelled incorrectly. Hence, automatic classification is still helpful in issue management,
and it uses text mining techniques applied to the issue title and description. The funda-
mental classification discriminates between bug and non-bug issues [6]. Issues of the bug
type with a higher priority should be resolved prior to the release of the code. Some issues
do not need fixing (will not fix issues [19]) due to the ability to postpone for another code
version or having an acceptably negligible impact.

In complex projects involving many actors, a significant percentage of duplicate issue
reports may appear. Their identification can significantly reduce redundant activities
and avoid wasting developer resources. There exist a wide variety of approaches to
automatically detect duplicate bug reports, such as text mining their descriptions and using
similarity measures and some other statistics [5]. The precision of detecting duplicate bug
reports can be improved by converting unstructured textual descriptions into structural
data [4].

Numerous papers concentrate on issue classifications related to specified categories.
The neural network RoBERT [20] identifies three issue categories: bug, enhancement,
and question. Wu et al. [21] developed a prediction model to identify valid, invalid,
and performance- and aging-related bug reports. The best results were achieved with
the Support Vector Machine (SVM) classifier. In our previous paper [22] (and included
references), we discussed some other issue classification schemes. The ITS facilitates
characterizing issue types with default or customized labels. This can be enhanced by
extracting issue information (report descriptions and comments) and applying text mining
classifiers [23]. Correlating ITS and VCS repositories, bug classification can reflect the scope
of code and the number of needed fixes [23]. Bug type identification is crucial in bug triage,
localization, and fixing processes. Moshin and Shi [24] proposed a robust and effective
classification model targeting these aspects. A unified model for bug classification and
assignment problems is presented in [7]. It organizes data in a knowledge graph.

Problem localization is important in issue handling. Investigating textual similarities
of bug descriptions and source code files helps in localizing bugs [25]. Here, we can also use
machine learning techniques. Often, issue descriptions are not clear, so diverse comments
are added to ITS reports. Depending upon the project, diverse types of comments and
communication functions can be used [26]. The automatic classification of comments was
presented in [10,22].

In issue handling, the problem of allocating issues to appropriate persons for resolution
arises, referred to as the triaging problem. Some studies propose adopting machine learning
and information retrieval techniques to identify suitable fixers for a given bug report. Xie
et al. [8] consider the textual content and metadata in the bug reports (e.g., product,
component) and the tossing sequence of the bug reports. The selection of the right team
for the project is an important problem [27]. The number of project actors involved in a
tossing sequence impacts the issue fixing time. Developer rankings are based on developers’
competence, contributions, and the achieved average fixing time. A logistic regression
classifier including the simple textual and categorical attributes of the bug reports ensured
high precision and recall (close to 80%) in bug triaging [28]. The categorical attributes
included the product, customer, site, priority, issue reporter, configuration, and project
generation. Most bug triaging approaches have focused on static tossing graphs, while Wu
et al. [29] considered interactions among developers.

Historical data in software repositories are useful in diverse predictions [30]. Timing
features of reported bugs or their frequency (defect arrival) facilitate predicting unrevealed
defects or assessing software reliability. For this purpose, various probabilistic models
have been proposed [11,31]. Machine learning combined with the ensemble method was
used in [31] and ensured high accuracy for 32 projects from three dataset repositories.
The predictions were based on product and process metrics. Some approaches use the
correlation of code complexity metrics and defect density. Software defect predictions
can be performed within a project or across project scopes. Studies at the level of project
versions are also possible [32], where a prediction model uses historical data derived by
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mining version control and issue tracking systems. The impact of feature selection and
sampling techniques on the accuracy of software fault prediction model is discussed in [33].
Software reliability growth models (SRGMs) are used to predict defect appearance during
software lifecycles [11]. Defect disclosure and defect resolution models are distinguished
in [34].

Many studies focus on predicting which components might be defective [35]. The pre-
diction accuracy depends upon extracting appropriate features from the software repository.
Defects may result not only from incorrect code development but also from a mismatch
between software behavior and requirements. Other predictions focus on specific prob-
lems, e.g., predicting questions raised by developers in an issue report [36], predicting the
software component required to resolve an issue [35], and predicting bug fixing time [37].

The considered prediction models are based on coarse-grained defect handling schemes,
so they neglect many real problems and do not ensure acceptable modeling accuracy. In
practice, they restrict studies to bugs and do not consider a wider range of issues, e.g., their
types and diverse attributes which have a significant impact on issue handling processes.
Moreover, these features may change over time. Typical asymmetric Gaussian shapes of
defect resolution in the project lifecycle (e.g., described in [34]) are not consistent with real
project behavior and used development technologies (e.g., Scrum). Hence, a deeper and
fine-grained issue handling analysis is needed.

The presented literature survey showed diverse research studies focused on specific
software engineering aspects considered separately. There is a gap in assessing the effec-
tiveness of issue handling schemes covering all activities starting with the issue registration
and leading to the final resolution. These activities are distributed over time and allocated
to specific processing phases (states) which engage with agreed-upon project actors. They
create various issue handling schemes (paths). In real projects, we observed a high diversity
of issue handling schemes (patterns), even within a single project. They depend on issue
features, project actors’ capabilities, and development strategies, which can be derived from
issue attributes in ITS repositories (Section 3). Combining such a wide scope of issue fea-
tures was neglected in the literature. The comprehensive analysis of issue handling requires
defining diverse observation perspectives and assessment metrics useful in monitoring
project development. The proposed well-ordered approach to this analysis resulted in the
creation of an original IHM, which embodies issue processing actions, involving actors
and other attributes. This compact model is a backbone for constructing data exploration
algorithms targeted at deriving qualitative and quantitative properties of issue handling.
These algorithms provide the capability to trace, in a systematic way, issue processing
at a fine-grained level, considering various dependencies. This is opposed to classical
analysis schemes (coarse-grained) restricted to high-level issue flow checking (e.g., [34]
and references therein). The IHM with the introduced set of evaluation concepts, analysis
objects and metrics is a structured framework for studying the relevant domain knowledge,
namely good and bad practices in project development. It supports project monitoring
and refinement.

3. Issue Tracking Space

Issues are registered by reporters in ITS repositories. They are handled by project
stakeholders (actors) according to the assumed schemes in the company and the used tools.
Issue processing is documented in issue reports, which include diverse attributes updated
throughout project’s development and maintenance. Issue handling involves a sequence of
processing steps, such as issue analysis, problem diagnosis, problem solution, testing, and
validation. Most of these steps are performed by assigned project actors; however, some
automatization may also appear here. The final step should provide a decisive resolution,
e.g., completed, fixed, rejected as not a problem, or identified as being duplicated.

The processing progress is documented in the ITS repository, and it depends upon the
type of the issue, developer requirements, company organization, and other aspects. Issue
reports comprise diverse attributes, e.g., the issue identifier, type and priority, description
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(title, problem summary), status of the performed processing activities and relevant time
stamps, actors engaged in these activities, code localizations, and project development
stages. They can be supplemented with comments, screenshots, relevant code snippets,
used test suits, etc. All issues undergo a triaging process which involves issue understand-
ing and checking its relevance, setting the priority, assigning the responsible maintainer,
etc. Diverse models of activity flow are encountered in projects, and typically they adhere
to the following sequence: (1) create an issue; (2) backlog; (3) selection for development;
(4) to do; (5) in progress; (6) quality assurance; (7) verification; (8) done. The project stages
of planning, development, testing, and deployment relate to activities 1–4, 5, 6–7, and
8, respectively.

The issue repository of the ITS is a set IS(P) that comprises issue specifications Ii ⊂ IS(P)
correlated with the considered project P. Each issue is specified by a set of attributes and an
additional set of features Fi which can be represented in the following form:

Ii = {ai1, ai2, . . . aij, . . ., ain(i); Fi}

where aij is the j-th attribute value of the i-th issue and n(i) is the number of attributes for
the i-th issue. The number of issue attributes and their contents (values) depend upon the
ITS, the issue type, and project manager adjustments. Some attributes are obligatory (e.g.,
issue id, issue registration timestamp, issue type, priority, reporter id, etc.), while others can
be optional (e.g., expected time of issue resolution). Attribute contents are assigned during
issue processing by entitled project actors. Nevertheless, some attributes can be generated
automatically by the ITS (e.g., issue id). In general, we can distinguish numerical (e.g.,
project version, time stamp, etc.), categorical (e.g., type, priority level, processing state, etc.),
and textual attributes. Textual attributes describe relevant issue problems, typically the
title, description, summary. Within additional issue features Fi, we distinguish historical
aspects of issue processing, namely the sequence of processing states and the sequence of
generated comments. These are usually specified in the form of lists:

Lc = <Ec1, Ec2, . . . Ecj, . . ., Ecn(c)>;

where c denotes the list category, Eci is the i-th element of the list, and n(c) is the number of
list elements. List elements depend upon the list category. For example, the state processing
list comprises subsequent issue processing states with relevant entry timestamps and
responsible project actors. The comment list comprises the comment registration timestamp,
the comment author, and the comment text. Both lists can be combined in one history list.
Having analyzed a wide scope of ITS repositories [12], we found that depending upon
the project, issue attributes and their values may differ partially or significantly. Usually,
within the same project, they are stable; however, some fluctuation may appear in time,
e.g., due to ITS system upgrades, project organization and development improvements,
project actors’ fluctuations, etc. In practice, issue reporting deficiencies may also occur, e.g.,
wrong or lacking attribute specifications.

Details of issue reports rely on the used ITS tools (e.g., Jira, Bugzilla, Mantis, etc.),
the project manager guidelines, stakeholders’ responsibilities, and competence, etc. Issues
registered in ITS include software bugs, requests for new functionalities or performance
improvement, development tasks (e.g., code merging), unexpected problems, etc. Issue
processing depends upon their types, the accuracy of their description, priorities, and other
attribute specifications. This is also influenced by the capabilities of project stakeholders
engaged in resolving the considered issue. Hence, in practice, we observe diverse sequences
of issue processing actions (phases) which impact handling times. Usually, they relate
to details associated with the considered issue. Some issues may have greater urgency
than others, due to their priorities or them blocking the processing of other issues. On the
other hand, low-urgency issues can be resolved as time permits. Issue description accuracy
also impacts resolution time, e.g., requests to provide additional comments and mutual
interactions of actors.



Appl. Sci. 2024, 14, 4723 6 of 34

Our previous studies on handling software bugs in many projects [13] showed
a high diversity of processing schemes (state paths) and handling times. We found the
need for deeper studies on assessing issue handling processes. Hence, an appropriate
framework is needed to extract useful knowledge in a systematic way. It has been enhanced
with metrics adjusted to diverse investigation aspects and combined with introduced anal-
ysis algorithms. The backbone of this analysis is the introduced original issue handling
model (IHM) enhanced with assessment metrics/profiles adapted to specified observation
perspectives, e.g., general issue resolution effectiveness, detailed issue processing states
and patterns, timing features, and project actor interactions. Additionally, it provides
a graphical visualization of the issue processing flow. The IHM is integrated with the issue
database which comprises characteristic data extracted from the ITS repository. Depending
upon the project, the number of issue attributes is in the range of a few dozen to more
than 100. However, only some of them can be useful in the analysis [12]. The ITS records
individual issue features to provide project actors with information on their processing.

Issue data are acquired using appropriate REST APIs of the ITS. These APIs1 usually
ensure access to a limited number of issues (e.g., 1000), so they have been extended to
complete the specified number of issues (or relevant observation period) and store them
in a uniform structure in a separate database (MongoDB) for each project. It is important
to derive required data and store them in a structured and compact format adapted to
further processing. The developed original analysis algorithms refer to the introduced
IHM’s graphical objects and their relations. They trace sequences (paths) of issue handling
steps, issue timing, and other category features stored in the database. Here, we distinguish
explicit issue attribute values (e.g., issue type, priority) and derived features: the number
and categories of comments, the size of the issue description, issue looping characteristics,
other specified properties, etc. This approach allows us to monitor the issue handling
time, check compliance with assumed workflows, and perform diverse statistical analysis.
It is supported by introduced original assessment metrics and profiles relevant to the
considered observation perspectives and issue filtering capabilities that cover addressed
investigation aspects. An important aspect is identifying issue processing deficiencies
(bottlenecks, anomalies) and indicating possible improvements.

The developed analysis methodology is universal and consistent with project develop-
ment schemes. To demonstrate its capabilities, we present and interpret many experimental
results relevant to issue repository mining of real projects. Detailed results are presented
for the open source projects Mongo DB and Log4j2 and the commercial project P1. Mon-
goDB is a cross-platform, document-oriented database program (NoSQL database) and it
utilizes JSON-like documents. Apache Log4j2 is a versatile, industrial-grade Java logging
framework composed of an API, its implementation, and components to create logs while
running the application. It is actively maintained by a team of several volunteers and
supported by a large community. P1 is an e-commerce B2B system developed using Scrum
technology. Its database stores the specifications and prices of diverse products and data
related to clients. The provided services (transactions) cover many countries and product
suppliers. These projects differ in their used development technologies and provide repre-
sentative analysis results which illustrate the variety of issue handling schemes, properties,
or anomalies. Nevertheless, we also include succinct comments on other analyzed projects
to provide a wider scope of possible results.

Considering the broad range of analysis perspectives, an important issue is the flexi-
ble visualization and presentation of results adjusted to the analyst’s (expert’s) interests.
Hence, the results are presented in cross-sectional files with possible filtering capabilities to
facilitate deeper problem-oriented exploration and derive aggregated assessment profiles
(useful in creating relevant knowledge databases).

4. Exploring and Assessing Issue Handling Processes

In assessing issue handling processes in software projects, we can deal with general or
detailed features. In the first approach (coarse-grained), three metrics are important: the
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issue handling time, the scope of unresolved issues, and the distribution of code changes per
issue (Section 4.1). The second approach (fine-grained) focuses on tracing issue processing
in subsequent phases (states) and various correlation dependencies. For this purpose,
a graphical model (IHM) and relevant metrics are introduced (Section 4.2). This model
allows the investigation of issue handling schemes (paths—Section 4.3) by processing issue
repository data with the developed algorithms.

4.1. Issue Handling Summary

The efficiency of handling issues can be assessed according to the distribution of issue
handling times. For each issue, we derive the timestamp of its registration and resolution.
The issue resolution needs to be commented upon; theoretically, it should relate to a closed
state. However, quite often, this state is skipped, so in the case of the last resolved_x state
(x denotes the resolution method) not being succeeded by the closed one, we take its time
stamp as the terminal handling time. Another problem relates to issues for which handling
processes did not terminate in the considered repository time scope. Hence, deriving
timing distributions, we obtain two numbers, namely that related only to the terminated
issues (suffix A) and that considering the remaining issues as terminated at the last time
stamp of the analysed repository (suffix B). Some illustrative statistics are shown in Table 1:
the number of considered issues (N) and the average (AVG), maximal (MAX), and Q2
and Q3 quartiles of issue handling times. For each project, these statistics are calculated
considering two cases of issue processing termination (suffix A or B). The results for the
open source projects MongoDB and Log4J2 relate to all reported issue types: Bugs, New
Feature, Improvement. In the case of the commercial project P1, New Feature, User Story, and
Task issue types were considered.

Table 1. General statistics of issue handling times (in days) for three projects.

Project N AVG MAX Q2 Q3

MongoDBA 11,675 45.2 358.2 28.4 52.3
MongoDBB 1760 242.5 499.6 232.2 326.1

P1A 2059 45.4 226.2 30.0 48.9
P1B 319 52.0 80.2 48.8 59.9

Log4J2A 2343 153.5 1721.3 40.7 125.7
Log4J2B 764 7.5 26.2 2.8 7.0

Deeper studies can focus on specified issue types, priorities, resolution methods, etc.
More interesting studies relate to the introduced issue handling model (Section 4.2). It is
worth noting that the handling time for high-priority issues is significantly lower than for
the others (compare Section 5.3). In time statistics, we skip the first quartile (Q1) due to its
low practical significance. It relates to a small number of handled issues and in practice is
10 or more times lower than Q2.

Another perspective on issue handling in the project is provided by time plots showing
the number of all registered events at a specified moment (starting from the beginning of
the repository period) and the number of closed ones. Figure 1 shows the distribution of
resolved, postponed, and duplicate issues for the open source project Spark. The postponed
issues (not resolved) constitute about 20%. Their absolute number increases with time.
Intuitively, it seems that the percentage and absolute values of unresolved issues should
increase at the beginning of the project up to the maximum and then decrease, as shown
in [34]. This could reflect the systematic engagement of actors in project development,
gaining experience, and problem knowledge over time. This can refer to stable projects
which achieve a maturity level. In practice, most projects include continuous code im-
provements, upgrades, and adding new functionalities which result in the appearance of
new issues needing resolution. The increasing number of project users over time may also
cause an increase in the number of generated issues. On the other hand, the fluctuation
of the number of project stakeholders in time has an additional impact. Nevertheless,



Appl. Sci. 2024, 14, 4723 8 of 34

a decreasing ratio of unresolved issues is required. This can be achieved by optimizing the
number of issue handling actors and improving the efficiency of this process.
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The presented shape of the plots in Figure 1 was similar to many other projects;
however, the rate of unresolved issues (e.g., postponed) fluctuated in the range of a few
percent up to 40%, and for some projects, a low percentage was observed in the initial
phase of the project and then increased or fluctuated. In the developed commercial project
P1, the rate of unresolved issues fluctuated around 5%. In practice, issues have diverse
impacts on project quality and usability. Hence, it is important to rapidly resolve the most
critical ones. In the analysed P1 project, they constituted below 1% of the total, and absolute
values reached one to five issues per year. This was simple to ensure due to the low number
of high-priority issues. In the analysed open source projects Casandra, Flink, Spark and
Mozilla, we observed fewer than 10, 50, 80, and 100 of unresolved issues of the two highest
priorities, which constituted less than 1% of the total. Moreover, the handling times of these
issues were lower than the others.

On the other hand, we can observe postponing the resolution of low-level priority
(e.g., cosmetic) issues. This may cause the so-called effect of bug debt [22,38]. This leads
to overlooking important problems due to the false qualification of issue priority and the
combined impact of many postponed issues, which may also be triggered in correlation
with code upgrades or system configuration changes. Dealing with this problem, we
introduced an algorithm which detects a significant increase in such postponed issues
and initiates their investigation, targeted at searching for suspicious ones to check their
criticality [22]. This analysis is performed with issue description text mining based on
machine learning algorithms. The output of this analysis is the set of suspicious issues
needing deeper analysis. Some experiments with several projects showed that the algorithm
filtered out only several percent of postponed issues as suspected, deeper analysis was
restricted only to these issues, and it confirmed that 80–90% of them were critical.

Resolving issues triggers the activities of diverse project contributors (e.g., testers,
analyst, developers). It is able to control their workload and efficiency. This can be traced
in correlation with the IHM discussed in Section 4.2. Nevertheless, we can derive general
insights regarding this problem by presenting the distribution of performed code changes
which have a significant impact on testers’ and developers’ workflow. As an illustration,
Table 2 shows code change statistics (CCS) for the MongoDB, P1 and Log4J2 projects, i.e., the
percentage of relevant issues involving the specified number of performed code changes.
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Table 2. Code change statistics (CCS) for MongoDB and P1 projects.

Project 1 2 3 4 5 6 7 8 9

MongoDB 48.5% 22.1% 17.7% 7.3% 2.6% 0.3% 0.3% 2.3% 0.3%
P1 84.0% 11.3% 4.1% 0% 0.3% 0% 0% 0% 0%

Log4J2 87.1% 10.9% 2.0% 0% 0% 0% 0% 0% 0%

In [14], we generated statistics of the number of changed files and code lines in relation
to the number of performed commits. Higher numbers of changes or their scope may reveal
the need for better issue partitioning. We observed this problem in long-term projects with
fluctuating actors. To deal with this problem, we introduced parameter ACC, defined
as follows:

ACC = ∑
i∋ Ic

pi
ci·|Ic|

(1)

where Ic denotes the set of issues (of cardinality |Ic|) needing code changes, pi denotes
the number of programmers involved in code changes within the i-th issue, and ci is the
number of code changes during i-th issue handling. Low values of ACC may relate to
the incorrect granularity of project tasks (too complex) which result from deficiencies in
issue description and problems with testing the introduced code changes. This leads to
delaying issue resolution. In the considered commercial project P1, the parameter ACC
was low during its initial phase (0.38–0.65). The gained development experience (as the
project progressed) allowed us to improve this parameter in the range of 0.8–0.9, which
contributed to decreasing issue handling times.

We should also note that issue resolution may not need code changes, e.g., uncon-
firmed problem, duplicated or negligible issues, etc. Moreover, sometimes changing the
environment configuration is sufficient. Nevertheless, the resolution of issues in this way
needs the activities of appropriate project actors (e.g., analysts, testers, etc.). In P1 Scrum
projects, only 49.8% of the reported issues needed code changes/extensions, while many
issues needed configuration refinement. We can also trace the number of code line or file
changes over time; quite often, they decrease as the project stabilizes or becomes mature.
In the P1 project, we achieved a reduction in the number of code change operations (and
modified files) by 30% within 3 years, which resulted in lowering the workload of pro-
grammers. We have also introduced some metrics of project actors’ activities [12]. The
presented coarse-grained project development features provide a general overview. Deeper
investigations need to introduce a backbone model mapping issue handling processes in
well-structured schemes.

4.2. Issue Handling Model (IHM)

We introduced the Issue Handling Model (IHM), which is a significant extension of
our previous studies [13]. In [13], only bugs are considered (neglecting issue attributes).
Furthermore, they are traced with ad hoc scripts (not published) that are adapted to the
Bugzilla repository. The IHM is a generalized model that is adjusted to deeper studies
involving advanced data exploration algorithms covering a wide range of investigated
issue properties and handling processes. Issue reports can refer to bug detection, correc-
tion, perfective and adaptive maintenance, adding new functionalities, the discussion of
encountered problems, and other tasks. The IHM is supported by original algorithms
which consider a wide range of issue types/features derived from the statistical analy-
sis (Sections 3 and 4.1) and provide deeper insights into issue processing. It facilitates
deriving categories of dominant or anomalous handling schemes, correlating them with
relevant issue features, etc. The IHM covers diverse types of issues, correlated attributes,
and other features. The derived issue processing features are presented in a concise form
of introduced handling patterns, diverse processing profiles, effectiveness metrices, etc.
This is a form of mapping the bulk of software repository data into a compact image of
project development processes. It supports the assessment of these processes by project
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managers and software engineering experts. The IHM is built around the original database
comprising extracted features of issues from the ITS repository as well as those derived
using the set of original analysis algorithms. The issue handling model (IHM) for project P
is defined as

IHM(P) = {V(P), E(P), δ, γ, ID(P)AL}||R (2)

where V(P) is the set of graph nodes describing states (phases) of issue handling and E(P)
is the set of directed edges specifying state changes. The functions δ and γ map various
features for nodes (states) and edges, respectively. They can relate to issue handling flow,
timing, or other parameters. ID(P)AL is a database comprising derived issue properties
using AL algorithms linked with the issue handling graph. The range of modelling is
trimmed by restrictions R imposed on the considered issues. Typically, the functions δ and
γ specify issue flow, e.g.,∨

eijϵE
γ1

(
eij
)
=nij

∨
vjϵV

δ1
(
vj
)
= nj = ∑eij∈in(vj)

nij∨
eijϵE

γ2
(
eij
)
=

nij
N δ2

(
vj
)
=

nj
N∨

eijϵE
γ3

(
eij
)
=

nij
∑eijϵ out(Vi)

nij

(3)

where nij is the number of issues correlated with edge eij, i.e., leaving node vi and entering
the succeeding node vj,; vi, vj ϵ V(P); eij ϵ E(P); N is the number of all considered issues;
and out(vj) is the set of all edges leaving the j-th node. The function γ1 specifies the explicit
number of issues (absolute throughput), while the functions γ2 and γ3 are relative metrics
which specify the ratio of handled issues in relation to all issues N (global throughput) and
issues attributed to the initial node of the considered edge (local throughput), respectively.
Similarly, the functions δ1 and δ2 specify the absolute and relative values of issues handled
in the considered state, while in(vj) is the set of all edges entering node vj. We can also
introduce external graph edges related to the direct delivery of issues by reporters to a
specified state. They can be modelled by adding an external state vext or a set of such
states, e.g., corresponding to specified reporters. Depending upon the analysis goal, we
can assume various restrictions on considered issues:

Issue classes—issues of a specified type, priority, or severity, generated by a subset of
reporters, etc.;

Issue handling times—issues reported after a fixed time moment, handled within a
specified time, Scrum sprint, or program version, etc.

We can also generate reduced graphs/models by deleting specified states (e.g., re-
lated to a lower number of handled issues, beyond the interest of studies, etc.), merg-
ing/aggregating states or edges (e.g., merging diverse resolution states into one), and
eliminating edges with flows below some threshold (e.g., 5%). With different forms of
these functions, we can concentrate on different aspects of graph visualization (global
or local perspective). These can characterize issue flow capacity, timing features, project
actor activities, issue commenting patterns, issue processing patterns (path structures), etc.
The IHM facilitates correlating issue report details stored in the database with structural
features of the IHM. The observation granularity can be adjusted to global (aggregated)
or local perspectives. The introduced IHM and the analysis methodology support finding
desirable issue handling patterns and identifying anomalous behaviours. These studies
can be formalized using regular expressions, defined using quality profiles, and supported
by appropriate algorithms/tools.

As an illustration, we present two IHM graphs. Graph nodes represent issue handling
states, and the specified numbers denote the numbers of handled issues in the states and
edges. Figure 2 presents an IHM graph relevant to bug handling in the commercial project
P1. Issue processing starts in the New state, and most issues are further moved to the In
Progress (1315 issues) or To be Tested states (245), etc. The final state is VerifiedClosed (1595).
This is a relatively complex graph with 12 nodes, and it involves some processing loops
(e.g., New, To be Tested, New). The reduced graph that skips edges handling less than 10% of
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the issues comprises seven states (New, In progress, Review, Need Info, To be Tested, Reopened,
Verified/closed). For the issues New Feature, Task, User Story, the IHM graph is more complex
(21 states) and reduces to nine states by eliminating edges handling less than 10% of the
issues. For comparison, Figure 3 presents an IHM graph for the MongDB project covering
only bug issues with major priority and nodes covering over 20% of the issues. It shows a
dominant issue handling path. The full graph is more complex, involving 20 states. Graph
analysis including issue handling paths are discussed in Sections 4.3 and 5.
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Algorithms for IHM graph analysis are adapted to their complexity, characterized by
the following parameters: |V|—the number of nodes; |E|—the number of edges (graph
size); d(G) = |E|/(|V|*(|V| − 1))—graph density; and indeg(V) and outdeg(V)—the
number of entering and leaving edges of the node, respectively. Having generated IHMs
for many open source and commercial projects, we found that the graph complexity was
relatively low: in most cases, the graph size was in the range of 25–48, indeg(V) was 1–3,
outdeg(V) was 1–6, and graph density was 0.15–0.43. For one complex commercial project
C [13] (telephone billing system), we obtained a graph comprising 26 states and 280 edges
(graph density, 0.43). These values significantly reduce if we reject edges related to a low
number of issues (restriction R). The IHM graph of the Mongo DB project (open source)
covering issues with major priority (7488) comprises 17 nodes and 66 edges (d(G) = 0.24,
indeg(V) = 0–11, outdeg(V) = 0–9)), and in case of issues with a higher priority blocker (54),
it is reduced to 9 nodes and 25 edges (d(G) = 0.35, indeg(V) = 0–7, outdeg(V) = 1–5). As a
consequence, algorithms tracing issue handling (e.g., finding all possible paths and loops)
are simpler than classical ones.

Issues can be processed sequentially according to IHM states (nodes). The state Sj
payload can be measured as the issue inflow IF(Sj), i.e., the number of all issues entering
state Sj:

IF
(
Sj

)
= ∑

i∈I
(nij) + dp

(
Sj
)

(4)

where nij is the number of issues passing the edge eij from state Si to Sj, I = {i: < Si, Sj > ϶ E},
and dp(Sj) is the direct payload, i.e., the number of issues introduced directly to state Sj
by reporters. In practice, this appears in the initial IHM state, while for other states, it is
observed very rarely (Section 5.3). Issue inflow can also be conditioned by specified issue
restriction R, as in IHM specification (2). The significance of states in issue handling can
be characterized by the state load (sl), state weight (sw) and state redundancy (sr) profiles
defined as follows:

sl(Si) = IF
(
Sj
)
/N

sw(Si) = ∑Pj∈ P n
(
Si, Pj

)
/|P|

sr(Si) = [IF(Si)− UI(Si)]/IF(Si)

(5)

where Pj denotes the issue handling path from the set of all possible paths P, defined as
the sequence of states involved in processing issues (Section 5.2); |P| is the cardinality
of set P; n

(
Si, Pj

)
denotes the number of state Si appearances in path Pj; and UI(Si) is

the number of unique issues handled in state Si. These profiles can be adapted to issue
restrictions R of the IHM graph. The sw profile reflects the impact of state Si activity in all
paths, while sl shows the ratio of issues handled in state Si. The profile sr identifies issue
looping (sr(Si) > 0—issue processing returned to state Si). We can also use profile vectors
(over states) or aggregated state profiles defined as

ASx = ∑
Si∈ S

sx(Si) (6)

where x specifies profile type (5), with l, w and r corresponding to state load, weight and
redundancy, respectively. Deeper analysis combines detailed issue parameters from the ITS
repository with IHM features using the developed algorithms described in Section 4.3.

4.3. IHM Analysis Algorithms

ITS repositories comprise a multitude of issue features and processing information
that are hard to interpret directly. Complexity, non-uniform data structures, and ambiguous
semantics create additional difficulties in processing software repositories. Hence, the
problems of data normalization, aggregation, and problem-oriented exploration arise.
Arranging issue reports in the IHM facilitates developing systematic analysis algorithms
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referring to the introduced objects in the IHM, deriving issue handling states, patterns, and
statistical features from diverse observation perspectives (e.g., specified by issue restriction
conditions R). They can support the identification of good practices, possible threats, bad
decisions, etc. (as discussed in Section 5).

Data for the IHM are downloaded into the database ID(P) from the project’s ITS
repository according to its API requests (Section 3) specifying issue type, priority, time
stamps, lists of issue comments, etc. They are presented in JSON format. Issue handing
analysis in relation to the proposed IHM is supported by specially developed algorithms
grouped into three classes: preprocessing (A1), aggregation (A2), and supplementary
(A3). These algorithms are outlined in points followed by detailed comments related to
their specifications in the form of pseudocodes (using object-oriented dot notation, as
in Python). They are used in repository analysis covering open source and commercial
projects. Representative results of the performed studies targeted at diverse qualitative and
quantitative issue handling aspects are presented in Section 5.

4.3.1. Issue Preprocessing Algorithm (A1)

Algorithm 1 is focused on processing single issues considering the attributes and
history of reports. It derives issue handling paths (state sequences with relevant times-
tamps) and basic issue statistical features. Here, we can process selected issues according to
specified restrictions (R), e.g., issue type, priority. For each issue Ii in the considered issue
set (IS) within the repository, Algorithm 1 extracts relevant data and performs two actions:

- The creation of the issue handling path Pi complemented by the handling time T(Pi),
state set Si, and relevant processing times within states (T(Si));

- The creation of a comment statistics set Ci (the number of involved actors, timing,
comment size, etc.) attributed to the considered issue.

Algorithm 1 uses two auxiliary lists: a list of created issue states (CNL) and a list of
state change timestamps (CTL). The list of state changes (I.history) is sorted by time stamp
(line 10). State changes are detected by comparing the field of relevant state modification
with the contents of the field “status” (lines 23–31). For each issue, the initial handling
state is derived (line 12–19). The lists CNL and CTL are created in lines 21–31. The list of
subsequent issue processing states, SL (with appended processing times, TS), is created
in lines 33–39 and it constitutes the derived issue handling path object P.SL (line 40). The
handling time of the last state in the path is assumed to be 0 (lines 34–38). Statistics on
comments correlated with the considered issue are derived in lines 41–46 (word count,
the number of unique words, etc.). The issue list I comprises all issue attributes, while
the relevant history and comments are stored as a separate list (compatible with the Jira
scheme). The history list comprises the name of the relevant issue field (attribute) which
was changed, the previous value of the attribute in string format (fromString), the new value
(toString), the timestamp of the performed change (time), and the author of the change. In
the case of the state attribute assuming the value resolved, there is an additional substate
specifying the resolution type (e.g., fixed, rejected). Hence, in lines 23–24, we check for the
existence of the resolution state (i.resolution). It is concatenated with the resolution state
(operator + in line 25). The comment list comprises the author, the time stamp of adding the
comment, and the comment text. The set of created paths for all considered issues (relevant
to assumed restrictions R) are submitted for further processing in Algorithm 2.

Algorithm 1. Deriving issue handling paths

input: List of JIRA issues with comments and history [I]
output: List of paths objects [P]
1 function translate_to_path([I]):
2 result = new empty list
3 FOR I in [I] DO
4 P = new empty Path
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Algorithm 1. Cont.

5 SL = new empty List
6 CNL = new empty list
7 CTL = new empty list
8 CrD = I.createdDate
9 CTL.add(CrD)
10 sort I.history by timestamp
11 FS = Null
12 FOR each item in I.history DO
13 IF (item field equals “status”) THEN
14 FS = item.getFromString()
15 BREAK
16 ENDIF
17 IF FS == Null THEN
18 FS = I.currentStatusName()
19 ENDIF
20 CNL.add(firstStatus)
21 FOR each i in I.history DO
22 SN = Null
23 IF (i field == “status”) DO
24 IF i.resolution exists THEN
25 SN = i.fromString + i.resolution
26 ELSE
27 SN = i.fromString
28 ENDIF
29 CNL.add(SN)
30 CTL.add(item.getTime)
31 ENDIF
32 ENDFOR
33 FOR i starting from 0 to len(CTL) DO
34 TS = 0
35 IF(i < len(CTL) − 1) THEN
36 TS = CTL[i + 1] − CTL[index]
37 ENDIF
38 SL.add(new S(CNL[i], TS))
39 ENDFOR
40 P.SL = SL
41 FOR each C in I.comments DO
42 WC = C.countWords()
43 UWC = C.countUniqueWords
44 P.CL add C.author, C.text
45 P add WC and UWC to proper lists
46 ENDFOR
47 result.add(P)
48 ENDFOR
49 return result
50 endfunction

4.3.2. Aggregation of State and Path Features (Algorithm 2)

The issue paths derived by Algorithm 1 can be aggregated considering their unique
state sequences. This is provided by Algorithm 2, which tracks state transitions and relevant
timing features in all paths. It also determines the IHM graph structure, state statistics,
and path-related features, such as issue coverage, structural properties/profiles, timing
statistics, etc. Algorithm 2 inspects the sets Pi, T(Pi), Si, and (T(Si)) for all Ii in IS (provided
by Algorithm 1) and includes the following actions:
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- The creation of a set of unique paths (PU) and relevant aggregated statistics (handled
issues, timing features (e.g., Q1, Q2, Q3 quartiles), comment global statistics (over
diverse path types), etc.);

- The creation of a global set of states (SG) and relevant statistics (handled issues, unique
issues, processing timing, etc.);

- The creation of an IHM graph with nodes relevant to set SG and edges derived by
tracing the PU set.

Algorithm 2 constructs state graph G by subsequently tracing all paths P generated
by Algorithm 1. For each state in the path, it creates a list of unique settings and updates
relevant vertices of the generated graph G (lines 6–16). For each state in the considered
path, we check for its existence in the created graph G; in the positive case, we update
data of the relevant graph vertex in the analyzed path. A single path Pi in P relates to
a single issue. In line 11, we use the special function getVertices(), which when applied
to graph G provides all vertices of the currently constructed graph G. Combining paths
with the same state sequence (lines 19–20), we generate aggregated statistics, including
issue flow (the number of covered issues), timing, and other features. In the opposite case,
a new vertex is added (lines 35–39). Next, we check for the existence of an edge between
the subsequent path states S(i) and S(i + 1) in the created graph G. In the positive case, it
updates the issue flow for this edge (E.count), and in the opposite case, a new edge is created
(lines 24–32). Having traced all states in the analyzed path of the considered issue, we
check whether it is compatible (the same structure) with any previously analyzed paths. In
the positive case, we update the statistics of the identified compatible paths. In the opposite
case, we create a new unique path for the further analysis (lines 42–47). Algorithm 2 creates
sets of unique paths (UP)—lines 39–44. States appearing in the path are mapped as vertices
of the graph (V)—line 37. Each vertex comprises two counters: (i) count (line 38)—the
number of setting the corresponding state by all passing it issues; and (ii) countunique (line
37)—the number of unique appearances of the considered state (equivalent to the number
of issue paths in which it appears). The directed edges (E) of graph (G) define transitions
between states (lines 21–32). Algorithm 2 is supported by the procedure paintGraph, which
includes graph visualization (line 51). It ensures the capability of generating restricted
graphs, e.g., with filtered-out states or edges corresponding to the issue flow below a
specified threshold (e.g., 1%). The procedure generate_state_features provides the set of
all identified states and relevant statistical features, including the issue count and count
unique numbers, timing statistics (minimal, maximal, average and quartiles Q1, Q2, Q3),
and other profile values. Similarly, the procedure generate_path_features provides statistics
of paths, including the number of issues processed by the considered path, timing features
similar to in case of states but related to passing all states in the path), and other features
(e.g., related to comments—discussed farther on).

Algorithm 2. Generation of the IHM

input: List of paths ([P]) with relevant statistics.
output: Graph (G) of the IHM, files with statistics of paths and states
1 function make_graph([P]):
2 G = new empty graph
3 UPL = new empty List
4 FOR each P in [P] DO
5 US = new empty List
6 FOR each S in P.SL:
7 IF (S not in US) THEN
8 US.add(S.name)
9 ENDIF
10 ENDFOR
11 VL = G.getVerticies()
12 FOR each v in VL DO
13 IF (v.name in US) THEN
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Algorithm 2. Cont.

14 v.UVC += 1
15 ENDIF
16 ENDFOR
17 FOR each S in P.SL DO
18 IF (G contains V with name equals to S.name) THEN
19 V.count += 1
20 V.TL = S.time
21 IF (S(i+1) and G contains vertex V(i + 1) with S(i + 1).name
22 and G contains edge E<V(i),V(i + 1)>) THEN
23 E.count += 1
24 ELSEIF (S(i + 1) and G contains vertex V(i + 1) with S(i + 1).name
25 and G does not contains edge E<V(i),V(i + 1)>) THEN
26 E = new E<V(i),V(i + 1)> and count = 1
27 G.addEdge(E)
28 ELSEIF (S(i+1) and G does not contain vertex V(i + 1)) THEN
29 V = new V<S(i + 1).name> and count = 0
30 G.addVertex(V)
31 E = new E<V(i),V(i + 1)> with count = 1
32 G.addEdge(E)
33 ENDIF
34 ELSE
35 V = create new V(S.name)
36 V.timeList add(S.time)
37 V.uniqueCount = 1
38 V.count += S.count
39 G.addVertex(V)
40 ENDIF
41 ENDFOR
42 IF (UPL contains P) THEN
43 UPL[P].update(P.statistics)
44 ELSE
45 UP = create new UP(P)
46 UPL.add(UP)
47 ENDIF
48 ENDFOR
49 generatePathsFile(UPL)
50 generateVertexFile(G)
51 paintGraph(G)
52 return G
53 endfunction

4.3.3. Supplementary Algorithms (A3)

The set of identified paths provided by Algorithm 2 can be quite large:, reaching
several dozen or hundreds, and sometimes exceeding one thousand. Therefore, to facilitate
their analysis, we must introduce some classifications related to state and other features.
This is useful in identifying issue processing deficiencies and to compare good and bad
practices in the investigated projects. The developed supplementary algorithms are used to
derive specific path features:

- Deriving paths with loops (PL) within the PU set and relevant statistics: the number
of handled issues, timing features, path structure (A3_L);

- Deriving specified path classes in the PU set and relevant statistics (A3_P);
- Deriving commenting features (A3_C).

Supplementary algorithms facilitate the identification of anomalies and the evaluation
of issue handling processes. They are based on the results from Algorithms 1 and 2.
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Algorithm 3 identifies state looping in paths. It provides lists of detected loops.
Moreover, we distinguish single-state or multiple-state loop categories. Single-state loops
comprise the repetition of the same state. Single-state loops usually result from deficiencies
in reporting processes. In Algorithm 3, state loops of this category are identified within lines
6–10 of the FOR code loop. State loops of the second category are identified within lines
13–20 of the WHILE code loop. Searching for all possible state loops is ensured by the FOR
code loop (lines 4–20), which iterates on the parameter LL, running from 1 to the half-length
of the analyzed path (maximal possible loop length). The WHILE code loop checks for
successive state subsequences in the path showing repetitions. As an illustration, Algorithm
3 applied to an excerpt of the state path [O,O,R_F,C,RE,R_F,C,RE,R_F,C] provides two
loops: {[O:1] and [C;RE;R_F;C:4]}. The first one is a single-state loop comprising state O,
while the second one is a four-state loop with the starting state C.

Algorithm 3. Identification of loops in issue handling paths (A3_L)

input: Path (P) represented as a list of statuses for given issue,
output: List of found loops ([AL])
1 function find_loop(P):
2 AL = new empty List
3 S = P.getStatuses()
4 FOR LL = 1 to (length of list)/2 DO
5 IF (LL == 1) THEN
6 FOR I=1 to len(S) − 1 DO
7 IF (S[I] == S[index + 1] THEN
8 AL.add(new A(list[i], 1))
9 ENDIF
10 ENDFOR
11 ELSE:
12 I = 0
13 WHILE (I + 2 * LL < len(S)) DO
14 L = new list as sublist of S with beginning in

S[I] and end in S[I + LL]
15 LTC = new list as sublist of S with beginning in

S[I + LL] and end in list[(I + 2)*(LL − 1)]
16 IF (L equals LTC) THEN
17 AL.add(new A(L, LL))
18 ENDIF
19 I += 1
20 ENDWHILE
21 ENDIF
22 ENDFOR
23 return AL
24 endfunction

Having analyzed issue handling paths for many projects, we observed a multitude
of path structures involving diverse combinations of states. It is therefore reasonable to
distinguish path classes according to various criteria: the range of issue flow, timing, and
structural features. For this purpose, we can define several profiles and path classes that
are targeted at the analyzed problems. The classification process can be supported by
regular expressions that define appropriate properties of searched paths, e.g., comprising a
specified subsequence of states (algorithm A3_P). Some illustrations are given in Section 5.

Comments registered during issue processing show problems in issue resolution,
deficiencies in issue description, misunderstandings of project stakeholders, etc. An in-
teresting aspect is tracing the timing, frequency, and information features of comments.
In the performed comment analysis, we use a previously developed classifier [22] which
distinguishes four comment classes: question, response, information, and issue fixing con-
firmation. For each issue, the introduced algorithm A3_C derives the number of generated
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comments, text size, category, structure of issue sequences, correlations with handling
states, and timing features. Timing features include the delay (SD) to the first comment
after the issue registration and the duration of the comment sequence (CD). Deeper analysis
is targeted at comment sequence distribution in issues. Here, we use aggregated profiles of
comment sequences from three perspectives (global, state, and path), defined as follows:

APC = {[nci; <cti1, cti2, . . . ctij>; nsi]: i ϶ C*}|R, (7a)

APC(Sr) = {[nci; <cti1, cti2, . . . ctij>;nsi]: i ϶ C(Sr)*}|R, (7b)

APC(Ps) = {[nci; <cti1, cti2, . . . ctij>; nsi}: i ϶ C(Ps)*}|R. (7c)

where nci is the number of comments in the i-th sequence, <cti1, cti2, . . . ctij> is the i-th
sequence pattern, with ctik denoting comment type (0 < k < j), nsi denotes the number
of issues comprising i-th sequence type, and restriction R specifies the considered issue
types and observation time range. C, C(Sr), and C(Ps) denote the set of comment sequences
correlated with all considered issues, the sequences generated during issue processing in
state Sr, and the sequences within the whole issue processing path Ps, respectively. The sets
C*, C(Sr)* and C(Ps)* comprise indices which label elements of relevant sets of comment
sequences. We can focus on some profile features, e.g., dominant sequences, the distribution
of comment categories in sequences, etc. Analyzing comment sequences, it is reasonable to
use general comment categories (e.g., questions, information, response) to limit the number
of possible structures of sequences. Some illustrations are given in Section 5.3.

The considered issue set IS needs to be specified by the project repository and addi-
tional filtering features (if needed) related to issue types, priorities, timing ranges, etc. The
results of the algorithms are presented in an explicit form (derived sets, graphs, etc.) and
multicolumn Excel tables comprising many detailed features which can be used by the ana-
lyst for deeper studies based on diverse filtering and correlations. Moreover, the available
links to individual issues provide capabilities for deeper studies regarding selected paths
to drill down and find explanations for strange processing results, diverse deficiencies in
issue documentation, etc.

Algorithm 1 provides rich data on issue handling in a well-structured way, and it
is the basis for further exploration with Algorithms 2 and 3. The number of considered
parameters can be adapted to the further analysis goals. The basic list of parameters
involves handling times within states and paths, issue features (type, priority, comment
characteristics, reporter activity), etc. This list can be extended to cover other details and
adapt to the needs of the considered project and the expert’s interests. Diverse aggregated
statistics are derived for states and paths derived in Algorithm 2. They cover all considered
issues (specified by condition R). Issue flow is characterized by the introduced profiles of
state or path load, while the issue handling time statistics cover the minimal, maximal,
Q1–Q3 quartiles, and distribution of time ranges correlated with the number of relevant
issues. Special attention is devoted to issue processing loops, assessed using Algorithm 3,
which provides the loop parameters of loop structure, issue coverage, and timing features.
The introduced taxonomy of issue handling paths supported by regular expressions and
correlated with statistic features facilitates the identification of project deficiencies, anoma-
lies, and good/bad practices (algorithm A3_P). Path exploration is enhanced with issue
comment analysis (A3_C). The capabilities and usefulness of the algorithms are illustrated
in relation to the provided analysis results in Section 5.

5. Experimental Results and Analysis

Based on the developed IHM, relevant algorithms, and introduced metrics and issue
processing profiles, we analyzed both open source and commercial projects. The illustrated
results focus on three observation perspectives: issue processing states (Section 5.1), issue
handling paths (Section 5.2), and issue commenting activities (Section 5.3). We also discuss
how these perspectives complement each other.
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5.1. Statistics Related to Processing States

The basic IHM state parameters are the state entry and exit times of processed issues.
Here, the problem of issues still being processed in the considered state needs to be
considered. We can either neglect such issues or assume the exit time to be equal to the
repository’s final time stamp. Another possibility is attributing zero handling time to
these issues. Fortunately, when dealing with repositories comprising many issues, such
situations rarely appear. Some consideration is required regarding terminal states, e.g.,
closed, which should specify the completion of issue handling, so transitions to another
state may not appear. However, sometimes we observed state changes from the closed
state. The basic state features of IHM can be extended by considering state change profiles
(e.g., probabilities of transitions to subsequent states) and actor activities (e.g., exchanging
comments), etc. Some of these are commented upon in subsequent subsections.

Issues attributed to a selected IHM state are processed by assigned actors and, de-
pending on the results, are transferred to a subsequent state. Tracing the time statistics of
handling issues in IHM states, we can derive relevant time profiles defined by minimal,
maximal, average, and Q1–Q3 quartile values. Creating these profiles, we can consider
diverse restrictions, e.g., issue types (all issues, bugs, new functionalities), issue priorities,
and project time ranges. As an illustration, in Table 3, we present a sample of state time
profiles (Q2 and Q3 quartiles specified in days) related to all software bug issues (1896)
in the Log4J2 project. It is reasonable to correlate state time profiles with the number of
processed issues within these states. Sometimes, an issue is processed in the state more
than once (looping), and hence we present two parameters: NS—the number of processed
issues in state S; and US—the number of unique issues (US ≤ NS). In the state R_F, looping
covered (NS − US) = 67 issues (this problem is analysed in Section 5.2.2). State specifications
in the first column of the table are consistent with Jira; moreover, we introduced acronyms
which are used in the subsequent text. Maximal handling times ranged from 148 up to
several thousand days (typically several hundreds). For the highest-priority bug issues,
the parameters Q2 and Q3 were in the ranges of 0.2–2 and 0.2–27 days (mostly below 10),
respectively (maximal values ranged from a few days up to 150).

Table 3. State time profiles for the Log4J2 project.

State Us Ns Q2 Q3

O (Open) 1841 1850 3.8 42.7
R_F (Res.fixed) 889 956 0.9 6.6

C (Closed) 823 881 0.25 33.25
InP (In Progress) 148 153 0.9 0.75

R (Reopen) 142 159 0.24 11.55
R_D (Res. Duplicate) 50 51 0.75 3.34

R_NP (Res. not a Problem) 44 44 0.26 2.75
R_WF (Res. won’t fix) 24 24 0.1 0.09

R_CR (Res. Cannot reproduce) 18 18 0.5 11.15
R_NB (Res. not a bug) 17 17 0.7 2.6
R_Inv (Res. Invalid) 17 17 3.37 1324

R_Inf (Res. Information prov) 16 17 0.2 0.32

It is worth noting that high values of maximal processing time may relate to postponed
bugs considered as having a negligible impact (however, they may contribute to so-called
bug debt). They may also have a significant impact on the increased average values, so
the Q2 and Q3 parameters can be more representative. The derived statistics can cover all
registered issues (as in Table 2) or only the completed ones. In practice, the latter issues
provide almost the same values (sometimes with higher maximal values). Typically, higher-
priority issues are handled more effectively (lower time values: Q3 for blocker issues of
1–17 days and maximal values of 1–610 days). Parameter Q3, as compared with Q2, is
typically 5–10 times higher for states handling a larger number of issues (in case of lower
numbers, this is not as regular). Maximal values may exceed Q3 by over 100 times.
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Having analysed state time parameters for several open source projects, we also ob-
served diverse values depending upon the considered states. Sometimes, they are much
higher than in the Log4J2 project, e.g., for the Exim project for the initial state (referred to
as NEW), Q2 and Q3 assumed values of 19 and 376 days, respectively. For comparison, in
Table 4, we provide state timing statistics for the MongoDB project (states covering up to
four issues were skipped). It is worth noting that for the highest-priority issues (53), much
lower time parameters were achieved: Q2 and Q3 in the ranges of 0.1–1 and 0.2–3.7 days,
respectively (maximal values of 1–100 days). The number of considered issues was
13,435 (8405 bugs and 5030 new functionalities).

Table 4. State time profiles for the MongoDB project.

State Us Ns Q2 Q3

NES (Needs scheduling) 12,644 14,725 0.2 4.9
NEM (Needs Merging) 1728 1765 0.1 0.7

INV (Invalid) 1678 2430 1.1 9
IPR (In progres) 8489 9702 0.2 2.8
OPE (Opened) 11,325 13,573 1.1 23.4

ICR (in Code Review) 8767 9316 1.9 5.8
NED (Needs verification) 12,400 12,466 <1 h <1 h

C (Closed) 11,811 12,575 1 7.3
NET (Needs Triage) 88 90 0.2 2.8

WFU (Wait for user input) 437 723 1.9 17.9
BAC (Backlog) 2034 2124 17.1 70.2
BLO (Blocked) 298 332 7.1 28.7

Typically, for open source projects, processing times are higher than for commercial
ones. For two commercial projects A and B and an Open state, we obtained processing
times of 0.2 and 10 days, and for other states, the processing time was typically a fraction of
a day up to 20 days. Low values were also observed in total path handling times (compare
Section 5.2). For states with higher delays, we searched for the reasons for these delays,
e.g., not involving enough actors (or their low competence). Similarly, we traced the
reasons for maximal values; in practice, they may relate to neglected issues or closed ones
without notification in the repository (undisciplined actor activities). In the case of Scrum
technology, it is important to ensure that Q3 is lower than the sprint duration. We will also
discuss timing issues in relation to issue handling paths (Section 5.2).

5.2. Profiles of Issue Handling Paths

The presented metrics in Section 5.1 are correlated with IHM states. Another obser-
vation perspective is targeted at tracing issue handling paths: their structures, issue flow,
and timing properties. The developed algorithms derive the distribution of possible paths
(sequence of states engaged in handling issues) with the relevant issue load and timing
statistics. Here, we can also adapt the analysis to the IHM’s restrictions R.

5.2.1. Structural Features

Analysing IHM path structures, we distinguish two taxonomy profiles, namely the
path length (PLP) and path state (PSP) profiles, defined as follows:

PLP = [l1 (c1, n1); l2 (c2, n2) . . . lk (ck, nk)] (8a)

PSP = {Pi:S1i, S2i, . . . Smi|cpi, 0 ≤ i ≤ r} (8b)

where l1, l2, . . ., lk, c1, c2, . . ., ck, and n1, n2, . . ., nk denote the path lengths (the number
of consecutive states) in increasing order, the summarized issue flow of these paths, and
the number of different paths of the specified length, respectively. PSP is the set of all
paths Pi composed of state sequences S1i, . . . Smi and cpi is the issue flow (coverage) of the
i-th path. It is reasonable to list the paths in decreasing order of relevant flow coverage.
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Issue flow (coverage) can be specified explicitly as the number of handled issues or the
percentage of all covered issues. In simplified profiles, issue flow (ci, cpi) can be skipped.
Other aggregated profiles can also be derived, e.g., considering path groups covering
specified ranges of handled issues. These ranges can be specified in absolute or relative
scales. In compact profiles, we can use ranges of state lengths. Deriving path profiles,
we can also consider issue restrictions, R (issue types (bugs or new functionality), issue
priority, issue reporting time, range of covered issues, etc.) or path classes (discussed in
Section 5.3). Similarly, we can use generalized states equivalent to some individual ones,
e.g., Resolved_* corresponding to resolved states with diverse individual suffixes (e.g., fixed,
rejected, or duplicated).

As an illustration, we present a sample of PLP and PSP profiles for some projects.
In the commercial Scrum project P1, the ITS repository comprised 2378 issues (related
to the year 2022), including 1555 bugs (1434 closed and 121 open) and 823 other cases
(425 paths). The distribution of the last group was as follows: User story—274 (209 closed);
Task—342 (282 closed); and New Feature—234 (134 closed). The derived PLP profile was
as follows:

PLP(P1) = 23(4;4)—0.17%; 21(4;3)—0.17%; 20(5;5)—0.21%; 19(9;9)—0.38%; 18(8;8)—0.34%; 17(13;13)—0.55%;
16(12;12)—0.5%; 15(18;15)—0.76%; 14(17;17)—0.71%; 13(33;24)—1.39%; 12(16;14)—0.67%;
11(53;37)—2.23%; 10(49;27)—2.06%; 9(138;45)—5.8%; 8(82;35)—3.45%; 7(160;43)—6.73%;

6(341;27)—14.34%; 5(750;29)—31.54%; 4(164;16)—6.9%; 3(214;20)—9.0%; 2(148;8)—6.22%; 1(140;2)—5.89%;

Limiting IHM to bug issues (restriction, R), we obtained 1555 issues which were han-
dled in 332 unique paths with the following distribution: (12–23)—8.54%; (8–11)—16.01%;
(6–7)—14.02%; (5)—41.29%; (1–4)—20.13%. In the brackets here, we give the range of path
lengths followed by the relevant issue coverage percentage. Similarly, we can explore the
impact of other issue features on path profiles. Issues with the highest priority (32 closed)
were handled within 16 unique paths with the following distribution: (7–20)—21.86%;
(5–6)—40.62%; (2–3)—37.5%. Independently of the assumed IHM restrictions (R), the
highest issue coverage is assured by paths with five and six states. For bug issues covering
the period of 2017–2021 (4545 issues, 1070 paths), we obtained paths covering 2–50 states:
paths with over 13 states covered 0.02–1% (total 4.8%) of the issues, while 6 state paths (119)
covered 40.42% of the issues. A higher number of long paths can be attributed to the higher
fluctuation of staff and the lower experience as compared with period of 2022, where the
number of states was reduced due to discussions after analyzing the statistical results.

Another observation perspective is the path state (PSP) profile. In Table 5, we present
10 paths with the highest coverage (N) for project P1, extended by the timing features (in
days) discussed in Section 5.3. Specifying path states, we use the following state acronyms:
New (N), In Progress (IN), To be Tested (TbT), Verified/Closed (V/C), Reopened (REO), Need Info
(NIF), Review (REV), Backlog-not ready (BN), backlog-Ready (BR), and Done (D). It is worth
noting that 68% of the paths cover single issues, resulting in 15% of all handled issues
overall. Due to the high diversity of paths, we recommend using some aggregation in the
analysis (Section 5.3).

For the open source project MongoDB, the ITS repository (covering 2 years) comprised
13,435 issues (8405 bug issues—7385 closed; 4257 improvement—3155 closed; 773 new
feature—625 closed). The derived PLP profile for the 832 unique paths was as follows:

PLP(MongoDB) = 28(1;1)—0.01%; 27(1;1)—0.01%; 23(1;1)—0.01%; 22(2;2)—0.01%; 21(8;8)—0.06%;
20(6;6)—0.04%; 19(7;7)—0.05%; 18(9;9)—0.07%; 17(12;12)—0.09%; 16(17;17)—0.13%; 15(26;24)—0.19%;

14(34;30)—0.25%; 13(43;39)—0.32%; 12(102;84)—0.76%; 11(121;91)—0.9%; 10(295;158)—2.2%;
9(400;172)—2.98%; 8(686;157)—5.11%; 7(1948;159)—14.5%; 6(5023;119)—37.39%; 5(1630;71)—12.13%;

4(1617;42)—12.04%; 3(1161;22)—8.64%; 2(283;7)—2.11%; 1(2;2)—0.01%;



Appl. Sci. 2024, 14, 4723 22 of 34

Table 5. Sample of bug issue handling paths for the project P1.

N Path AVG MAX Q2 Q3

576 N,IN,REV,TbT,V/C 25.2 340.2 6.9 21.2
106 N,TbT,V/C 29.8 332.3 3.8 17.3
100 N,V/C 26.4 218.2 5 17
48 N,IN,REV,TbT,Reo,IN,REV,TbT,V/C 60.3 283.7 30.3 65.4
45 N,NIF,IN,REV,TbT,V/C 46.1 212.9 15 49.9
23 N,IN,REV,TbT,Reo,TbT,V/C 30.6 112.1 22.1 36.2
22 N,IN,N,IN,REV,TbT,V/C 45.5 294.2 25.6 74.7
21 N,IN,V/C 30.3 131.3 10.2 41.3
19 N,NIF,IPrS,V/C 58.4 235.4 28.3 80.0
18 N,IN,NIF,IPrS,REV,TbT,V/C 48.2 248.7 27.4 49.3

Limiting IHM to bug issues (restriction R), we obtained 8405 issues (510 open) han-
dled by 832 unique paths with the following distribution: (10–28)—2.45%; (7–9)—21.98%;
(6)—41.22%; (2–5)—31.97%. For issues with the highest priority (54 blocker issues,
15 unique paths), the distribution was as follows: (8–10)—9.26%; (6–7)—72.2%; (2–5)—18.52%.
For the lower-priority issues, the path length diversity was higher: Critical (2–16)—123 issues;
Major (2–27)—7488 issues; Minor/Trivial (2–14)—231 issues. We identified that 69.9% of
paths (586) were related to single issues, and they covered only 7% of all issues. The length
of most of these paths ranged from 10 to 27 states; however, some short paths (with strange
state sequences) occurred also, e.g., 14 paths involving three states. On the other hand, the
10 most populated paths (with a length range of 1–6) covered 67.9% of all bug issues. The
number of unique paths (length 1–9) covering 10 or more issues was 56, covering 85% of
issues overall. Paths covering more than 10 issues contributed 69.9% of the paths. The
dominant path length was 6, relating to 95 paths which covered 40.42% of issues. We can
also derive path profiles for issues of specified priorities. Issues with the priorities blocker
(54), critical (121), major (7481), and trivial/minor (231) were handled by paths with length
ranges of 2–10, 2–16, 2–28 and 2–14, respectively. It is worth noting that there are many long
paths (high diversity). However, they are linked to a small number of issues; nevertheless,
in total, they can cover a significant percentage of issues. The ratio of paths covering only
a single issue related to all issues for the considered priorities in the considered project
was 0.67, 0.82, 0.68, and 0.66, respectively. For Improvement/new features issues (5030 issues
including 3780 closed issues and 760 paths), the path lengths ranged from 1 to 27, with
dominant coverage for 3-7-state paths, covering 85% of issues.

The path state (PSP) profile for the 10 most populated paths of the MongoDB project is
given in Table 6. The used state acronyms are defined in Table 3.

Table 6. Sample of bug issue handling paths for the MongoDB project.

N AVE Max Q2 Q3

2730 NV,NS,OP,IPR,ICR,CLO 19.4 511.0 5.8 19.0
649 NV,NS,OP,IPR,ICR,NM,CLO 19.0 348.0 5.9 18.7
513 NV,NS,OP,ICR,CL 10.7 372.8 3.3 8.4
370 NV,NS,OP,CLO 47.0 693.6 11.1 39.9
316 NV,NS,CLO 8.7 168.0 2.0 6.8
236 NS,OP,NS,IPR,ICR,CLO 11.9 172.9 4.1 11.3
229 NV,CLO 3.0 56.9 0.8 3.4
209 NV,NS,OP,IPR,CLO 27.7 229.9 9.8 31.2
174 NV,NS,INV,IPR,ICR,CLO 12.6 224.7 4.0 10.2
124 NV,NS,OP,BAC 375.8 825.9 366.2 584.2
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A quite different PLP profile relates to the Log4J2 project (1423 bug issues):

PLP (Log4J2) = 9 (2, 2)—0.14%; 8 (5, 5)—0.35%; 7 (6, 6)—0.42%; 7 (9, 22)—6.3%; 5 (14, 42)—2.9%;
4 (22, 111)—7.8%; 3 (44, 463)—32.5%; 2 (37, 771)—54.2%

As compared with the presented profiles, PLP (P1) and PLP (MongoDB), PLP (Log4J2)
comprises a lower number of paths (99) with a lower number of states (2–9). Two- and
three-state paths are dominant (54.2% and 32.5% issue coverage). The 10 most populated
paths are presented in Table 7 (PSP profile), covering 82.6% of bug issues. It is worth noting
that most paths were terminated with a closed state (C). On the other hand, the structure
of two-state paths was O, C (2.9%) and O, R_x (51.3%), where x corresponds to diverse
issue resolution types, e.g., fixed (F), not a problem (NP), invalid (I), cannot reproduce
(CnR), rejected (R), duplicated (D), etc. Handling times for the O,CnR path (14 issues) was
very high (AVG, MAX, Q2, and Q3: 610.7, 2598.7, 206, and 619.8 days, respectively) due to
the high effort required in reproducing the bug, probably resulting from inaccurate issue
specification. The duplicate issues (path O, R_D) were detected quite fast (Q2, Q3: 1.5,
14.1 days); however, in case of one issue, over 2000 days was required.

Table 7. Sample of bug issue handling paths for the Log4J2 project.

N AVE Max Q2 Q3

372 O, R_F 148.9 2489.0 14.6 126.9
320 O, R_F, C 53.6 755.2 10.1 47.1
279 O, C 207. 2 2982.1 1.2 66.2
52 O, IPr, R_F, C 40.9 568.8 9.1 29.9
51 O, IPr, R_F 74.2 660.2 21.1 95.1
30 O, R_D 104.6 2123.7 1.5 14.1
21 O, R_NP 105.5 1105.8 5.8 99.3
17 O, R_NP, C 70.6 561.3 13.2 53.9
16 O, R_F, Reo, R_F 192.6 192.6 65.3 219.9
15 O, C, Reo, C 17.8 17.8 0.9 10.4

The presented path profiles provide some perspectives on the path diversity, the
impact of restriction (R) on the considered issues, etc. Having analyzed the path profiles for
other open source projects, we also found projects with paths involving a lower number of
states, e.g., 2–10. In two other commercial projects (A and B), the path structures involved
2–15 states. However, in a complex long-term commercial project, C [13], path lengths
resulted in 4-44 states with a total number of paths of over 1500, covering issues at rate
ranging from a fraction of a percent up to 10%. So, the dominating paths were not uniquely
obvious. This was a long-term project with high fluctuation of actors. Moreover, the large
number of used states created possible high path diversity. Higher path diversity is typical
in projects involving many states. Issue flow coverage for longer paths is usually lower
than for typical ones. The path profiles PLP and PSP provide some aggregated and detailed
perspectives on issue handling sequences, facilitating the tracing of typical, optimal, and
exceptional sequences (e.g., comprising loops) for further and more in-depth studies. In
many projects, we observed 20–30 paths covering 50–70% of issues (Pareto principle). On
the other hand, a lot of diverse paths covered 1–10 issues only. The existence of a relatively
small number of dominating paths (covering many issues) can indicate mature projects.
However, the many remaining paths may still cover a significant percentage of issues. The
effective assessment and interpretation of so diverse paths are not easy tasks, and hence
additional classification is needed considering the specific structural features and related
comments. This is studied in the subsequent sections.

5.2.2. Path Classification and Aggregation

Having analysed path profiles for many projects, we observed high diversity in their
properties. To systemize these studies, we introduced some path taxonomy at diverse
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levels considering issue flow, structural, and other features (e.g., timing parameters).
The first criterion results in identifying high (dominating), medium, and low flow paths
(discriminated by predefined threshold values). Structural classifications involve path
length and state sequences. These specifications can use regular expressions or other
formulas. As an illustration, we present some regular expressions and correlated path
statistics for the considered MongoDB project:

ˆ[ˆ,\n]*((,[ˆ,\n]*){2}$)-3-state paths (22 paths covering 8.6% issues)

ˆ[ˆ,\n]*((,[ˆ,\n]*){1}$)-2-state paths (7 paths, covering 2.1% issues)

These formulas define sets of aggregated paths for which we can specify the number of
comprised paths, the distribution of path lengths, the distribution of issue flow (coverage),
and the timing parameters. These specifications relate to the goal of the analysis, e.g.,
we can trace (i) terminal paths with the final closed state, (ii) decisive paths ending with
an issue resolution state (e.g., fixed, not a problem, duplicated), and (iii) paths comprising
specified states/sequences or their absence. Path analysis is supported by the developed
algorithms. Such classification characterizes the development and maintenance processes
and facilitates searches for “anomalous paths” showing some deficiencies in problem
handling, e.g., paths with a repeated Closed state or a bouncing Resolved_x state, with
reopen or the repetition of a specified state, and a percentage of correctly closed paths
or resolved ones. Having identified such paths, we can drill down into relevant issue
reports, comments, etc. They can also be correlated with engaged reporters, actors, timing
properties, or other dependencies. Some examples are discussed later.

Well-organized issue handling paths should start with the project initial state, e.g.,
Open, New, etc. Nevertheless, in many projects, beyond the dominant initial state, there
are some paths with other initial states, usually reflecting management deficiencies. For
example, in the commercial project P1 (period 2017–2021), the initial path state statistics
were as follows (percentage of paths/covered issues): New (61%/72.6%), Open (17.6%/11%),
Created (19.7%/16%), To do (1.7%/0.4%). Here, due to the earlier period of project devel-
opment, some diversity of the used initial states appeared (ambiguous interpretation by
reporters). In the later period (2022), this was unified, with the dominant state being New
(99.2%/99.7%), followed by Backlog not ready (0.8%/0.3%). In the case of MongoDB project,
the dominant initial state (for bug handling) was Needs Verification (91.7% paths, 84% issues),
followed sporadically by other states, namely Needs Scheduling (7%, 8.5%), Needs Triage
(0.8%, 5.4%), and Open (0.2%, 1.5%). For Improvement/New Feature issues, this statistic was
as follows: Needs Verification (92.4%, 84%), Needs Scheduling (7%, 11.5%), Needs Triage (0.3%,
2%), and Open (0.3%, 2.5%). This results from some inconsistency within the project team
(appearance of new reporters).

The sequence of states in issue handling paths should reflect the related activities
of project actors. Unfortunately, quite often, this is not reported accurately in the IST
repository, e.g., lacking states with the issue resolution type (comparing Tables 2 and 3).
An interesting illustration of this problem is the two-state path Needs Verification, Closed
(NV,CLO) of MongoDB (Table 5). The profile of this path does not reveal how the covered
issues were resolved. We can trace this by analyzing issue descriptions and included
comments. We discuss this in Section 5.3. On the other hand, we encountered a diversity
of long paths (compare Section 5.2); as an illustration, we provide an example from the
MongoDB project (long handling time: 635.4 days):

NV,NSch,Inv,NSch,Inv,NSch,O,IPrs,O,IPrs,O,ICR,IPrs,O,ICR,IPrs,ICR,IPrs,O,Back,

Typically, such paths comprise state repetitions which show processing deficiencies
(anomaly). The developed Algorithm 3 identifies cycles (loops) in state paths (Section 4.3.3).
It provides path structures with underlined cycles and some aggregated statistics (loop
length, issue coverage). Some illustrations are given in Tables 8 and 9. For the commercial
project P1 (period 2022), loops appeared for paths with at least six states. We identified
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66 paths (19.9% of all paths) with loops (three to five states) which covered 83 bug issues
(5.34%). For example, the path New, In Progress, Review, To be Tested, Reopened, IN PROGRESS,
Review, To be Tested, Reopened, In Progress, Review, To be Tested, Verified/Closed comprises five
state loops (repeated three times in the state sequence) and covers nine issues. Loops did
not appear in paths covering high-priority issues. Most loops covered three states and
were initiated by programmers—loops starting with In_Progress or To be Tested states were
initiated by developers, and those starting with New or Reopen were initiated by testers.
Most looped paths related to single issues (58 out of 66). Loops with the Reopen state usually
correlated with incorrect bug fixing. Loops did not correlate with the number of involved
actors. For other issues (New Feature, User Story, Task), we detected seven loops covering
seven issues (0.9%). Analyzing loops in the earlier period (2017–2021) of the P1 project, the
percentage of bug issues handed in loops (within 23.4% of paths) was higher, at 7.6%. A
sample of the paths with loops is presented in Table 8.

Table 8. Anomalous paths in the commercial project P1 (bug issues).

N Path AVG MAX Q2 Q3

9 N,IN,REV,TbT,REO,IN,REV,TbT,
REO,IN,REV,TbT,V/C 86.5 213.1 32.8 133.2

4 N,IN,NIF,IN,NIF,IN,REV,TbT,V/C 41.9 67.8 42.6 58.4

2 N,IN,REV,TbT,REO,IN,REV,TbT,REO,IN,REV,
TbT,REO,IN,REV,TbT,REO,IN,REV,TbT,V/C 154.1 252.2 154.1 252.2

2 N,IN,N,IN,N,IN,REV,TbT,V/C 42.4 74.0 42.4 74.0
2 N,IN,REV,IN,REV,IN,N,IN,REV,TbT,V/C 156.5 175.0 156.5 175.0

Table 9. Anomalous paths in the MongoDB project (bug issues).

N Path AVG MAX Q2 Q3

44 NED,NES,OPE,IPR,ICR,CLO,CLO 43.1 366.2 11.0 37.3
37 NED,INV,WFU,INV,WFU,INV,CLO,CLO 43.0 240.9 32.3 49.1
12 NED,INV,WFU,INV,WFU,INV,WFU,INV,CLO 113.5 545.1 59.4 133.3
11 NES,OPE,NES,NES,OPE,IPR,ICR,CLO 13.7 35.2 11.0 15.5
9 NED,INV,WFU,INV,WFU,INV,WFU,INV,WFU,CLO 112.0 281.4 91.2 117.6

Having analyzed some open source projects, we identified that 0.1–6% of issues
were handled by paths with loops. In the open source project MongoDB, we detected
174 paths (20.1%) with loops, covering 350 bug issues (4.9%). Most of these paths (142)
covered single issues. For the issues Improvement, New Feature, we found that 17.5% of
paths had loops, covering 4.3% of issues. Most loops involved sequences of three states
initiated by developers. However, some single-state loops comprised the repetition of the
Closed state (12 loops) separated by short delays, probably resulting from faults in Jira API
usage. Beyond regular loops, we can also trace repeating states in paths. In MongoDB, we
observed repetitions of the Open state in 44.5% of paths, which covered 7.9% of all bug
issues. However, the 10 paths with the highest issue coverage (66%) were free of state
repetition anomalies. Among the 100 paths with the highest issue coverage, Open state
repetition occurred in 22% of paths, covering 3.4% of issues. In the case of single-issue
paths (70% paths, 6.9% of all issues), this anomaly was observed for 50% of paths. Most
repetitions of the Open state followed the Closed state (as well as Needs scheduling and
Backlog), indicating reporting and resolution deficiencies.

In Apache Lucene, 2.46% of bug issues and 2.70% of new functionality issues were
handled in loops. Most (about 80%) of these loops involved the repetition of one state (e.g.,
Open state) resulting from some deficiencies. In the Arrow project, only a single regular
loop was detected within bug handling paths: O,IPrs,C,Reo,C,Reo,C (covering one issue).
Anomalous paths were mostly related to diverse patterns comprising the Reopen state or
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some randomly repeated states. Among the 10 paths with the highest issue coverage (in
total 95.5%), only 2 comprised the Reopen state, and they covered less than 1% of all bugs.
On the other hand, among the 33 single-issue paths, 85% comprised the Reopen state. The
repetition of the Open state appeared in 7 paths (covering 0.9% issues) among all 78 paths
(covering 6047 issues). Other anomalies were related to the repetition of Resolved_x states
with the same or diverse specification of x (in most cases, Resolved_fix, and sometimes the
suffix fix was replaced by duplicate, not a problem, or rejected). They appeared mostly in
low-coverage paths (20.5% paths), thus handling of 1.1% issues.

In the case of the Log4j2 project, only five loops were identified for bug issues—each
handled a single issue (in the brackets, we give the handling times in days):

O, C, Reo, C, Reo, C, Reo, C (107.6); O, C, Reo, C, Reo, C (0.3); O,R_F, Reo, R_F, Reo,
R_F, C (181.2); O,R_F, Reo, R_F, Reo, R_F (282.6); O, R_NP, Reo, R_NP, Reo, R_NP, Rep, R_F,
C (36.1).

Deriving specified path classes, we can extract paths with searched features, com-
prising rare states or suspicious state transitions which require deeper studies. For ex-
ample, in the commercial project P1 (period 2022), paths with Need Info (3%/1%), Reopen
(56.9%/24.5%), and Blocked (2.7%/1%) were extracted. Repetitions of these states within
paths can be considered as concerning and requiring deeper investigation. Similarly, two-
state paths terminated with the Closed state are ambiguous. In Mongo DB, they constituted
about 3% of bug issues, while in other open source projects, they constituted up to 6%
of issues. Meanwhile, three-state paths, comprising Initial state, In Progress, and Closed,
showed some information deficiencies (7% of bug issues). Studying these issues, we found
some additional information in the included comments (e.g., invalid issue). Lacking states
specifying issue resolution is not good practice (this state is not encountered in Mongo
DB). Handling New Feature and Improvement issues showed a lower percentage of two-state
paths (1%). In some projects, diverse versions of the Resolved state appear, e.g., Resolved_fix,
Resolved_duplicate, Resolved_invalid. The appearance of diverse Resolved states within the
same path shows some chaos in the handling process (can be treated as some type of
looping), similarly to the Reopen state—such situations are worth deeper investigation.

We can also trace odd transition states in issue handing paths or those that confirm
good practices. The path analysis algorithm developed provides the distribution of the
next states for a specified state. It can only relate to direct successors or all successors
until the end of the path. For example, in Mongo DB (bug issues) for the Closed state,
we identified nine diverse successive states; fortunately, such situations are rare (0.3% of
issues). For the In Code Review (69% of issues) state, we identified 12 successive states,
but the dominant ones were Needs Merge (18.3%), In Progress (5.8%), Open (5.7%), and In
Code Review (4.4%). For New Feature/Improvement issues, these statistics were 22.8%, 8.8%,
8.2%, and 7.4%, respectively. This confirms some imperfections in the code review process;
moreover, the code merging process is not clearly documented.

Long paths may result in long handling times or a higher load of project actors (more
people engaged in problem resolution). On the other hand, short paths may not reflect all
issue processing activities. A high diversity of path structures is not consistent with typical
activity sequences recommended in project development (Section 3). Some states are miss-
ing (e.g., verification, quality assurance, etc.), while others are repeated. This results from
reporting negligence, unrevealed issue dependencies, triaging shortcomings, actor fluctua-
tions, etc. Comparisons of the derived statistics within the considered project life cycle and
the different projects provide useful information for experts and project managers.

5.2.3. Path Timing Features

The time parameters of the IHM states provide only local perspectives on the issue
processing phases, while the total issue handling time for the whole project presents general
statistics (Section 4.1). More detailed insights regarding handling time require tracing it in
relation to IHM paths. The processing time view from the state perspective is presented in
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Section 5.1. The timing parameters for paths differ, and they result from the aggregation of
correlated issues.

Typically, most issues are handled by some dominant paths. This is illustrated in
Section 5.2 (Tables 4 and 5). In the MongoDB project, maximal issue handling times ranged
from 57 to 826 days (often several hundreds), referring to some individual issues and
showing some accidentality. The Q2 and Q3 ranges were 1–11 days and 3.4–40 days,
respectively. However, the time parameters of the last path in Table 5 (124 issues) differ
significantly (several hundred for Q2 and Q3). In fact, these issues were opened after
a long period for further processing. Restricting timing features to the dominant paths is
not satisfactory due to the high diversity of paths and many paths covering a low number
of issues (typical for many projects—see Section 5.2). Hence, we introduced the path timing
profiles defined by three values:

TPi = {∆i, ni, ii}, ∆i, = ai − bi (9)

where ∆i denotes the range (in days) of the investigated time profile TP (e.g., Q2, Q3,
max), while ni and ii denote the number of paths and issue coverage (%) related to the
i-th parameter range. The index i runs subsequent time ranges in increasing order. Such
profiles are mostly interesting for the dominant paths (with high issue coverage)—they
provide some insights regarding the effectiveness of typical issue processing sequences.
As an illustration, we present TP profiles (Q2, Q3 quartiles) for the commercial project P1
(period 2017–2021) considering 26 dominant paths:

TP(Q2)1 = {4–9, 13, 72%}, TP(Q2)2 = {10–18, 9, 20%}, TP(Q2)3 = {35–58, 5, 8%}

TP(Q3)1 = {13–30, 11, 66%}, TP(Q3)2 = {35–58, 9, 22%}, TP(Q3)3 = (79–94, 5, 8%}

The maximal path handling time range was 100–881, with dominant values of
375–881 (minimal value of 39, with 66 related to 2 paths covering 3% of issues). This
proves that in the considered project, most issues are handled in up to 30 days (single
Scrum sprint).

In case of open source projects, issue handling times are usually higher, e.g., for the
Groovy project, we received the following time profiles (related to 26 dominating paths):

TP(Q2)1 = {20–43, 10, 35%}, TP(Q2)2 = {50–128, 7, 61%}, TP(Q2)3 = {144–356, 6, 4%}

TP(Q3)1 = {42–150, 8, 42%}, TP(Q3)2 = {208–457, 6, 55%}, TP(Q3)3 = (500–661, 6, 3%}

Nevertheless, we identified some anomalies (Q2 = 2210, Q3 = 2369 days) for a path
covering 19 issues. The maximal values for most paths ranged between 1722 and 4225 days,
while for 12 paths, the maximal value was between 500 and 1500 (5% issues), while it was
147 and 57 days for two paths.

Better results, as compared with Groovy, were obtained for the MongoDB project
(8405 bug issues):

TP(Q2)1 = {1–5, 57, 19, 58%}, TP(Q2)2 = {5–14, 114, 57, 63%}, TP(Q2)3 = {15–30, 139, 5, 37%}

TP(Q3)1 = {1–6, 70, 9, 92%}, TP(Q3)2 = {7–14, 59, 14, 77%}, TP(Q3)3 = {14–30, 132, 46, 19%}

The maximal handling times for some paths reached up to three years. For a significant
percentage of issues (70.88%), Q3 was below 30 days. Nevertheless, for some paths covering
a few issues, a high handling times appeared. Similarly, good results were observed in the
Arrow project: a Q3 below 30 days for 66.99% of bug issues (a Q2 below 30 days covered
83.56% of issues). On the other hand, poor results were obtained for the Lucene project: a
Q3 below 30 days covered 15.16% of issues, while for Q2, this was 22.95%. These results
are due to inefficient issue processing, which can be traced in deeper analyses of paths,
states, comments, and correlations with other issue documentation or processing features.
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Here, we observed 137 paths (with lengths in the range of 1–10) covering a total of 3983 bug
issues. The timing characteristics (Q2 and Q3 in days) for some high-coverage (N issues)
paths were as follows:

p1: Open, Resolved_Fixed, Closed: N = 1818; Q2 = 83.7, Q3 = 236.7
p2: Open, Closed: N = 208; Q2 = 24, Q3 = 327.4
p3: Open, Resolved_Fixed, Reopen, Resolved_Fixed, Closed: N = 157; Q2 = 94, Q3 = 247.8
p4: Open, Resolved_Invalid: N = 74; Q2 = 0.4, Q3 = 1.4
Paths involving bug fixing states (p1, p3) show high handling times, as opposed to the

path with the identification of invalid bugs (p4). The two-state path p2 shows the highest
resolution time, and this does not reflect the involved activities; they can be derived by
analyzing comment sequences. In the case of Scrum projects, the timing effectiveness of
issue handling can be measured as the percentage of issues postponed to subsequent sprints.
In the considered project P1 (period 2022) for 10 subsequent sprints, this percentage was
6.8%, 6.2%, 15.6%,11%, 10%, 6.8%, 15%, 6.5%, 10%, and 3.1% for all issue types, respectively.
However, for bug issues, the postponed issues were negligible. Higher values for New
Function issues resulted mostly from the fact that they were transferred for handling with
some delay (the decision of the project owner). In classical projects, we can check the ratio
of issues exceeding the deadline date, but this feature is rarely encountered in repositories
and is usually attributed to a fraction of issues.

5.3. Comment Sequences

The issue handling process is supported by comment exchanges between project
stakeholders. They facilitate explaining sources of uncertainty, e.g., the imprecise specifi-
cation of reported problems, their localization, the context of appearance, etc. In [22], we
discussed issue comment classification based on machine learning schemes. Combining
this classification algorithm with the IHM allowed us to derive comment sequence profiles
as defined in Section 4.3.

As an illustration, we present some results referring to the MongoDB project. We
identified 722 unique comment sequences which appeared in 7156 issues within the reposi-
tory, comprising 8405 bug issues, and hence 84.7% of issues comprised comments. In the
APC global profile (Equation (7a)), short sequences dominated, with one to five comments.
The distribution of comment sequence length was as follows: 1—4555; 2—1103; 3—569;
4—295; 5—176. These instances covered 6698 issues (80%). The longest comment sequence
involved 57 comments (26 questions, 17 information and 14 positive) for a single issue; the
first comment appeared about 30 min just after its registration (parameter SD), and the
last comment appeared after 538 days. The third quartile of comment sequence duration
(parameter CD) relevant to the 10 sequences with the highest issue coverage (5551) was in
the range of 4–21 days. The APC profile of the 20 comment sequences related to the highest
number of issues (restriction R1) was as follows:

APC|R1 = {1, <fix>, 4016; 1, <information>, 366; 2, <information, fix>, 355; 2, <fix, fix>, 348; 3, <fix, fix, fix>, 120;
2, <positive, fix>, 95; 1, <positive>, 95; 2, <information, information>, 78; 1, <question>, 78; 3, <information, information, fix>,

71; 2, <question, fix>, 53; 4, <fix, fix, fix, fix>, 48; 3, <question, information, fix>, 42; 3,
<information, fix, fix>, 30; 3, <information, positive, fix> 29; 2, <information, positive>, 27; 2, <question, question>, 22; 4,

<information, information, information, fix>, 21; 3, question, information, information>, 21}

The time (Q3 quartile) of the first comment appearance (CS) was in the range of several
to 20 days, while sequence duration (CD) was typically in the range of several to a few
dozen days. The maximal values of CS reached several years (postponed or neglected
issues), the maximal values of CD reached several hundred days (appearing sporadically),
while the Q3 quartile of CD correlated with the issue handling times in paths. A reduction
in the number of comments requires accurate issue descriptions, better issue triaging, and
careful selection of the project team, including systematic training and adapting to project
specificities. This problem can also be studied in correlation with the APC(Sr) and APC(Pr)
profiles defined in Section 4.3.
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Analyzing the comment sequences reported during handling states (APC(Sr)), we
found 14 states (5 with low issue coverage among all 19) with comment sequences. As an
illustration, we present the APC(Sr) profile for the state In code review:

APC(In Code Review)|Ra = {1, <fix>, 4046; 2, <fix, fix>, 261; 3, <fix, fix, fix>, 55; 2, <information, fix>, 54; 1,
<information>, 40; 4, <fix, fix, fix, fix> 16; 1, <positive> 14, 2, <fix, information>, 11};

The restriction condition Ra selects comment sequences covering more than 10 issues.
We can also use aggregated statistics for states with many sequences:

Needs verification: 173 unique sequences covering 1000 issues, constituting 12% of all
(7765) issues handled in this state; Q3(CD)—4 days;

Open: 107 unique sequences covering 952 issues, constituting 12.5% of all 7615 issues;
Q3(CD)—14 days;

Investigating: 96 unique sequences covering 658 issues, constituting 49% of all 1334 issues;
Q3(CD)—10.6 days.

Most issues were commented upon in the states Needs merge (91%), In code review (83%),
and Investigating (49%) due to the high effort related to these activities. The durations
of sequences (CD) were reasonable, reaching 20 days for the third quartile (Q3(CD));
nevertheless, some issues involved over several hundred days. Comment sequences in
states are merged in issue handling paths. They are characterized by APC(Pr) profiles (7c).
In the considered MongoDB project, we found 838 unique paths of handling bugs (with
lengths of 1–27 states), among which 251 paths handled 2 or more issues, 20 dominant
paths covered 6338 issues out of a total of 8405 (75.4%), and their length range was 1–7.
Below, we present a sample of the derived statistics (each specified path is followed by
issue coverage):

APC(Needs Verification,Open,In Progress,In Code Review,Closed—2752 issues) = {1, <fix>,
1996; 2, <information, fix> 152; 2,<fix,fix>, 141; 2, <positive, fix>, 41; 3, <fix,fix,fix>,
27; 3, <information, information, fix> 25; 2, <question,fix> 20; 3, <question, infor, fix>
16; 1, <information> 16, other sequences (122) with length below 10 and dominating
1–2 issues}—Q3(HT)—19.8 days

APC(Needs Verification,Open,In Progress,In Code Review,Needs Merge,Closed—654 issues)
= {1, <fix> 437; 2, <fix, fix> 43; 2, <information fix> 38; 2, <positive, fix> 22; 2, <informa-
tion,fix> 10; others dominating 1 issue, 49 comment seqences}, Q3(HT)—18.9 days

APC(Needs Verification,Closed—442 issues) = {1,<information> 51; 1, <fix> 48; 1, <posi-
tive> 16; 12 comment sequences}, Q3(HT)—11 days.

The presented distribution of the comment sequences is restricted to the most popu-
lated paths, and the remaining paths are summarized. Moreover, we added the Q3 quartile
of path handling times (HT). APC(Pr) profiles are the consequence of APC(Sr) profiles (with
some concatenation effect) with longer sequences and higher duration times. Nevertheless,
short sequences are dominant, and the CD duration is acceptable. In longer sequences,
we observed the repetition of fix and information comments. Repetitions of fix comments
indicate higher effort in correcting the bug, suggesting that such issues could be partitioned
into smaller parts. Long sequences could be analyzed to explain the reasons for these bugs
and to suggest improvements in reporting to obtain more precise problem descriptions
(which are helpful in diagnosis). Intensive commenting may result from misunderstandings
between users and developers. In the case of short issue handling paths, comments can
describe more processing details. In the presented profile APC(Needs Verification,Closed),
the path structure does not reflect processing activities, so it can be considered as being
too simplified with information deficit. We can search for this information in the relevant
comments. In the considered case, only 53.6% of issues comprised comments (27.8% of
these comments related to the fix category, which was the dominant information category).
However, a significant percentage of issues were not commented upon (deficiency of re-
porting). Such analysis allowed us to improve issue handling in a commercial project by
presenting and discussing our analysis results with project testers and developers and
setting out precise requirements for commenting and reporting by the users.
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The proposed profiles facilitate assessing comment activities, their significance, and
the impact of issue handling processes. We can identify sources of excessive commenting
sequences and their impact on issue resolution processes. They can be correlated with
project actor fluctuations, lacking professional competence or experience, and thus trigger
possible improvements.

6. Discussion

The presented scheme of analyzing issue handling processes significantly extends the
scope of investigations as compared with those proposed in the literature (Section 2). It
provides a multidimensional and detailed view of issue handling processes and extends
the related knowledge database on software project development which can be used as a
supervised expert system. General issue resolution features (Section 4.1) provide a rough
assessment of the project progress, which can be expanded upon fine-grained studies with
the IHM focused on the detailed investigation of issue processing (Sections 4.2 and 4.3).

Analyzing the effectiveness of issue processing, we consider the diversity of issue
types, relevant attributes, and additional features. These data are extracted from ITS
repositories with appropriate interfaces. Systematic analysis is ensured by the developed
framework constructed around the introduced IHM combined with the relevant database.
The included exploration algorithms derive assessment metrics and characterize profiles
which provide a concise and intuitive presentation of issue handling properties. When
loading data into databases, some normalization can be involved to facilitate result com-
parison between projects. This relates to defining compatible attribute values, related issue
types, priority levels, resolution methods, sets of used handling states, and their meaning.
Repository exploration includes higher levels of state or path classes, the specification of
anomalous situations, and relevant statistic metrics and profiles (direct or aggregated). It
can be adjusted according to issue types and other restricting conditions that specify the
analysis’ scope.

Issue handling processes can be analyzed based on diverse perspectives: within-
project or cross-project studies. The first perspective can be divided into within-version
and cross-version studies (depending on whether data are analyzed in the same version
or diverse versions of the project). The proposed systemized and holistic study of the ITS
repository facilitates the identification of characteristic issue processing schemes depending
upon their types and other features, distinguishing between good and bad practices,
which is helpful for improving development processes and creating relevant knowledge
database. This is especially interesting in cross-project studies. Here, the gained experience
is useful in enhancing within-project studies. In long-term projects, actor fluctuations,
organizational changes, and introduced reporting refinements (e.g., state redefinition)
impact issue handling patterns, which can also be explored with the introduced framework
based on the IHM.

Statistics related to issue processing states (Section 5.1) show deficiencies in their usage
(low issue coverage—Us) or excessive handling times (high Q3 values). They may trigger
the need for state redefinition/unification or project actor reallocation to processing states
(considering their load and competence). More attention is needed to monitor issue paths’
structural, timing, and issue flow profiles (Section 5.2). Good development practices result
in a low number of well-structured dominating paths covering most issues, low handling
times for high-priority issues, and satisfactory values for other issues (e.g., not exceeding
the Scrum sprint period).

Some troubling situations relate to an excessive number of paths and their complex
and nonuniform structures, e.g., many states, loops, intermingled issue resolution states,
a lack of termination states, ambiguous two-state paths (e.g., Open, Closed), and aberrant
state transitions (e.g., fixed→duplicated). They are identified via the introduced classification
schemes. This can be correlated with timing features and tracing comment sequence
profiles at the general, state or path levels (Section 5.3). Too long comment sequences or
repeated information comments indicate actors’ misunderstanding or imprecise reporting.
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Many examples of issue handling deficiencies detected in real projects are presented
and interpreted in Section 5. Anomalous situations can be analyzed to identify problem
sources. They usually result from insufficient competence or irresponsibility of project
actors, their fluctuation, negligence in reporting issue processing, deficiencies in issue
attribute assignments, etc.

A high diversity of handling paths and their timing profiles may impact the accuracy
of classical schemes used to predict issue handling times, resolution needs (fixing, rejecting,
duplication), etc. So, these predictions can be arranged separately for specified issue
categories and project actor groups. Moreover, issue handling profiles changing over time
reveal intended or spurious modifications to development processes.

The derived features and handling profiles relate to fine-grained assessment. A
higher level of evaluation can also be included, e.g., consistent with DORA metrics (https:
//docs.gitlab.com/ee/user/analytics/dora_metrics.html (accessed on 23 May 2024)): the
deployment frequency (frequency of successful software releases), the lead time for changes
(time needed from code committed to successful running in production), the time to restore
service (from a failure), and the change failure rate (the percentage of deployments causing
failure in production). The correlation of higher-level metrics with the proposed fine-
grained features can also be investigated.

The gained experience and retrospective discussions with project stakeholders can
trigger issue handling improvements. Some suggestions can be derived after interpret-
ing the obtained analysis results during project progress and environment fluctuation.
Here, a good knowledge of the problems and successes experienced in other projects is
helpful. The identified unsatisfactory issue handling schemes (e.g., paths) require fur-
ther interpretation by mining issue descriptions/comments and correlations with other
attributes. We observed insufficient issue reporting in many open source projects. This
resulted from imprecise attribute specification by the project manager, project actor fluctua-
tions, reporting/commenting inaccuracies, actor negligence/incompetence, or bad habits.
Such analysis of historical data for the project P1 resulted in positive improvements as it
progressed further (better granularity of project tasks, issue attribute refinements, team
changes/training, etc.). In the case of commercial project assessment, another problem
arises due to data access limitations (confidence), usually imposed by project owners or
users. This can be mitigated by anonymization techniques, but quite often, such techniques
are difficult to include in relevant data access agreements.

ITS analysis can be combined with repositories generated from the VCS using other
tools, e.g., BugBuilder [1]. This can facilitate the evaluation of project progress, documenta-
tion quality, and bug localization and mitigation, and inspire novel approaches for project
development or its improvements. Another aspect is including studies on issue dependen-
cies [3] and project stakeholders’ competence/capabilities. Lacking information on issue
dependencies may result in lowering issue handling efficiency, e.g., the missing detection
of duplicated issues, not reported the closing of such issues (unnoticed duplicates), and an
issue blocking another issue’s resolution, meaning that it should be resolved sooner.

The presented studies were illustrated with results related to selected real projects, so
some comments are needed on the validity of our research.

The construct validity of the results is concerned with the accuracy and representative-
ness of the introduced IHM. Flexibility in defining states and edges combined with imposed
diverse restrictions (R) is consistent with practical issue handling schemes reported in used
ITS tools, and only data extraction procedures should be adapted to ITS tool APIs. Our
objective was to study the efficiency and anomalies in issue handling processes from three
perspectives: the sequences of issue handling states, issue processing flow correlated with
relevant state paths, and timing features. The presented experimental results based on rich
data covering a set of open source and commercial project repositories demonstrated the
usefulness of our approach.

External validity stands for the generalization of our studies. The presented research
was based on a broad scope of analyzed issue tracking features derived in our previous

https://docs.gitlab.com/ee/user/analytics/dora_metrics.html
https://docs.gitlab.com/ee/user/analytics/dora_metrics.html
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paper [12]. Here, the problem of data set representativeness (IST repositories) arises. This
may be critical in some prediction problems. In our studies, an important concern was to
ensure the universality of the IHM and its ability to cross-sectionally trace issue handling in
relation to diverse attributes (features). The identified examples of good and bad practices
(anomalies) do not exhaust all possible cases. Nevertheless, this limitation is mitigated by
the flexibility of the analysis procedures. This flexibility includes configurations specified
by regular expressions, diverse issue filtering for analysis, and statistical result presentation
in selected cross-sectional perspectives.

7. Conclusions

This work presents an advanced model (IHM) for software issue handling analysis,
in which a broad scope of issue features are considered. The graphical form of the model
reveals issue processing phases and their dependencies resulting from issue flow over
time. The IHM, combined with the issue repository database, provides the ability to derive
aggregated (generalized) or problem-focused views on issue handling effectiveness. This is
supported by qualitative and quantitative characteristics related to diverse observation per-
spectives (timing, operational, reporter activities, etc.). The qualitative view reflects typical
or abnormal issue handling schemes and project stakeholder activities considering diverse
issue types, priorities, etc. The quantitative studies are combined with the introduced met-
rics/profiles targeted at specified aspects providing detailed and systemized assessment.
Both views supported by the presented algorithms provide a holistic insight into the project
progress and threats. The identified anomalies/deficiencies can be effectively investigated
by project stakeholders or experts. Investigating IST repositories, we acquire knowledge
on software development useful for project stakeholders. This knowledge can help them to
gain new insights into the problems encountered when developing software, deepen their
domain knowledge, and stay informed about deficiencies/possible improvements.

The proposed approach was verified based on open source and commercial projects.
The presented results revealed diverse issue handling profiles in the considered projects and
specific anomalies which can be eliminated by introducing issue handling improvements.
Nevertheless, some suspected behaviors may require interactions with project stakeholders,
improving reporting accuracy, etc. On the other hand, by analyzing other projects, we can
enrich our knowledge of good and bad practices. These can be enhanced by discussing
the results with project stakeholders. Further research can include the correlation of
the developed model with other project repositories, e.g., software version control, test
reports, project recommendation/assessment opinions, etc. The advanced exploration
of ITS provides additional information which can deepen the understandability of other
software engineering problems, e.g., the detection of duplicated issues, issue triaging, and
problem prediction and diagnosis.
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12. Reszka, Ł.; Sosnowski, J.; Dobrzyński, B. Enhancing software project monitoring with multidimensional data repository mining.
Electronics 2023, 12, 3774. [CrossRef]
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