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Abstract: The increasing use of IoHT devices in healthcare has brought about revolutionary advance-
ments, but it has also exposed some critical vulnerabilities, particularly in cybersecurity. IoHT is
characterized by interconnected medical devices sharing sensitive patient data, which amplifies the
risk of cyber threats. Therefore, ensuring healthcare data’s integrity, confidentiality, and availability is
essential. This study proposes a hybrid deep learning-based intrusion detection system that uses an
Artificial Neural Network (ANN) with Bidirectional Long Short-Term Memory (BLSTM) and Gated
Recurrent Unit (GRU) architectures to address critical cybersecurity threats in IoHT. The model was
tailored to meet the complex security demands of IoHT and was rigorously tested using the Electronic
Control Unit ECU-IoHT dataset. The results are impressive, with the system achieving 100% accuracy,
precision, recall, and F1-Score in binary classifications and maintaining exceptional performance in
multiclass scenarios. These findings demonstrate the potential of advanced AI methodologies in
safeguarding IoHT environments, providing high-fidelity detection while minimizing false positives.
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1. Introduction

The Internet of Things (IoT) is an innovative technology that facilitates data collection,
analysis, and dissemination for intelligent applications [1]. Its distinctive attributes have
captured the interest of urban planners and healthcare experts, as it has the potential to rev-
olutionize real-time applications like eHealth and smart cities [2]. IoT is an internet of three
types of relationships: human-to-human, human-to-machine, and machine-to-machine,
all communicating over the internet [3]. AI enhances IoT applications by obtaining useful
features from the vast data generated by IoT devices, leading to innovative solutions that
provide value to individuals and businesses [4]. The integration of AI with IoT strengthens
security and drives efficiency, customization, and automation across various sectors.

On the other hand, IoHT specifically targets healthcare, integrating medical devices
and sensors to enhance patient care through real-time data collection and remote moni-
toring. IoHT addresses challenges, including patient safety, data security, and regulatory
compliance, setting it apart from general IoT applications.

Cybersecurity measures must be prioritized to secure information and networks. To
achieve this, intrusion detection systems (IDSs) are used to monitor network traffic, detect
suspicious activity, and mitigate the harmful effects of cyber-attacks on IoHT networks and
nodes [5]. IDSs may not be effective in detecting new and unknown adversarial attacks,
especially with the increasing number of IoT devices [6]. The emergence of machine
learning (ML) has greatly influenced the field of cybersecurity, enabling the creation of
intelligent systems that can effectively prevent network attacks [7].

Among these systems, IDS, which uses deep learning (DL) techniques, has demon-
strated exceptional performance compared to other methods [8]. Through their data-driven
approach, these solutions have successfully addressed numerous cybersecurity obstacles.
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Study [9] proposed a novel intrusion detection system designed specifically for IoT
networks. The system successfully identified various types of assaults by using a hybrid
approach that included the Long Short-Term Memory (LSTM) and Convolutional Neural
Network (CNN) models. The suggested approach demonstrated its suitability for a diverse
array of IoT applications. The UNSW NB15 dataset was used, with a validation ratio of 70%
for training and 30% for test validation. The proposed model was experimentally shown to
achieve an accuracy of 98% across various IoT scenarios.

Undetected attacks on the IoT may lead to significant service disruptions, causing
substantial financial losses. Furthermore, it presents the potential risk of compromising
one’s identity. The real-time detection of intrusions on IoT devices is crucial for ensuring
the reliability, security, and profitability of IoT-enabled services. A study proposed a novel
intrusion detection system for IoT devices using DL techniques [10].

The system utilized a four-layer deep Fully Connected (FC) network architecture to
identify malicious traffic that could launch assaults on interconnected IoT devices. The
system under consideration was designed to be independent of communication protocols
to mitigate the challenges associated with deployment. The system under consideration
exhibited consistent and dependable performance when subjected to simulated and actual
intrusions, as shown by the experimental performance study. The system had a mean
accuracy of 93.74% in identifying and detecting several types of cyber assaults, including
Blackhole, Distributed Denial of Service (DDOS), Opportunistic Service, Sinkhole, and
Workhole attacks. On average, the suggested intrusion detection system’s precision, recall,
and F1-Score were 93.71%, 93.82%, and 93.47%, respectively. That study’s deep learning-
based intrusion detection system (IDS) demonstrated a commendable average detection
rate of 93.21%. This performance level is deemed suitable for enhancing the security of
IoT networks. Conventional IDSs for advanced network-based attack detection encounter
difficulties in network environments that employ typical IoT protocols and operate on a
centralized network architecture, such as a software-defined network (SDN). In [11], the
authors proposed a methodology that utilizes LSTM to identify network assaults inside IoT
networks, with IDS enabled by SDN. The authors provided a comprehensive assessment of
the performance of ML and DL models using two datasets designed explicitly for Software-
Defined Networking in the Internet of Things (SDNIoT) applications. The authors also
proposed an architecture based on LSTM to classify network assaults in IoT networks
efficiently using several classes. The assessment of the suggested model demonstrated
its efficacy in accurately detecting assaults and categorizing them, with a classification
accuracy of 0.971. Furthermore, various visualization techniques were used to get insights
into the dataset’s properties and visually represent the embedding features.

Identifying and differentiating such threats pose significant challenges, necessitating a
sophisticated IDS. ML has emerged as a promising methodology for developing intelligent
IDSs across several domains, including the IoT. Nevertheless, it is crucial to note that the
input for ML models must be derived from the IoT environment via feature extraction
models. These models have considerable importance in determining the detection rate and
accuracy of the ML models. Hence, the primary objective of study [12] was to investigate
the implementation of machine learning-based IDSs in the IoT. The investigation specifically
focused on evaluating several feature extraction methods with many machine learning
models. That work evaluated several feature extractors, including image filters, and transfer
learning models such as VGG-16 and DenseNet. Furthermore, considering all the feature
extraction approaches studied, a comprehensive evaluation was conducted on several
machine learning techniques, such as random forest, K-nearest neighbors, support vector
machine (SVM), and different stacked models. The research comprehensively assessed
the collective models using the IEEE Dataport dataset. The study’s findings revealed that
utilizing VGG-16 with stacking techniques yielded the most noteworthy accuracy rate,
reaching 98.3%.

An advanced approach to enhancing the security of the IoT involves using deep learn-
ing techniques. This approach presents a coherent solution for anomaly-based detection.
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The research by the authors of [13] introduced a convolutional neural network (CNN)
technique for anomaly-based IDSs in the field of IoT. The proposed approach leveraged
the capabilities of IoT to analyze the whole network traffic inside the IoT ecosystem effec-
tively. The model under consideration could identify and classify instances of intrusion
and anomalous patterns in network traffic. The model underwent training and testing
procedures using the NID Dataset and BoT-IoT datasets, yielding accuracy rates of 99.51%
and 92.85%, respectively.

The authors of [14] developed a novel framework based on Explainable Artificial Intel-
ligence (XAI) to detect intrusions in IoT networks. The proposed framework incorporates a
deep neural network model as the first component for real-time intrusion detection. Once
the model has been determined, their framework incorporated three distinct ways of Ex-
plainable Artificial Intelligence (XAI) to enhance the model’s decision-making process with
increased levels of explainability, transparency, and trust. Furthermore, the framework was
designed to cater to two distinct user groups: users of the deep learning model who seek to
comprehend and have confidence in the model’s outputs to enhance their decision-making,
and cybersecurity experts who also desire to comprehend the model’s outputs to provide
appropriate recommendations, particularly in the event of an intrusion being detected. The
feasibility and performance of the framework were demonstrated using the NSL-KDD and
UNSWNB15 datasets. The experimental results indicated the effectiveness of the proposed
XAI-based framework in detecting attacks in IoT systems. Furthermore, their framework
provided additional insights and explanations regarding the deep neural network model’s
decision-making process, enhancing the interpretation of the detection outcomes. The
researchers’ findings indicated that the XAI framework yielded 88% and 99% accuracy
when applied to the NSL−KDDTest and UNSW-NB15 datasets.

Article [15] presented the implementation of an intelligent intrusion detection system
designed to identify and detect assaults against IoT devices. A deep learning system was
used to identify fraudulent network traffic inside the Internet of Things. The identification
solution guaranteed operational security and facilitated interoperability across connection
protocols in the Internet of Things. IDS is a widely used network security technology
for network protection. Based on the findings obtained from their experimental analysis,
the suggested architecture for intrusion detection exhibited a high level of proficiency in
accurately identifying genuine global intrusions. Using a neural network to detect assaults
demonstrated a high level of effectiveness. Furthermore, there is a growing emphasis on
providing cybersecurity solutions that prioritize the needs and preferences of users. This
requires collecting, processing, and analyzing substantial data traffic volumes and connec-
tions inside 5G networks. After rigorous testing, the autoencoder model exhibited superior
performance by significantly reducing detection time and enhancing detection accuracy. A
remarkable accuracy rate of 99.76% was attained using the suggested methodology.

As the volume of sensitive data transmitted in IT infrastructures increases, health-
care individuals and businesses that generate supplementary data for users have become
attractive targets for cybercriminals. IoHT devices must be protected to preserve elec-
tronic healthcare data. Researchers have attempted to develop a robust IDS to secure
healthcare environments.

The authors of [16] presented a hybrid deep learning methodology for IoT botnet
malware detection that incorporates CNN-BLSTM-GRU to facilitate efficient multiclass
malware family detection. Accuracy, detection rate, and receiver operating characteristic
area under the curve (ROC AUC) were performance metrics used to evaluate the hybrid
deep learning model proposed by the authors. IoT-based botnet attack detection attained
98.34% accuracy and the suggested hybrid CNN-BLSTM-GRU deep learning-based botnet
attack detection system obtained 99.25% accuracy.

Study [17] proposed a new cybersecurity method using deep learning to facilitate the
detection of intrusions in the social Internet of Things. The performance of the deep model
was compared to that of the conventional machine learning approach, and the performance
of the distributed attack detection system was compared to that of the centralized detection
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system. Using the NSL-KDD dataset, the experiments demonstrated that the overall
detection accuracy increased from 96% to over 99%.

The healthcare industry increasingly applies IoT and artificial intelligence (AI) tech-
nologies to enhance services. IoT-enabled hospital devices improve patient safety, reduce
costs, and increase healthcare accessibility [18]. AI and IoT play vital roles in medical
diagnostics, real-time patient monitoring, medical image analysis, treatment planning,
drug discovery, and personalized healthcare [19]. Smart healthcare systems leverage
wearable devices, IoT, and AI to access medical information, enhancing efficiency and
personalization in healthcare services [20]. ML in IoT allows for pattern recognition and
predictive capabilities, benefiting healthcare through automated patient monitoring and
data management [21]. The combination of AI and IoT in healthcare is revolutionizing
decision-making and resource management but also presents challenges, including cy-
bersecurity, energy consumption, and privacy concerns. Researchers are looking to en-
hance cyber-attack detection in IoT by utilizing artificial intelligence, machine learning,
and deep learning methods to identify new and evolving threats while minimizing false
positive detections.

IoHT is a network combining various hardware platforms, software, and medical
devices to support healthcare information technology [22]. In this environment, smart
medical devices such as glucometers and blood pressure monitors are interconnected,
enabling seamless communication and the sharing of vital medical data [23]. Healthcare
practitioners and facilities then use this information to provide top-quality care and support.
However, it is essential to remember that IoHT devices collect sensitive health data, which
makes security and privacy protection critical [24]. With intelligent monitoring and data
transmission to an IoHT server, these devices transform how we care for patients. Protecting
IoT devices from cyber threats is paramount, as hardware and software can be vulnerable
to attacks [25].

In [26], a deep neural network-based cyber-attack detection system is developed
using artificial intelligence on the ECU-IoHT dataset to detect cyber-attacks in the Internet
of Health Things ecosystem. The proposed deep neural network system obtained an
improved performance accuracy of 99.85 percent, a mean area under the receiver operator
characteristic curve of 0.99, and a false positive rate of 0.01.

Paper [27] suggested a deep neural network in federated learning (DNN-FL) to detect
security-threatening anomalies in IoHT data. The authors evaluated their proposal’s
detection effectiveness using metrics such as accuracy and precision. Using the wustl-ehms-
2020 and ECU-IoHT datasets, the proposed DNN-FL was validated. It detected attacks
with 91.40% accuracy in the wustl-ehms-2020 dataset and 98.47% in the binary classification
on the ECU-IoHT dataset.

In [28], the authors proposed a framework for developing IoT context-aware security
solutions to detect malicious traffic in IoT healthcare environments. The proposed frame-
work consisted of an IoT traffic generator utility that generated standard and malicious
traffic using an IoT-based Intensive Care Unit (ICU) use case. Six commonly used ML
classifiers were trained and evaluated on the generated dataset for malicious and traditional
traffic detection in the IoT healthcare environment. They examined the efficacy of every
trained ML classifier. The random forest classifier performed the best among the six ML
classifiers, with 99.7068% precision, 99.79% recall, 99.51% accuracy, and 99.65% F1-Score.
The main contribution of this work involves building an intrusion detection model in
the IoHT model, which covers a range of cyber-attack scenarios while maintaining the
confidentiality of medical information. We explore different intrusion detection techniques,
including deep learning. Deep learning is a powerful option for intrusion detection in IoHT
because of its ability to self-learn, adapt, and generalize.

Our work is based on leveraging the ECU-IoHT dataset [29] for evaluation. This
dataset enables us to assess our model’s effectiveness in detecting a wide range of cyber-
attack scenarios while ensuring the confidentiality of sensitive medical information. A
comparative analysis systematically evaluates our approach against existing methods to
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highlight its advantages and unique contributions. This comparison can be performed
using various standard metrics, which provide quantitative proof of our model’s superior
performance. Explicitly remarking on the limits of current approaches, such as their
inability to detect new and unknown adversarial attacks effectively, sets the stage for
showcasing the innovative aspects of our solution. Our proposed model, which integrates
a hybrid deep learning model, addresses these limitations, and we can clearly articulate
the improvements. Emphasizing our model’s robust performance on a realistic ECU-IoHT
dataset and its adaptability to various IoHT scenarios highlights its practical applicability
and relevance.

2. Materials and Methods

The methodology used in this study is designed to investigate and evaluate the effec-
tiveness of deep learning-based cyber-attack detection systems in the IoHT environments.
The study starts with a thorough review of the existing literature, which offers a theoretical
analysis of diverse intrusion detection approaches focused on deep learning methodolo-
gies. Key aspects, such as overall cyber-attacks in IoHT networks, existing IDS, and the
challenges associated with cybersecurity in healthcare, are extensively examined. The
theoretical framework lays the foundation for understanding the complexities of IoHT
cyber threats.

The study then flows into the experimental phase, which involves developing and
implementing a deep learning network-based cyber-attack detection system. The novel
ECU-IoHT dataset, known for reflecting various cyber-attacks in the medical field, is chosen
for experimentation. Using this dataset ensures relevance to real-world scenarios while
mitigating potential risks associated with sensitive healthcare data. The research methodol-
ogy integrates artificial intelligence techniques, leveraging deep learning capabilities for
anomaly detection within the IoHT environment.

2.1. Data Source and Collection

Our deep learning model is evaluated using the ECU-IoHT dataset, which includes
both normal network activity and cyber-attacks in the healthcare domain. The dataset’s gen-
eration involves an environment equipped with specific components, notably a Windows
10 operating system, Kali Linux, a mobile Wi-Fi hotspot, a wireless network adapter, and a
Bluetooth adapter, all interconnected to enable internet access for the hosts. In addition,
the environment incorporates a healthcare kit named MySignals, equipped with multiple
sensors designed for monitoring and recording patients’ physiological data, encompassing
metrics like body temperature, blood pressure, and heart rate. These sensor-generated data
are subsequently transmitted to users’ cloud storage. The ECU-IoHT dataset encompasses
seven key network data features: source, destination, protocol, and specific attack types.
Within the dataset, 23,453 instances represent normal network activity, while other instances
correspond to cyber-attack instances. These attacks are classified into four distinct types:
Address Resolution Protocol (ARP) spoofing, Denial-of-Service (DoS) attacks, Network
Mapper (Nmap) port scans, and Smurf attacks. ARP spoofing involves sending false Ad-
dress Resolution Protocol messages to associate the attacker’s MAC address with the IP
address of a legitimate network device, leading to data interception. DoS attacks aim to
overwhelm a target system with excessive requests, rendering it unavailable to legitimate
users. Nmap port scans involve probing a network to identify open ports and services,
aiding in vulnerability assessment. Smurf attacks exploit IP broadcast addressing to flood
a target system with ICMP echo requests, causing network congestion and disruption.
The ECU-IoHT dataset is used to train and evaluate the model, ensuring its suitability for
healthcare applications. Notably, this method significantly improves detection accuracy by
analyzing a substantial volume of data, with the ECU-IoHT dataset comprising a total of
111,207 samples, as presented in Figure 1.
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A comprehensive multi-stage quality assurance protocol is crucial for maintaining the
integrity and reliability of a dataset used in deep learning for cyber-attack detection in IoHT
environments. The process starts by gathering and combining data from public sources,
then cleaning missing data and standardizing it for accuracy and consistency. A thorough
relevance assessment is conducted on the dataset, consistency checks are performed on
network data features, and validation is carried out to verify its appropriateness for model
training. Recognizing the importance of iterative data preprocessing, the protocol mandates
regular evaluations and adjustments to optimize the dataset’s contribution to building a
robust detection system.

The performance requirements for the deep learning-based cyber-attack detection
system in the IoHT environment are crucial to achieving our research objectives. The model
must exhibit exceptional accuracy, recall, and precision performance to effectively identify
and classify a wide range of cyber-attacks while minimizing false detections. Efficiently
handling a dataset of 111,207 samples is essential. Additionally, the system’s performance
should be reliable and consistently effective across different scenarios and data variations.
Moreover, the strategy must achieve a low false positive rate in detecting and responding to
cyber threats, reflecting the real-time requirements of the IoHT environment where timely
action is critical.

Achieving performance requirements is vital to ensure the proposed deep learning
approach contributes significantly to strengthening cybersecurity in IoHT, enhancing the
security of sensitive medical data, and ultimately guaranteeing the well-being of patients.

2.2. Hybrid Deep Learning Model

This study introduces an innovative hybrid deep learning-based IoHT attack detection
model that combines an ANN with BLSTM and GRU architectures. The hybrid model
integrates the ANN’s ability to process intricate patterns, BLSTM’s capacity to capture
sequential dependencies in both directions, and GRU’s efficiency in handling long-term
dependencies. This integrated architecture aims to improve cyber-attack detection in the
IoHT environment by leveraging the complementary strengths of these neural network
components. The proposed system is designed to be adaptable and efficient, providing
a comprehensive solution to cyber threats’ dynamic and evolving nature in IoHT, as
presented in Figure 2. Trained on an extensive dataset of IoHT, this model is specifically
designed to detect four distinct types of attacks. These include ARP spoofing, DoS, Nmap
port scans, and Smurf attacks. The ANN component efficiently processes complex patterns
inherent in IoHT data. The BLSTM layer captures bidirectional dependencies, while the
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GRU layer excels in handling long-term sequential features. This integrated architecture
enables the model to discern and classify diverse cyber threats within IoHT. As a result, it
contributes to the security and integrity of healthcare data and services.
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The hybrid deep learning model outlined in the provided architecture incorporates
multiple layers to harness the strengths of different types of neural networks, creating a
comprehensive approach to classification tasks. The model starts with an input layer to
receive pre-processed data, explicitly shaped based on the dimensions of the training data.
It then splits into three separate paths: an ANN, a GRU, and an LSTM architecture.

The ANN layer consists of a dense layer with 256 neurons activated by ReLU, intro-
ducing non-linearity and allowing the network to capture complex patterns. The GRU layer
includes a bidirectional GRU layer, which processes data in both forward and backward
directions, improving the model’s ability to learn long-term dependencies by considering
past and future contexts. The LSTM layer begins with a reshaping layer to adjust the input
dimensions, followed by a bidirectional LSTM layer to capture dependencies similar to
GRUs, and includes a dropout layer to prevent overfitting by randomly omitting neurons
during training.

The outputs from these layers are then combined and passed through a final dense
layer with a softmax activation function, which generates a probability distribution over
five classes suitable for multiclass classification tasks. This architecture leverages the
strengths of both ANN and RNN components, aiming to effectively capture spatial
and sequential features within the data, potentially enhancing performance in complex
classification scenarios.

Table 1 summarizes the key parameters for setting up the hybrid deep learning model.
Different parameter values are tested to find the best performance.
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Table 1. The model setup.

Parameter Value

Batch Size 256
Number of Epochs 100
Output Activation Softmax

Loss Function Categorical Cross Entropy
Optimizer Adam

Learning Rate 0.001
Activation Function ReLU

2.3. Performance Metrics

To assess the performance of the deep learning-based cyber-attack detection system
in the IoHT environment, several key performance metrics are employed to measure its
effectiveness. These metrics include the following:

Accuracy (ACC): Accuracy represents the ratio of correctly classified instances to the
total number of instances and is a fundamental measure of overall system performance. It
is calculated using the following equation:

ACC = (TP + TN)/(TP + TN + FP + FN), (1)

where:

• True positives (TP) are the instances correctly classified as attacks.
• True negatives (TN) are the instances correctly classified as normal.
• False positives (FP) are the instances incorrectly classified as attacks.
• False negatives (FN) are the instances incorrectly classified as normal.

Recall quantifies the system’s ability to detect actual attacks correctly. It is computed
as follows:

Recall = TP/(TP + FN), (2)

Precision measures the accuracy of the system in classifying detected attacks. The
following formula determines it:

Precision = TP/(TP + FP), (3)

The F1-Score is the harmonic mean of precision and recall and provides a balanced
measure of the system’s performance:

F1-Score = (2 × Precision × Recall)/(Precision + Recall), (4)

Specificity is a critical metric in the context of classification problems, particularly
in assessing the performance of a model in identifying negative cases for each category.
Defined mathematically, specificity for a given class is expressed as:

Specificity = TN/(TN + FP), (5)

The weighted average mean adjusts for class imbalances by assigning weights propor-
tional to the class frequencies. The weighted average X is computed as:

X =
∑n

i=1 Wi·Xi

∑n
i=1 Wi

, (6)

where xi represents t the performance metric, including accuracy, precision, and recall for
each class i, and Wi denotes the weight assigned to class i. The weights Wi is typically
determined based on class frequencies relevant to the classification task, ensuring that each
class contributes proportionally to the overall performance assessment.
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Finally, we can compute the overall error rate for classification, which is related
to accuracy.

Error Rate = 1 − ((TP + TN)/(TP + TN + FP + FN)). (7)

These performance metrics are essential in evaluating the system’s ability to detect
cyber-attacks and assess their effectiveness in the IoHT environment. High accuracy, recall,
precision, specificity, error rate, weighted average results, and F1-Score values indicate that
the system can efficiently identify and classify attacks while minimizing false detections.

3. Results

This research introduces an innovative approach to address cyber threats against IoHT.
The proposed IoHT attack detection model combines an ANN with BLSTM and GRU
architectures to create a reliable defense mechanism. The integrated system is adaptable
and efficient, capable of combatting cyber threats’ dynamic and sophisticated nature within
the IoHT environment. The model was extensively trained on IoHT data to detect four
cyber-attack types: ARP spoofing, DoS attacks, Nmap port scans, and Smurf attacks. The
ANN component efficiently processes intricate patterns in IoHT data, while the BLSTM
layer captures bidirectional dependencies, and the GRU layer manages long-term sequential
features. Together, this architecture empowers the model to identify and categorize various
cyber threats accurately, safeguarding the integrity of healthcare data and services.

3.1. Multi-Classification Result Scenario

The multiclass classification results demonstrate great accuracy in detecting and
classifying different types of attacks.

As detailed in Table 2, it is clear that our model has achieved outstanding results in
detecting various cyber-attacks. For multiclass classification scenarios, the model achieved
100% specificity and accuracy while achieving a precision of 99.365%, a recall of 99.957%,
and an F1-Score of 99.6604%, crucial for preventing unnecessary alarms and ensuring the
seamless operation of IoHT devices.

Table 2. Multi-classification results for each class.

Class Accuracy (%) Specificity (%) Precision (%) Recall (%) F1-Score

No Attack 100 100 99.365 99.957 99.6604
ARP Spoofing 100 100 100 100 100

Nmap Port Scan 100 100 100 100 100
Smurf Attack 99.86 99.55 99.987 99.807 99.897
DoS Attack 0.9944 99.44 100 100 100

As represented in Figure 3, the confusion matrix represents the true positive and false
positive rates across different classifications. A noteworthy observation is the model’s
success in distinguishing between ‘No Attack’ instances and ‘Smurf Attack’ scenarios,
with only 15 cases misclassified from a substantial dataset. It indicates the model’s high
sensitivity and specificity in operational environments.

The weighted average results in Table 3 show the model’s overall performance with ac-
curacy, precision, recall, and F1-Score above 0.9985, 0.997 specificity and 0.001439 error rate.
The aggregate analysis ensures the model’s consistent strength across various attack vectors,
solidifying its role as a comprehensive solution for cybersecurity in the IoHT landscape.
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Table 3. Weighted average multiclass classification results.

Metric Value

Accuracy 0.998561
Specificity 0.996823
Precision 0.998569

Recall 0.998561
F1-Score 0.998563

Error Rate 0.001439

3.2. Binary Classification Result Scenario

Noteworthy progress in IoHT cybersecurity is the binary deep learning-based IoHT
attack detection model. This innovative model provides a highly accurate method for
identifying cyber threats within the IoHT infrastructure. While it employs a binary classi-
fication paradigm, which is less detailed than its multiclass equivalent, it is equally vital
in preserving security. The model’s primary function is to verify the existence or absence
of cyber threats within the IoHT system. Table 4 details that the model’s recall metric is
significant, boasting a perfect 100% for both classes. Recall is a critical measure of the
model’s capacity to identify all genuine positives within the dataset. This achievement is
most important for IoHT security, as the model identifies all legitimate threats.

The F1-Score of the model for both the ‘No Attack’ and ‘Attack’ classes achieved the
optimal value of 100%. Since the F1-Score is a balanced average of precision and recall,
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this indicates a perfect balance between avoiding false positives and detecting all true
positives. This is an essential feature for security models, as the costs of false negatives can
be significant.

The binary classification results, as shown in Table 5, demonstrate the model’s ex-
ceptional performance. The model achieved 100% accuracy, specificity, precision, recall,
and F1-Score, an excellent detection capability and 0 error rate. This consistency across
all metrics indicates that the model is proficient in identifying the correct class labels and
maintains this accuracy uniformly throughout the proposed dataset.

Figure 4 displays the binary classification confusion matrix, indicating a highly accu-
rate predictive model for both ‘Attack’ and ‘No Attack’ scenarios. The dataset is composed
of 11,121 instances, 2349 were classified as ‘No Attack’, and 8772 were classified as ‘Attack’.
The model performed correctly, with zero false positives or false negatives. The absence of
off-diagonal values in the matrix confirms this. The model accurately predicted all ‘Attack’
instances (true positive rate) and all ‘No Attack’ instances (true negative rate). The scenario
presented here demonstrates a binary classification framework with unparalleled perfection
in cybersecurity for IoHT. It achieved a 100% success rate in detecting true threats and ensur-
ing non-threat conditions, setting a theoretical benchmark for cybersecurity applications.
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Table 4. Binary classification results for each class.

Class Accuracy (%) Specificity (%) Precision (%) Recall (%) F1-Score

No Attack 100 100 100 100 100
Attack 100 100 100 100 100
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Table 5. Weighted average binary classification results.

Metric Value

Accuracy 100
Specificity 100
Precision 100

Recall 100
F1-Score 100

Error Rate 0.0

4. Discussion

The results of our experimental evaluation of the hybrid IoHT attack detection model
demonstrate a highly effective defense mechanism against cyber threats in IoHT. By inte-
grating ANN with BLSTM and GRU architectures, our model achieved impressive results
in both multiclass and binary classification scenarios, as evidenced by near-perfect accuracy,
precision, recall, and F1-Score scores.

Our proposed model performed better than existing IDSs in the IoHT and IoT do-
mains. While methodologies like LSTM with CNNs and various feature extraction methods
combined with machine learning models offer high accuracy, they often need to provide
complete coverage against many attacks, as shown in Table 6. For instance, the model
in [10] has a mean accuracy of 93.74%, which, is notably lower than the 100% accuracy
achieved by our model in a binary classification scenarios. Similarly, the hybrid approach
employing CNN-BLSTM-GRU architectures, as reported in reference [16], achieves an
accuracy of 99.25%, which is still lower than our model’s multiclass accuracy of 99.86%.

Table 6. Comparative analysis of various existing IDSs based on the IoT and IoHT networks.

Ref. Dataset Used Methodology Results

[9] UNSW NB15 Hybrid approach (LSTM + CNN) 98% accuracy
[10] 25,000 instances Four-layer deep Fully Connected network Accuracy: 93.74%; precision: 93.71%
[11] SDNIoT LSTM for network assaults in IoT networks Accuracy: 0.971
[12] IEEE Dataport Various feature extraction methods with ML models VGG-16 with stacking: 98.3% accuracy
[13] NID Dataset, BoT-IoT CNN for anomaly-based IDS Accuracy: 99.51% (NID), 92.85% (BoT-IoT)

[16] IoT-based botnet Hybrid deep learning (CNN-BLSTM-GRU) for IoT
botnet detection

Accuracy: 98.34% (IoT-based botnet), 99.25%
(CNN-BLSTM-GRU)

[17] NSL-KDD Deep learning for intrusion detection in social IoT Accuracy from 96% to over 99%
[26] ECU-IoHT Deep neural network for cyber-attack detection ANN Accuracy: 99.85%; Nmap port scan and DDOS recall: 92%,
[27] wustl-ehms-2020, ECU-IoHT DNN-FL for anomaly detection in IoHT data Accuracy: 91.40% (wustl-ehms-2020), 98.47% (ECU-IoHT)

Proposed ECU-IoHT Hybrid IoHT detection model Multiclass accuracy: 99.86; Binary class accuracy: 100.
ARP spoofing, Nmap port scan, and DDOS recall: 100%.

The proposed model excels in its robustness and dynamic adaptability. The ANN
component is critical in processing complex patterns in IoHT data, effectively filtering and
identifying potential threats. Additionally, the BLSTM layer enhances the model’s ability
to understand bidirectional dependencies within the data, which is particularly useful for
capturing evolving patterns. Moreover, including GRU layers helps manage long-term
dependencies, enabling the model to maintain high performance even with extended data
sequences typical in IoHT environments.

The model’s high precision and recall metrics across all classifications demonstrate
its accuracy and reliability, minimizing the risk of false positives and negatives. Such
reliability is crucial in healthcare settings where patient data integrity and confidentiality
are paramount. By accurately detecting and classifying cyber-attacks, the model supports
the continuous availability and reliable performance of healthcare services, safeguarding
sensitive health data against unauthorized access and potential tampering.

As shown in Figure 5, the proposed model obtained the best recalls, which confirms
that it better detects abnormal instances of actual attacks compared to recent works.
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Although the proposed model demonstrated high performance, its relatively lower
precision in detecting Smurf attacks than other types of attacks highlight an opportunity
for improvement. Possible avenues for future work include the integration of additional
layers or alternative architectures that can enhance sensitivity to such attacks. In addition,
continual learning mechanisms could be implemented to enable adaptation to new and
evolving cyber threats without requiring extensive retraining.

The proposed model’s success in IoHT environments adds to the ongoing discussion
about the practicality of implementing deep learning techniques to safeguard IoT networks.
By skillfully combining ANN, BLSTM, and GRU, this hybrid model showcases the potential
of such approaches in addressing intricate and ever-changing security obstacles inherent in
IoT systems.

This study showcases the effectiveness of advanced deep learning models in combat-
ing cybersecurity threats in the IoHT sector. The hybrid IoHT attack detection model’s
extraordinary performance establishes a new standard for IDSs in the IoT and IoHT realms,
emphasizing the crucial role of innovative AI-based solutions in enhancing digital security
in healthcare and beyond. Subsequent research should focus on strengthening and broad-
ening the applicability of these models to other fields while continually improving their
ability to adapt to the ever-changing cyber threat landscape.

5. Conclusions and Future Direction

The extensive research encapsulated in this paper has laid a foundational framework
for a deep learning-based cybersecurity system in IoHT environments. This system lever-
ages a hybrid deep learning-based IoHT attack detection model that integrates an ANN
with BLSTM and GRU architectures.

The research’s key findings highlight the proposed model’s exceptional performance,
achieving near-perfect precision, recall, and F1-Score metrics in both multiclass and bi-
nary classification scenarios. As presented in Table 1 and visually supported by Figure 3’s
confusion matrix, the multiclass classification results indicate a superior ability to detect
and classify a broad range of cyber-attack types with minimal misclassifications. Similarly,
the binary classification scenario detailed in Table 3 and Figure 4 demonstrates unprece-
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dented performance, with accuracy, precision, recall, and F1-Score, all reaching the ideal
value of 100%.

These findings represent a groundbreaking development in IDS for the IoHT landscape,
with potential implications for patient safety and data security. The proposed model is
reliable and efficient, setting a benchmark for future developments in the field.

Considering future directions, as IoHT devices and their cyber threats become more
complex, there is a growing need for adaptive models that can learn from new attacks and
evolve. Incorporating unsupervised learning techniques for anomaly detection within the
proposed model could enhance its ability to detect novel threats not part of the original
training dataset.
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