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Abstract: Automatic Container Code Recognition (ACCR) is critical for enhancing the efficiency
of container terminals. However, existing ACCR methods frequently fail to achieve satisfactory
performance in complex environments at port gates. In this paper, we propose an approach for
accurate, fast, and compact container code recognition by utilizing YOLOv4 for container region
localization and Deeplabv3+ for character recognition. To enhance the recognition speed and accuracy
of YOLOv4 and Deeplabv3+, and to facilitate their deployment at gate entrances, we introduce several
improvements. First, we optimize the feature-extraction process of YOLOv4 and Deeplabv3+ to
reduce their computational complexity. Second, we enhance the multi-scale recognition and loss
functions of YOLOv4 to improve the accuracy and speed of container region localization. Furthermore,
we adjust the dilated convolution rates of the ASPP module in Deeplabv3+. Finally, we replace two
upsampling structures in the decoder of Deeplabv3+ with transposed convolution upsampling and
sub-pixel convolution upsampling. Experimental results on our custom dataset demonstrate that
our proposed method, C-YOLOv4, achieves a container region localization accuracy of 99.76% at a
speed of 56.7 frames per second (FPS), while C-Deeplabv3+ achieves an average pixel classification
accuracy (MPA) of 99.88% and an FPS of 11.4. The overall recognition success rate and recognition
speed of our approach are 99.51% and 2.3 ms per frame, respectively. Moreover, C-YOLOv4 and
C-Deeplabv3+ outperform existing methods in complex scenarios.

Keywords: maritime management; ship monitoring; video image recognition; convolutional neural
network; feature fusion

1. Introduction

Containers serve as the primary mode of transportation for international trade [1].
According to the United Nations Conference on Trade and Development (UNCTAD) report,
90% of international trade volume is carried out through maritime transport, with over
60% of maritime trade being conducted via container shipping [2]. In 2020, the global
container transport trade volume reached 140 million TEUs (twenty-foot equivalent units).
The container code serves as a unique identifier for containers and is essential for enhancing
control and management of cargo within containers during various stages of Container
Multimodal Transportation (CMT).

Container terminals, particularly at gate entrances, are crucial nodes in CMT, responsi-
ble for container code recognition and recording [3]. The speed and accuracy of container
code recognition at gate entrances directly impact the overall efficiency of CMT. With the
rapid growth of global container transport volume, port throughput has increased from
485 million TEUs in 2007 to 820 million TEUs in 2020 [2]. However, the existing methods
for container code recognition at gate entrances are unable to cope with the rapid growth of
port throughput. The slow recognition speed results in long waiting times for containers at
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gate entrances, leading to traffic congestion and environmental pollution [4]. Consequently,
container terminal gate entrances have become a bottleneck that hinders the development
of CMT [5].

The application of Internet of Things (IoT) technology in smart ports is rapidly advanc-
ing. Smart ports leverage IoT technology to achieve real-time monitoring and management
of cargo, equipment, and infrastructure, enhancing operational efficiency and reducing
costs. Existing IoT solutions primarily rely on barcode scanners and RFID devices for data
collection. Although these methods are mature, they have certain limitations, such as the
need for additional hardware and high maintenance costs. This manuscript proposes a
video-based data collection solution that utilizes existing surveillance cameras, eliminating
the need for extra hardware and enabling more efficient data collection. Moreover, the al-
gorithm presented in this paper takes into account different angles and lighting conditions,
making it adaptable to various image capture devices. As a result, it offers a more flexible
and cost-effective option for IoT systems in smart ports.

Due to the slow speed and high cost associated with manual container code recognition
and recording [6], Automatic Container Code Recognition (ACCR) systems are primarily
used at port gate entrances. Among them, barcode-based ACCR systems have been phased
out due to their poor reliability. Radio Frequency Identification (RFID)-based ACCR
systems offer high detection accuracy but come with high deployment and maintenance
costs [7]. On the other hand, Optical Character Recognition (OCR)-based ACCR systems
have low installation costs [8] and are the mainstream approach in modern container
terminals due to their simple system integration. However, their recognition accuracy
is generally below 95%. This is mainly attributed to the high requirements of methods
such as container code localization (CCL) [9], character segmentation, and container code
recognition (CCR) [10] in terms of recognition conditions. In situations with uneven
lighting, image blurring, or skewed container codes, errors in container code localization
or character recognition are prone to occur.

Deep learning algorithms can automatically extract features directly from raw images,
showing strong resistance to interference, and have achieved significant results in various
areas such as traffic signal detection [11], license plate recognition [12], and medical image
segmentation [13]. Based on deep learning algorithms, the development of ACCR can be
divided into two types: (1) using a single neural network to complete the entire container
code recognition process [14] and (2) stacking two neural networks to separately accomplish
CCL and CCR [15]. However, the former requires complex post-processing, does not
improve detection speed, and may result in decreased recognition accuracy. Although the
latter has improved recognition accuracy, the model parameters are too large, leading to
longer computation time. Existing algorithms fail to achieve a balance between container
code recognition speed and accuracy, and they also have high requirements for hardware
facilities, making it difficult to deploy them at port entrances.

To address these issues, this paper presents a two-stage automatic container number
recognition method based on deep learning algorithms. This method offers high recognition
accuracy, fast speed, and easy deployment on devices with limited computational power.
The first stage utilizes YOLOv4 for container number region localization, while the second
stage employs Deeplabv3+ for container number character recognition on the localized
region images. Additionally, improvements are made to the network structures of YOLOv4
and Deeplabv3+ to enhance the speed and accuracy of both models in the CCL and CCR
tasks, resulting in the modified algorithms named C-YOLOv4 and C-Deeplabv3+. The
method is applied to the data input segment of the port Internet of Things system. The
main contributions of this paper are as follows:

(1) A dataset of container number images is constructed, primarily collected from con-
tainer terminal gates. The dataset includes various complex scenarios such as tilted
containers and rusty or contaminated container number characters;

(2) The paper proposes the CCL algorithm based on C-YOLOv4. By compressing the
backbone feature-extraction network, redesigning the multi-scale recognition module,
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and improving the loss function of YOLOv4, the algorithm achieves higher accuracy
and speed in container number region localization in complex scenarios;

(3) The paper introduces the CCR algorithm based on C-Deeplabv3+. A decoding struc-
ture combining sub-pixel convolutional upsampling and transpose convolutional
upsampling is designed and applied to the DeepLabv3+ network. Additionally, a
new dilated convolution branch is introduced to preserve more character details in
the image without increasing the parameter count.

The remaining parts of this paper are organized as follows: Section 2 provides a
brief review of existing methods for CCL and CCR. Section 3 describes the framework
of the container number recognition method based on C-YOLOv4 and C-Deeplabv3+. In
Section 4, experiments on container number region localization and character recognition
are conducted using a self-made dataset, followed by an analysis of the experimental
results. Section 5 discusses some conclusions.

2. Literature Review

This section reviews the ACCR methods in the previous literature, mainly comparing
the recognition success rate and recognition time, as shown in Table 1. As can be seen from
Table 1, the previous ACCR methods only meet one aspect of the recognition success rate
or recognition speed.

Table 1. Comparison of related research.

References CCL CCR Success Rate Time

Koo and Cha 2013 [6] Edge-based Back Propagation Neural
Network (BPNN) 98.39% 240 ms

Yoon et al., 2016 [16] Appearance-based Support Vector Machine
(SVM) 96.00% 580 ms

Mei et al., 2016 [17] Edge-based LeNet-5 and Template
Matching (TM) 94.70% 920 ms

Roeksukrungrueang et al., 2018 [18] Connected components LeNet-5 95.41% 10,000 ms

Koo and Cha 2013 [6]

Maximally Stable External
Regions (MSER) and

Connectionist Text Proposal
Network (CTPN)

Convolutional Recurrent
Neural Network (CRNN) 93% -

Han et al., 2018 [7] - Broad Learning System (BLS) 97.85% 20 ms

Cao et al., 2019 [9] MSER-based Convolutional Neural
Networks (CNN) 96.30% -

Wu et al., 2020 [19] MSER-based LeNet-5 and TM 99.30% 1800 ms

Zhang et al., 2020 [20] ResNet and U-net CRNN 93.33% 885 ms

Mi et al., 2020 [21] Edge-based BPNN 96.80% 2000 ms

Chun-ming 2020 [10] Single Shot MultiBox Detector
(SSD) SVM 94.60% 630 ms

X. Feng et al., 2020 [15] You Only Look Once V3
(YOLOv3) CRNN 96% 159 ms

X. Q. Feng et al., 2020 [22] Efficient and Accuracy Scene
Text (EAST) - 96% 52 ms

Wan et al., 2021 [23] Differentiable Binarization
(DBNet)

Show, Attend and Read
(SAR) 95% 200 ms

Li et al., 2022 [24] Edge-based SVM 97.30% 100 ms

2.1. CCL and ACCR

CCL generates a bounding box for the container code area in raw image. The output
of this step has a great impact on the accuracy of CCR. Existing CCL algorithms can be
divided into three categories: edge-based, MSER-based and DL-based (deep learning) [25].
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Container code characters have strong vertical edges, so vertical edge detection can be
used to locate container code area. Mei et al. [17] and Li et al. [24] use the filter to detect
vertical edges on the image and then use connection component analysis to remove noisy
edges and locate the container code area. Koo and Cha [6] use the edge detection operators
to detect the vertical edge and then use the sliding windows to find the distinguishing
edge features to complete the location of the container code area. Keserwani et al. [26]
proposed a centroid-based vector regression method for generating text region quadrilateral
bounding boxes, which exhibits high generalization for text regions of different shapes
and aspect ratios. Edge-based CCL is easy to implement and computationally fast, but it
cannot be used in polluted or inclined containers. Further, this method is very sensitive to
illumination changes.

Some researchers use MSER to locate container code area. Cao et al. [9] use MSER to
detect areas where characters may exist then use the geometric clustering algorithm and
the spatial structure template to identify the container code area. Liu et al. [27] combine
Connectionist Text Proposal Network (CTPN) with MSER to improve the locating accuracy,
but the algorithm is complex. Wu et al. [19] propose a CCL method combining MSER and
edge, which achieved good results. Although MSER-based CCL has a good locating effect
on images with a rusty container number, the reliability of this algorithm is insufficient in
an uneven lighting environment.

Recently, the DL-based CCL has gradually become the mainstream. Deep learning
algorithms can learn features directly from the raw images and have good detection results
in a variety of complex situations, such as inclined containers and illumination changes.
However, the existing object detection algorithms have the disadvantages of a large number
of parameters and long calculation time, so researchers have proposed lightweight networks
to improve it. X. Q. Feng et al. [22] present a CCL method based on the ShuffleNet-EAST
network. Chun-ming [10] combined lightweight MobileNet and SSD algorithms to perform
CCL with 97% accuracy. X. Feng et al. [15] train MobileNetV2-YOLOv3 network for CCL.

2.2. CCR

Previous work on CCR typically needs to segment characters in the container code
image firstly and then recognizes each segmented character [28]. This paper focuses on
summarizing previous CCR. The existing CCR algorithms include TM-based, SVM-based,
and DL-based (deep learning).

TM-based methods recognize each character by measuring the similarity between
characters and templates. Mei et al. [17] and Wu et al. [19] use the LeNet algorithm and TM
algorithm to recognize container characters, but the recognition accuracy of the former is
only 91.9%, and the recognition time of the latter is as long as 1800 ms. TM-based methods
are simple and fast, but they can only be used to recognize characters of single font and
fixed size, with no rotation or broken areas, which has a poor recognition effect for blurred,
skewed, and incomplete container characters.

Some researchers regard container characters as different classes, and train SVM to
classify the characters and identify the characters. Yoon et al. [16] use a single SVM for
CCR. Li et al. [24] and Chun-ming [10] train two SVMs to identify the numbers and letters
of the container code, respectively. In summary, using the SVM-based method, the accuracy
rate can be about 95%, but its recognition time is long, and SVM requires a large amount of
training data.

DL-based CCR is more robust, and it can recognize container code characters in a vari-
ety of complex environments, including tilt and deformation. Roeksukrungrueang et al. [18]
use two LeNet networks to identify letters and numbers, respectively, with an accuracy
of 95.41%. Mi et al. [21] train a BP neural network to recognize the segmented characters.
Zhang et al. [20] and Liu et al. [27] propose a CCR model based on CRNN (Convolutional
Recurrent Neural Network).

However, these DL-based CCR methods have slow recognition speed and unsatisfac-
tory recognition accuracy. On the one hand, the existing target detection model is complex,
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and the number of algorithm parameters is large. On the other hand, the output of CCL
has a great influence on the recognition results of CCR. The poor locating effect in the CCL
stage eventually leads to the low accuracy of CCR.

To address these deficiencies, some researchers choose to train a single deep learning
model to directly identify container characters to avoid errors and missed detections caused
by inaccurate area locating and thereby improve CCR accuracy [29]. Han et al. [7] present
the BLS (Broad Learning System) for CCR, in which the recognition time only needs 20 ms
for one frame, and it has a certain resistance to various complex situations.

In order to further improve the speed of the CCR algorithm, researchers have made
lightweight improvements to neural networks. X. Feng et al. [15] use a lightweight CRNN
network for character recognition. Wan et al. [23] modified the SAR feature-extraction
module to MobileNetv3 for CCR. Experimental results show that this lightweight neu-
ral network can greatly improve the recognition speed under the premise of ensuring
recognition accuracy.

3. Methodology
3.1. Overall Structure

This paper proposes a two-stage ACCR method including a CCL stage and CCR stage.
The overall structure is shown in Figure 1. The first stage takes the full raw image as input.
It detects the container code area in the image using the C-YOLOv4 algorithm and outputs
the cropped container images to the second stage. The CCR stage takes the cropped image
as input. It recognizes container characters using a C-Deeplabv3+ algorithm module and
outputs the final result. The method does not need the segmentation stage, which can
avoid the decline of recognition accuracy caused by the failure of character segmentation.
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Figure 1. The structure of proposed ACCR framework.

3.2. Step1: The Framework of CCL: C-YOLOv4
3.2.1. C-YOLOv4

YOLO is a typical single-stage target detection algorithm with high accuracy and
speed. The complex and sizable architecture of YOLOv4 necessitates a highly configured
hardware platform to operate effectively, achieving the requisite speed and accuracy. This
requirement for substantial computational resources constrains the algorithm’s applica-
tion within this study. Researchers have improved the original model using lightweight
networks. For example, Singh et al. [29] proposed a lightweight model, Latent Graph
Attention, which achieves efficient image transformation with lower computational costs.
Yar et al. [28] enhanced the YOLOv5 algorithm using MobileNetV3, which achieved good
results with lower complexity and a smaller model size. Additionally, Parez et al. [25]
utilized MobileNetV3 to improve deep learning models for plant disease detection. It is not
proper to deploy at the port gate. This paper proposes an improved lightweight YOLOv4
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algorithm (C-YOLOv4), and its structure is shown in Figure 2. Specific improvements are
as follows:

(1) The algorithm uses a lightweight network MobileNetV3 as the backbone network and
removes the Spatial Pyramid Pooling (SPP) network to lighten the network. And the
Feature Pyramid Network (FPN) is adopted as the neck network to increase the speed
of network;

(2) The algorithm cancels the 13 × 13 scale feature map and reduces the scale of the
feature-extraction network. Then, a K-means++ algorithm was used to recalculate the
six more appropriate prior boxes to improve the detection accuracy;

(3) The algorithm uses Enhanced Intersection Over Union (EIOU) to improve the loss
function of the yolo4 algorithm, which enhances the training effect.
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The output prediction network still uses Yolo Head, while predicting and regressing
the class and location of the object at the same time.

3.2.2. Improvement of Backbone Network

C -YOLOv4 takes CSPDarknet53 as the backbone network, which has a strong feature-
extraction capability. But it contains five residual blocks and 104 layers of convolutional
network. The parameter number and the computational effort of this network are very
large. In addition, the container code area is a small or medium single-detection target.
CSPDarknet53 has excessive performance in CCL, which leads to poor detection effect.

MobileNetV3 is a lightweight network. It applies depthwise separable convolution,
mobile inverted bottleneck convolution, and the SE (Squeezed and Excitation) attention
mechanism. Depthwise separable convolution is a special type of convolution, compared
with conventional convolution, which can obtain the same output results while significantly
reducing the computation and parameter number.

Therefore, MobileNetV3 is adopted as the backbone network of C-YOLOv4, which
can reduce the hardware requirements of the algorithm and improve the recognition speed
under the condition of ensuring the recognition accuracy.
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The MobileNetV3 of C-YOLO consists of one common convolutional layer Conv and
several bottleneck structures. Its parameters are shown in Table 2.

Table 2. Parameters of MobileNetV3.

Input Operator Exp Size Out SE NL S

4162 × 3 Conv2d - 16 - HS 2
2082 × 16 bneck, 3 × 3 16 16 - RE 1
1082 × 16 bneck, 3 × 3 64 24 - RE 2
1042 × 24 bneck, 3 × 3 72 24 - RE 1
1042 × 24 bneck, 5 × 5 72 40 ✓ RE 2
522 × 40 bneck, 5 × 5 120 40 ✓ RE 1
522 × 40 bneck, 5 × 5 120 40 ✓ RE 1
522 × 40 bneck, 3 × 3 240 80 - HS 2
262 × 80 bneck, 3 × 3 200 80 - HS 1
262 × 80 bneck, 3 × 3 184 80 - HS 1
262 × 80 bneck, 3 × 3 184 80 - HS 1
262 × 80 bneck, 3 × 3 480 112 ✓ HS 1

262 × 112 bneck, 3 × 3 672 112 ✓ HS 1
262 × 112 bneck, 5 × 5 672 160 ✓ HS 2
262 × 160 Conv2d - 256 - HS 1

Input denotes the shape of the feature map. Operator denotes the type of the feature-
extraction structure. Exp size denotes the number of channels after feature map ascending
dimension. Out denotes the final number of output channels of this layer. SE denotes
whether there is a Squeeze-And-Excite in that block. NL denotes the type of nonlinearity
used. HS denotes h-swish activation function, and RE denotes ReLU activation function. S
denotes stride; Bneck is a bottleneck convolution module.

3.2.3. Improvement of Multi-Scale Identification Structure

After the input image passes through the backbone network, C-YOLOv4 will output
feature maps at scales 13 × 13, 26 × 26, and 52 × 52. These feature maps are sent to YOLO
Head for decoding and prediction after stacking convolution and other operations by the
feature fusion module.

However, in the CCL task, the container code area occupies a relatively small pro-
portion in the whole picture. The container image corresponding to each grid in the
13 × 13 scale feature map is too large, which makes it difficult to accurately locate the posi-
tion of the container code area boundary container. Therefore, the C-YOLO v4 algorithm
deletes the 13 × 13 scale feature map and detection head.

C-YOLO v4 uses the k-means clustering algorithm to obtain nine prior bounding
boxes of different scales. The scales of these prior bounding boxes are generated based on
the COCO or VOC dataset, which are not applicable to the container dataset.

The k-means clustering algorithm randomly selects the initial clustering center point,
leading to a certain degree of randomness in the clustering results. It is easy to fall
into a local minimum. Compared with the k-means clustering algorithm, the k-means++
algorithm improves the selection of the initial clustering center point, resulting in clustering
results that are more stable and reasonable. Therefore, we selected the k-means++ clustering
algorithm as the prior bounding boxes clustering method. The C-YOLO v4 algorithm
recalculates six greater prior bounding boxes. The recalculated prior container size is
shown in Table 3.
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Table 3. Prior container size.

Layer Dimensions of Prior Bounding Boxes Target

26 × 26 (46, 14) (86, 39) (143, 75) Middle target
52 × 52 (188, 50) (221, 94) (314, 158) Small target

3.2.4. Improvement of Loss Function

The loss function of C-YOLO v4 is composed of confidence loss, prediction container
regression loss, and classification loss, where the prediction container regression loss
function is Complete Intersection-Over-Union (CIOU), and its specific formula is as follows:

LCIOU = 1 − IOU +
ρ2(b,bgt)

c2 + αυ (1)

α = υ
(1−IOU)+υ (2)

υ = 4
π2

(
arctan wgt

hgt − arctan w
h )

2 (3)

Intersection-Over-Union (IOU) is the intersection ratio between the prediction bound-
ing box and the ground truth. ρ2(b, bgt) is the center of the Euclidean distance. c is a true
container that predicts the container and the diagonal distance of minimum closure area.
α is weight function; υ, width to height ratio, is used to measure the weight function; b is
said to predict bounding box center coordinates; and w, h are the width and height of the
prediction bounding box. bgt is the center point coordinate of the ground truth, and wgt,
hgt are the width and height of the ground truth.

Although CIOU considers the overlapping area, aspect ratio, and center point distance
of bounding box regression, its weight function only reflects the weight of aspect ratio
and does not consider the difference between width and height, respectively, and its own
confidence, which will hinder further optimization of the model. Therefore, we introduce
a new loss function Efficient Intersection-Over-Union EIOU as the prediction container
regression loss function of C-YOLOv4, as shown in Equation (4):

LEIOU = 1 − IOU +
ρ2(b,bgt)

c2 +
ρ2(w,wgt)

c2
w

+
ρ2(h,hgt)

c2
h

(4)

where cw, ch are the width and height of the minimum outer bounding boxes covering the
two rectangular closures. EIOU takes side length as the penalty term, which alleviates the
problem that width and height cannot increase or decrease at the same time in CIOU to
some extent, and this improves the prediction accuracy of the model.

3.3. Step 2: The Framework of CCR: C-DeepLabv3
3.3.1. C-Deeplabv3+

Deeplabv3+ has high segmentation accuracy, but it has a huge number of parameters,
high model complexity, and slow segmentation speed. In addition, although the ASPP
module improves the ability of the DeepLabv3+ to extract the target, it leads to the hol-
low phenomenon of target segmentation. Therefore, this paper proposes an improved
DeeplabV3+ algorithm (C-DeeplabV3+); its structure is shown in Figure 3. The specific
improvements are as follows:

(1) The algorithm uses MobileNetV3 instead of the Xception network. The principle is
similar to the content in Section 3.2.2 and will not be described again;

(2) The algorithm introduces a new atrous convolution branch into the ASPP module,
and it changes the dilation rate to enhance the segmentation ability for objects of
different sizes;

(3) The algorithm uses upsampling with transposed convolution and upsampling with
sub-pixel convolution to replace the two upsampling structures in the decoding network.
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3.3.2. Improved ASPP

The ASPP module is composed of multiple atrous convolutions with different di-
lation rates and Spatial Pyramid Pooling (SPP). The atrous convolution is used to ex-
tract multi-scale features from the feature map output by the backbone network, and
the features are fused and processed through the SPP module to obtain richer contextual
semantic information.

Compared with standard convolution, atrous convolution has an additional hyperpa-
rameter called dilation rate, which can adjust the receptive field of the atrous convolution,
so that the receptive field of the atrous convolution is increased and more details are
retained without increasing the computational burden. The atrous combination rate of
DeepLabv3+ is (6, 12, 18), which can perform fine segmentation of large-scale targets.
However, the single container number character belongs to a small target, so the original
DeepLabv3+ has an incomplete effect in the CCR task.

Therefore, the algorithm introduces a new atrous convolutional branch. Moreover,
the atrous combination rate is adjusted to (3, 6, 9, 12), so that the network can alleviate the
problem of information loss and rough detection of category boundary and can recognize
and retain more details of the container number character. Figure 4 shows the comparison
of the ASPP module before and after modification.
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3.3.3. Improved Decoder Module

The task of the Deeplabv3+ decoder is to classify each pixel in the feature map trans-
mitted and finally complete the segmentation task. And the upsampling structure in the
decoder reduces the computational complexity by interpolating between the original fea-
ture maps. But these interpolation methods need more manual operation, which makes the
network not have strong plasticity. In addition, traditionally, sampling needs to prefill 0
in the middle or around the low-resolution image, and this information is invalid, which
will lead to difficult convergence of the model in the process of gradient optimization.
Therefore, in this paper, we use, respectively, upsampling based on transpose convolution
and upsampling based on sub-pixel convolution to replace the two upsampling structures.

The upsampling with transposed convolution has learnable parameters, which makes
the decoding network have learning ability, and it is convenient to train the model. Up-
sampling with sub-pixel convolution directly obtains pixel information from the feature
map and performs Pixel Shuffle, without the need to complement the 0 operation, which
can effectively reduce the gradient optimization problem caused by invalid information
transmission. In addition, the receptive field of upsampling with sub-pixel convolutional
is larger, which can collect more contextual semantic information to generate richer pixel
details, shorten the image reconstruction time, and improve the segmentation accuracy.

4. Experiment

The experiments of CCL, CCR, and complete container number recognition, respec-
tively, are proposed in this section to verify the advantages of the proposed ACCR method.
The operating system used in this experiment is Windows10. The GPU is GeForce RTX3090
and is manufactured by the Nvidia company based in Santa Clara, CA, USA. And the
processor is Intel Xeon Silver 4210R@2.40 GHz and is manufactured by Intel Corporation,
which is based in the Santa Clara, CA, USA.

4.1. Dataset

The main collection scene of this experimental dataset is the container terminal gate.
In addition, in order to improve the versatility of the model, the dataset also contains the
container images collected by cameras and mobile phones at the container terminal yard.
After data cleaning, images that cannot be recognized by human eyes, such as severely
rusty image characters and seriously occluded container number character areas, were
removed, leaving 1721 images in the dataset. The dataset is mainly composed of dry bulk
containers and oil tanks, including container images when the container number area is
partially obscured by snow, the container is tilted, and the container number character is
rusted or polluted. Some of the images are shown in Figure 5.
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4.2. Evaluation Indicators

In this paper, precision–recall (P–R) curves, F1 scores, and accuracy are used to evaluate
the results of CCL experiments. Precision refers to the proportion of truly positive samples
in all data predicted to be positive, as shown in Equation (5). Recall is the ratio of the
number of all correctly predicted positive images to the total number of total positive
images, as shown in Equation (6). Accuracy refers to the proportion of all image data that is
correctly predicted, as shown in Equation (7). The F1 score is a weighted harmonic average
of precision and recall, as shown in Equation (8):

Precision = ∑ TP
∑ TP+∑ FP (5)

Recall = ∑ TP
∑ TP+∑ FN (6)

Accuracy = ∑ TP+∑ TN
∑ TP+∑ TN+∑ FP+∑ FN × 100% (7)

F1 = 2×Precision×Recall
Precision+Recall (8)

where TP means true positive, FP means false positive, FN means false negative, and TN
means true negative. In addition, FPS (frames per second) is also used as an evaluation
index for the real-time performance of the model.

Mean Pixel Accuracy (MPA) and FPS are evaluation indicators of the CCR experiment.
MPA refers to the result of averaging the accuracy of category pixels in pixel classification,
and the larger the MPA value, the higher the prediction accuracy, as shown in Equation (9):

MPA = CPA1+···CPAn
n (9)

CPA (Class Pixel Accuracy) refers to the proportion of pixels in the classification that
are correctly classified for each class, as shown in Equation (10). IoU (Intersection Over
Union) represents the proportion of the intersection of a certain type of prediction region
and the actual region to the union of the predicted region and the actual region of the class,
as shown in Equation (11):

CPA = ∑ TP
∑ TP+∑ FP (10)

IoU = ∑ TP
∑ TP+∑ FP+∑ FN (11)

4.3. Experimental Localization of Container Numbers

The input image size is set to (416, 416, 3), with a ratio of 1:9 for the validation set and
training set. Predicted boxes with an Intersection Over Union (IoU) greater than 0.4 with
the ground truth boxes are retained, and image distortion adjustment is not performed.
The batch size for image processing is set to 8 images per iteration, with a base learning rate
of 0.001. Training is terminated when the learning rate remains below 1e-6 for 10 epochs.

First, we compare the model parameters and detection speed of C-YOLO v4 and
YOLOv4, as shown in Table 4. YOLOv4 has 39 MB parameters, while C-YOLO v4 only has
13.6 MB parameters, reducing it by approximately 78%.

Table 4. Number of model parameters and real-time computation speed.

Model Number of Parameters Model Size

YOLOv4 64,363,101 39 MB
C-YOLOv4 (Ours) 14,265,246 13.6 MB

In this paper, the detection accuracy of the proposed C-YOLOv4 model is also verified
by P–R curve and F1 curve, and the results are shown in Figure 6. Compared with the
single recall and precision, the F1 value can be a more comprehensive measure of the
model performance. From the P–R curve, it can be seen that the precision of the model
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has been kept around 1 during the recall from 0 to 0.9, which indicates that C-YOLOv4 is
very accurate in predicting the positive samples. And the F1 value, after removing the two
threshold poles of 0 and 1, is basically above 0.95, which proves that the model’s detection
effect is very stable.
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In summary, the number of C-YOLOv4 parameters is reduced, and the detection speed
is substantially increased, but the detection accuracy of the model is not negatively affected.
Figure 7 shows some cases of successfully localized and segmented box number regions
using C-YOLOv4.
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In this paper, YOLOv3, YOLOv4, YOLOv5s, and C-YOLOv4 are also selected for the
comparison of accuracy (Accuracy) and speed (FPS) for the localization of box number
region, and the results are shown in Table 5.

Table 5. CCL Model recognition accuracy and recognition rate.

Model Accuracy (%) FPS (ms)

YOLOv3 94.70 23.5
YOLOv4 98.81 23.0
YOLOv5s 98.53 18.7

C-YOLOv4 99.76 17.6

As can be seen from Table 5, YOLOv3 has the lowest accuracy of 94.50%, while
YOLOv5s also has an accuracy of 98.43%, which is slightly lower than YOLOv4’s 98.81%,
because it sacrifices some of the accuracy for improving the recognition speed; C-YOLO’s
model has the highest accuracy of 99.76%, which is 1.06% higher than YOLOv4. In addition,
YOLOv3 has the slowest recognition speed of 23.5 ms a frame, and YOLOv5s recognition
speed is higher than YOLOv4, but still slower than C-YOLO’s 17.6 ms a frame. In summary,
C-YOLO achieves an excellent balance in recognition accuracy and recognition speed.

The box number region localization accuracies of YOLOv3, YOLOv4, and YOLOv5s
are lower than that of C-YOLOv4 because we have collected a large number of box number
images in our dataset that are tilted, with missing characters or with contaminated box
number regions, whereas YOLOv3, YOLOv4, and YOLOv5s are not able to adapt to these
complexities, and they often suffer from omissions and have poor localization results, and
our proposed C-YOLOv4, for the box number recognition task, optimizes loss function,
multi-scale recognition, and other modules and can always locate the box number region
accurately. Some comparison results are shown in Figures 8–10.
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Figure 10. Box number area partially obscured with unclear characters.

In terms of localization effect, C-YOLOv4 can accurately locate the area where the box
number is located in the image when facing the problems of oil contamination, serious
tilting of the box, and blocking of the box number area, while YOLOv3, YOLOv4, and
YOLOv5s are sometimes missing in the edge portion, and YOLOv3 and YOLOv5s are more
serious, with poorer localization accuracy. Figures 8–10, the red box is the result of the
object detection frame of different models, and the yellow box is the difference of the results
of different object detection frames.

4.4. Experiment of Box Number Character Recognition

Before the box number character recognition experiment, we recreated the dataset and
manually localized and segmented the box number region in the self-constructed dataset;
the effect is similar to the segmented box number region image in Section 4.3, but the
manual localization and segmentation is more accurate, which can avoid the failure of
character recognition due to localization errors. We use Labelme as an annotation tool to
annotate the box number characters, and the annotated image is shown in Figure 11, where
rectangular boxes of different colors represent different English letters or numbers.
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Figure 11. Image of container number after labeling.

In addition, because the English part of the container box number characters in the
self-built dataset are mainly two kinds of TBBU and TBGU, in order to ensure that the
model recognizes other English characters to improve the generalizability, we also cut
down the images of other parts of the characters on the containers, which are used for
model training, and some of the images are shown in Figure 12.
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Figure 12. Other categories of characters on containers considered in the dataset.

The image downsampling multiplicity is set to 16, and the ratio of validation set to
training set is 1:9. The image batch size is 8 images each time, the base learning rate is set
to 0.0001, and the training is finished when the learning rate is less than 1× 10−6 in all
10 rounds.

Firstly, the number of model parameters and recognition speed of DeepLabv3+ and C-
DeepLabv3+ are compared, and the results are shown in Table 6. The number of parameters
of DeepLabv3+ is 39.3 MB while the number of parameters of C-DeepLabv3+ is only
2.63 MB, which is reduced by about 95%.
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Table 6. Comparison of model performance.

Model Number of Model Parameters Model Size

DeepLabv3+ 41,253,330 39.3 MB
C- DeepLabv3+ (Ours) 2,758,597 2.63 MB

We choose MPA to evaluate the accuracy of C-DeepLabv3+ in character recognition.
Since the target of box number character recognition is 0–9 and A–Z with 36 categories,
we obtained the recognition results of 36 characters in total, as shown in Figure 13, and
the mean value of its MPA is 99.22%, which shows that the overall recognition accuracy of
C-DeepLabv3+ is very high. More specifically, although recognizing “0”, “1”, “6”, “8”, “B”,
“I”, “J”, “O”, “Q “, “U”, “V”, and other similarly shaped characters has lower MPA values,
the MPA index for each character is still above 97%.
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In this paper, Segnet, PSPNet, DeepLabv3+, and C- DeepLabv3+ are also selected for
the comparison of mean pixel classification accuracy (MPA) and recognition rate (FPS), and
the results are shown in Table 7.

Table 7. Model recognition accuracy and recognition rate.

Model MPA (%) FPS

PSPNet 95.68 10.2
Segnet 94.36 6.3

DeepLabv3+ 97.43 9.2
C-DeepLabv3+ 99.88 11.4

C-DeepLabv3+ has the highest MPA and recognition speed, which are 2.51% and 24%
higher than Deeplabv3+, respectively, while Segnet has the lowest MPA of 91.23%, which
cannot satisfy the requirement of the accuracy of the box number character recognition,
and the Segnet network has a complex structure while the model has a slow recognition
speed of only 6.3 images per second. Taken together, the C-DeepLabv3+ network has the
best character recognition effect.

C-DeepLabv3+ integrates MobileNetv3 as its core architecture, which confers a sub-
stantially increased recognition speed over Segnet, PSPNet, and DeepLabv3+. Additionally,
the model augments the Atrous Spatial Pyramid Pooling (ASPP) module and the decoder to
enhance the accuracy of box number character recognition, achieving the highest accuracy
reported. The methodology outlined in Table 1 was adhered to for comprehensive box num-
ber recognition. The localization outcomes from C-YOLOv4, processed by OpenCV, were
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subsequently fed into C-DeepLabv3+ for character recognition. The resultant recognition
rates and speeds are detailed in Table 8.

Table 8. Overall success rate and speed of the recognition algorithm.

Overall Success Rate (%) Recognition Speed (ms)

99.51 115

We combine Tables 1 and 8 into the same table to compare the box number recognition
accuracy and recognition speed for different documents, and the results are shown in
Table 9.

Table 9. Comparison of metrics for box number identification in different models.

Reference Number Area
Localization Method Character Recognition Success Rate (%) Recognition Speed (ms)

Koo and Cha 2013 [6] Edge-based and
sliding windows BP Neural Network 98.39% 240 ms

Yoon et al., 2016 [16] Based on appearance SVM 96.00% 580 ms

Mei et al., 2016 [17] Edge-based LeNet-5 and Template
Matching Method 94.70% 920 ms

Roeksukrungrueang et al., 2018 [18] Grouping of connected
components LeNet-5 95.41% 10,000 ms

Liu et al., 2018 [27] MSER and CTPN CRNN 93% -

Han et al., 2018 [7] - Width learning system 97.85% 20 ms

Wu et al., 2020 [19] MSER LeNet-5 and template
matching method 99.30% 1800 ms

Zhang et al., 2020 [20] ResNet and U-net CRNN 93.33% 885 ms

Chun-ming 2020 [10] SSD SVM 94.60% 630 ms

X. Q. Feng et al., 2020 [22] YOLOv3 CRNN 96% 159 ms

X. Q. Feng et al., 2020 [22] EAST - 96% 52 ms

Wang et al., 2021 [11] DBNet SAR 95% 200 ms

Li et al., 2022 [24] Edge-based recognition SVM 97.30% 100 ms

Ours C-YOLO C-Deeplabv3+ 99.51% 115 ms

As can be seen from Table 9, our proposed ACCR, in terms of recognition success rate
and recognition speed, outperforms all previous methods, reaching 99.51% and 115 ms,
respectively. The ACCR methods proposed in the previous literature are either too slow
or have insufficient success rates. The recognition success rate of the method proposed
by Wu et al. is the highest, reaching 99.3%, which is only slightly lower than that of our
method, but its recognition speed is 15.6 times slower than our method, and it cannot realize
real-time detection. Li et al.’s method is slightly faster than our method, but its recognition
success rate is low, and its robustness is poor in complex environments, and the application
at the dock gates is poor; Feng et al.’s method has a more balanced recognition speed and
success rate and also has a certain degree of resilience to the complex environments, but it
is still not as excellent as our method. The other methods in the table are not good enough
in both recognition success rate and recognition speed, and they will not be repeated.

In summary, our method achieves the highest recognition success rate and speed,
and it can accurately and quickly obtain recognition results in various complex scenes.
Figure 14 shows some of the box number character recognition results.
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5. Conclusions

This study introduces a dual-stage container number recognition method leveraging
deep learning techniques, specifically designed to swiftly and accurately identify container
numbers at terminal gates. The proposed approach incorporates the enhanced algorithms C-
YOLOv4 for detecting container number areas and C-Deeplabv3+ for character recognition.
This method not only maintains high accuracy but also significantly accelerates recognition
speed and reduces the complexity of the model, making it more practical for deployment
at terminal facilities.

Significant enhancements were applied to YOLOv4, including replacing the CSPDark-
net53 network with MobileNetv3 and substituting PANet with FPN to reduce parameters.
The removal of 13 × 13 scale feature maps and the recalibration of prior box values have
tailored the model to better fit the container number localization task. Furthermore, the
adoption of an Enhanced Intersection Over Union (EIOU) loss function has optimized
the speed of model training. The modified C-YOLOv4 demonstrated a 30% improvement
in speed and a 1.06% increase in accuracy over the original model, outperforming other
conventional models like YOLOv3 and YOLOv5s in complex scenarios. Modifications to
Deeplabv3+ were also pivotal. Replacing Xception with MobileNetv3 as the backbone
feature-extraction network reduced parameter size. The introduction of a new atrous
convolution branch and a redesigned Atrous Spatial Pyramid Pooling (ASPP) module have
improved the model’s precision in detecting small targets. Adjustments in the decoder,
specifically the shift to transposed and sub-pixel convolution upsampling, have effectively
preserved image details, boosting the character recognition capabilities of C-Deeplabv3+.
Compared to its predecessor, the updated model has shown a 23.9% faster recognition
speed and a 1.58% higher accuracy rate. However, the slower operation of C-Deeplabv3+
compared to C-YOLOv4 suggests the need for further optimization.

In future work, we will explore how to adapt our algorithms and models to various
IoT device platforms and optimize their performance to ensure efficient operation under
diverse hardware and resource constraints. Additionally, we will focus on diversifying the
dataset to enhance the algorithm’s generalization ability. Through these efforts, we aim
to extend the reach of our container number recognition system to a broader range of IoT
devices and have a greater impact on actual port operations. Future efforts will focus on
these areas to advance the system’s application in real-world port operations.

This research provides a solid foundation for robust, efficient container number recog-
nition systems, with potential for further enhancement and application in real-world
port operations.
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