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Abstract: Graph neural networks (GNNs) are crucial tools for processing non-Euclidean data. How-
ever, due to scalability issues caused by the dependency and topology of graph data, deploying
GNNs in practical applications is challenging. Some methods aim to address this issue by transferring
GNN knowledge to MLPs through knowledge distillation. However, distilled MLPs cannot directly
capture graph structure information and rely only on node features, resulting in poor performance
and sensitivity to noise. To solve this problem, we propose a lightweight optimization method
for GNNs that combines graph contrastive learning and variable-temperature knowledge distilla-
tion. First, we use graph contrastive learning to capture graph structural representations, enriching
the input information for the MLP. Then, we transfer GNN knowledge to the MLP using variable
temperature knowledge distillation. Additionally, we enhance both node content and structural
features before inputting them into the MLP, thus improving its performance and stability. Extensive
experiments on seven datasets show that the proposed KDGCL model outperforms baseline models
in both transductive and inductive settings; in particular, the KDGCL model achieves an average
improvement of 1.63% in transductive settings and 0.8% in inductive settings when compared to
baseline models. Furthermore, KDGCL maintains parameter efficiency and inference speed, making
it competitive in terms of performance.

Keywords: graph neural network; lightweight technology; knowledge distillation; graph contrastive
learning

1. Introduction

Graph neural networks (GNNs) have shown great potential in processing non-Euclidean
data and have achieved good performance in various graph machine learning tasks [1].
The success of modern graph neural networks relies on the message passing scheme.
This scheme’s core principle is to center on each node, aggregate information from its
neighboring nodes, and combine it with the node’s own representation to update its
representation [1]. Due to the node dependency of graph data and the inherent limitations
of the message passing scheme [2–4], deploying graph neural networks on end-devices
with restricted computational and storage resources poses a significant challenge. This
difficulty hinders the application of graph neural networks in real-world scenarios for
rapid and high-performance inferencing. To meet the demands for quick inference in real-
world scenarios, the multilayer perceptron (MLP) remains the optimal choice, although it
performs poorly on non-Euclidean data [3].

Graph neural networks have good performance advantages on graph-structured data.
Although the MLP performs poorly on graph data, its computational efficiency is much
higher than that of GNNs due to its simple structure, ease of computing node outputs
and updating parameters, and the highly parallelizable nature of fully connected layer
computations. To fully leverage the performance advantages of GNNs and the efficiency
advantages of MLPs, some studies have combined both into a single framework [3–5]. A
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mainstream method for combining GNN and MLP models is knowledge distillation, which
uses the soft label (i.e., probability distribution) outputs of the teacher model (in this case,
the GNN) as supervision signals to train the student model (the MLP) and complete the
transfer of knowledge from the teacher model to the student model [3]. The distilled student
model MLP is then deployed for fast inference. The MLP model only inputs the content
features of nodes and does not include graph structure features. Through knowledge
distillation, the student model MLP can imitate the ability of the teacher model GNN, while
its inference speed is much faster than that of the GNN. However, this approach has the
following two drawbacks: first, the student model MLP is unable to directly capture graph
structural information and can only utilize node content features as input; second, the
accuracy of the student model MLP is far inferior to that of the teacher model GNN, and it
is more sensitive to noise and interference in graph data.

There are two primary methods for lightweight graph neural networks through knowl-
edge distillation. In one approach, both the teacher and student models are GNNs [6–9],
named GNN-to-GNN. It involves transferring knowledge from a large, complex teacher
model to a smaller, more efficient student model through knowledge distillation. GNN-to-
GNN distillation reduces the parameter scale of the GNN model and decreases inference
time by reducing the number of layers and neurons in the student model; however, it
does not fundamentally address the issue of node dependency during the inference pro-
cess. Consequently, it fails to effectively improve inference efficiency on large-scale graph
datasets. The other approach is heterogeneous knowledge distillation, in which the teacher
model is a GNN and the student model is an MLP or another model [3,4,10–12]. The output
probability distribution of the GNN guides the training of the MLP, allowing the MLP to
imitate the GNN, thus effectively transferring its knowledge.

Graph contrastive learning is an unsupervised learning method that aims to learn
the structural features of graph data without requiring any label information [13]. The
core idea of this approach is to train the model by generating different views of the graph,
thereby learning the intrinsic structure of the graph and the relationships between nodes.
This is achieved by creating two or more “views” of the graph by adding or deleting nodes
or edges, as well as perturbing attributes [14]. A contrastive loss function is designed to
train the model, which maximizes the similarity between different views of the same graph
and minimizes the similarity between views of different graphs. Common contrastive
loss functions include InfoNCE Loss [15] and Contrastive Loss. InfoNCE Loss aims to
increase the similarity between different views of the same graph and decrease the similarity
between views of different graphs, while Contrastive Loss aims to minimize the distance
between positive sample pairs and maximize the distance between negative sample pairs.
During training, model parameters are adjusted through backpropagation and gradient
descent algorithms to minimize the contrastive loss. This enables the model to distinguish
similar and dissimilar structural features in the graph, thereby learning the structural
feature information of the graph data in an unsupervised manner.

This study analyzes the limitations of lightweight graph neural networks through
knowledge distillation and examines the structural representation capability of graph
contrastive learning technology. Based on this analysis, we propose a lightweight method
for graph neural networks that combines knowledge distillation with graph contrastive
learning. Specifically, the graph contrastive learning technique is first utilized to extract
structural features from graph data, which are then concatenated with node content features.
The concatenated node features are enhanced and then fed into an MLP. Then, knowledge
distillation with variable temperature is employed to transfer knowledge from the teacher
model, where the soft label outputs serve as supervisory signals for training the student
model, thus facilitating knowledge transfer. To enhance the robustness of the student model
MLP, an adversarial feature enhancement strategy is employed to minimize the impact
of noise on the accuracy and stability of the MLP. This enables the generation of a noise-
resistant, high-efficiency, and high-performance student MLP model, which we call KDGCL.
In order to comprehensively evaluate our proposed model, extensive experiments were
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conducted on seven datasets in both transductive (tran) and inductive (ind) settings. We
concluded that our model learns through integrating graph structure feature information,
where feature enhancement and knowledge distillation can improve the performance
and robustness of the student model MLP. The contributions of the proposed method are
summarized as follows:

(1) This study proposes a lightweight graph neural network method that combines knowl-
edge distillation and graph contrastive learning. By integrating graph contrastive
learning and feature enhancement, we can efficiently distill the knowledge from the
GNN and transfer it to a student model.

(2) The effectiveness and robustness of the graph contrast learning module and feature
enhancement module are proven using seven public datasets, three teacher model
architectures, and two experimental conditions. The experimental results demonstrate
that the KDGCL model outperforms NOSMOG on six out of seven datasets.

(3) The variable temperature module we designed enables the temperature to change with
the progress of distillation. Compared with using a globally unified temperature, the
student MLP obtained with distillation has better performance and stronger stability.

2. Related Works

Many graph neural networks [16–20] have been specifically proposed for process-
ing graph-structured data. Most of these graph neural networks follow the message
passing paradigm scheme, which aggregates neighbor node information to update node
representations [21]. Graph convolutional neural networks (GCNs) calculate graph node
representations through computational propagation rules similar to convolutional neural
networks [19]. Graph attention networks (GATs) introduce an attention mechanism to
aggregate the feature representation of neighbor nodes with different weights [16]. The
GraphSAGE approach samples neighbor nodes and applies an aggregation function to
aggregate the sampled node feature information and learn node features, enabling its
good scalability [18]. GAEs embed graph nodes into low-dimensional space through the
encoder and reconstruct the graph structure through the decoder to learn node representa-
tions [22,23]. DeepGCNs [24] and GCNII [20] introduce residual connections to address the
issues of over-smoothing and over-fitting in graph neural networks. However, research has
shown that graph neural networks in the message passing scheme can only exploit local
graph structures and have been proven not to perform better than WL graph isomorphism
tests [17,25,26]. Inspired by positional encoding in natural language processing technology,
some studies have enhanced the graph learning process through integrating node position
information [3,4,11], such as Laplacian feature mapping and random walk methods [27–30],
thereby enhancing the node feature encoding ability of graph neural networks.

Contrastive learning obtains positive and negative sample pairs through data en-
hancement and negative sampling and uses an objective function to increase the similarity
between positive sample pairs and reduce the similarity between negative sample pairs
to obtain discriminative features [15,31,32]. While graph data come in various forms and
are not easy to label, through contrastive learning, graph node feature representations can
be learned. For example, InfoGraph learns node representations by maximizing graph-
level representation and mutual information between substructures at different scales [33].
SimGRACE utilizes two GNN models as encoders to acquire two similar views for com-
parison, demonstrating strong performance in terms of generalization and robustness [14].
GCC uses contrastive learning to learn the structural representation of graphs through
inter-network and cross-network subgraph instance discrimination [34]. GraphCL [31] and
GraphMAE [23] also use contrastive learning to obtain better graph node representations.
Utilizing contrastive learning with graph data can effectively address the issue of graph
data labels, enabling the learning of node representations and structural features that are
beneficial for diverse downstream tasks.

The acceleration and compression of GNNs have attracted the attention of many
researchers [3–8,11,12]. Common methods include pruning [35], quantification [36–38],
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and knowledge distillation (KD) [3–8,11,12]. Among them, KD has been widely used as
it can effectively decrease a model’s size while increasing its inference speed. Previous
works have applied KD to teach student GNNs with fewer parameters but comparable
performance to the teacher GNNs. However, time-consuming message passing with multi-
hop neighborhood fetching is still required during the inferencing process of the student
GNN. For example, while LSP [6] and TinyGNN [7] preserve local structure information
in the KD process, neighbor aggregation is still required during message passing, which
consumes a lot of time. To address the high-lattency issue, recent works have combined
the low latency of MLP models with the high performance of GNNs. These approaches
involve training an MLP-based student model using knowledge distillation from a complex,
high-performing GNN model, such as Graph-MLP [2], GLNN [3], and so on. The MLP
only takes node features as input during the inference process and does not contain graph
structure information (i.e., an adjacency matrix). Due to the lack of necessary graph
structure information, the performance of the MLPs obtained by distillation for inference
is far inferior to that of the teacher GNNs. Therefore, in the NOSMOG model [4], the
authors used the graph embedding algorithm DeepWalk [29] to learn the graph node
positions and input them into the MLP obtained through distillation together with the
node features for stitching, which substantially improved the performance [4]. However,
as the random walk algorithm is used, it cannot obtain the graph structure features well
and is susceptible to noise and interference. The performance of the trained student model
is unstable, and the global unified temperature is used in the distillation process, which
does not enable knowledge transfer to be performed well. In our work, we obtain a
better graph structure representation through graph contrastive learning and introduce a
variable distillation temperature to promote knowledge transfer. At the same time, the node
features are enhanced, which improves the robustness and anti-noise characteristics of the
student model.

3. Preliminary

The multilayer perceptron (MLP) is a fundamental feedforward artificial neural net-
work consisting of one or multiple hidden layers, with each hidden layer comprising
multiple neuron nodes. Typically, an MLP consists of input, hidden, and output layers,
where each neuron node is connected to all nodes in the subsequent layer, forming a fully
connected network. The formal formula for a two-layer MLP is as follows:

y = f (wout · f (wh2 · f (wh1 · x + bh1) + bh2) + bout) (1)

where x is the input vector, y is the output vector, wh1 and wh2 are the weight matrices from
the input layer to the hidden layer, wout is the weight matrix from the hidden layer to the
output layer, bh1 and bh2 are the bias terms of the hidden layer, bout is the bias term of the
output layer, and f (·) is the activation function.

Let G = (V, E, C) be defined, where V is the set of nodes, E is the set of edges, and
C ∈ RN×dc represents the dc dimensional content features of the nodes, with N being
the total number of nodes. In the node classification task, the model predicts the class
probabilities for any node v ∈ V, where the true node label is Y ∈ RK and K is the total
number of node classes.

For a given node v, the GNN aggregates information from the neighbors N(v) of
node v to learn a node embedding hv ∈ Rdn of dimension dn. In particular, for the node
embedding of the lth layer, the neighbor node embeddings are first aggregated and then
combined with the embeddings of the previous layer (l − 1) to obtain the node embedding
of this layer [18]. The entire calculation process is as follows:

h(l)v = UPDATE
(

h(l−1)
v , AGGR

({
h(l−1)

u : u ∈ N(v)
}))

(2)



Appl. Sci. 2024, 14, 4805 5 of 13

For KDGCL, there are three key modules: the graph contrastive learning module, the
knowledge distillation module, and the node feature enhancement module. See the overall
model architecture section for detailed information.

4. Methodology

We introduce the KDGCL framework in this section. As shown in Figure 1, the
whole architecture includes three modules. Module (a) is a graph contrastive learning
module that perturbs the original graph to obtain two graph views and applies contrastive
learning to acquire graph structural feature representations. Module (b) is a knowledge
distillation module that uses variable temperature knowledge distillation to transfer the
teacher model’s knowledge to the student model. Module (c) is a feature enhancement
module that enhances the combined node content and graph structural features before
inputting them into the student MLP. This improves the student model’s classification
accuracy, stability, and robustness against interference.
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4.1. Graph Contrastive Learning Module

Figure 2 shows the graph contrastive learning framework. First, edges and node
features are deleted, and the original input graph is masked to generate two graph views.
Then, two shallow GNN encoders with shared parameters encode the two views separately.
A contrastive loss function trains the model by bringing the different views of the same
graph closer together while pushing away the views of different graphs. This process
ultimately allows the model to learn effective graph structural representations.
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In our model, two views G1 and G2 of graph G are generated through the operations

ε1 and ε2. The G1 and G2 are embedded by the encoder and are denoted by U = f
(∼

X1,
∼
A1

)
and V = f

(∼
X2,

∼
A2

)
.
∼
X1 and

∼
X2 are node feature matrices of G1 and G2, and

∼
A1 and

∼
A2

are adjacent matrices of G1 and G2.
After encoding with the GNN, the view representations are fed into an MLP to further

enhance the feature representation. The contrastive loss function is then applied to train
the model, aiming to maximize the similarity between different views of the same graph
while minimizing the similarity between views of different graphs. For any node vi, the
embedding in the G1 view is ui, and the embedding in the G2 view is vi. Therefore, vi and
ui form a positive sample pair. In addition, all sample pairs formed in the two views are
negative sample pairs. We define θ(u, v) = s(g(u), g(v)), where s is the cosine similarity
and g is the non-linear mapping function, which is implemented here with two layers of
the MLP. We define the loss of each positive sample pair as:

l(ui, vi) = log
e

θ(ui ,vi)
τ

e
θ(ui ,vi)

τ + ∑N
k=1 1[k 6=i]e

θ(ui ,vk)
τ + ∑N

k=1 1[k 6=i]e
θ(ui ,uk)

τ

(3)

Here,1[k 6=i] ∈ {0, 1} is the indicator function (if k 6= i, it is equal to 1; otherwise, it is 0),
N is the total number of nodes, and τ is the temperature parameter. Negative nodes are not
explicitly sampled here. Given a positive sample pair, all other node pairs are defined as
negative sample pairs. Therefore, there are two sources of negative sample pairs, namely,
intra-class and inter-class sample pairs, corresponding to the second and third terms of
the denominator in the above formula, respectively. As the two views are symmetric, all
have the same definition for l(vi, ui). The overall objective function of the final graph con-
trastive learning module is defined as follows, which is the average of the loss values of all
positive pairs:

L =
1

2N

N

∑
i=1

[l(ui, vi) + l(vi, ui)] (4)

Here, N is the number of graph data nodes.
To summarize, the graph contrastive learning module first generates two views G1

and G2 of the graph G, then uses a graph neural network as an encoder to encode G1 and G2
to obtain node embeddings U and V, and finally optimizes the parameters by maximizing
L. An effective graph structure embedding representation is then obtained.

4.2. Knowledge Distillation Module

Figure 3 shows the knowledge distillation module framework. The teacher model is a
complex and highly accurate GNN, from which knowledge is distilled using distillation
techniques and transferred to the student model MLP; in particular, the soft label outputs
from the teacher GNN serve as the supervisory signals to train the student MLP.

Given a pre-trained teacher GNN, for any label node v ∈ VL, the real label value is

yv, and the output of node v from the teacher GNN is a soft label zv = So f tmax
(

qt

τ

)
. The

purpose of knowledge distillation is to use the output of the teacher GNN zv and node
true label yv to train a lightweight student model MLP. The objective function is formally
defined as follows:

L = ∑
v∈VL

LSL(ŷv, yv) + λ ∑
v∈V

LKD(ŷv, zv) (5)

Here, LSL is the cross-entropy loss between the student model prediction ŷv = So f tmax
(

qs

τ

)
and the real label yv (i.e., the supervision loss), LKD is the KL divergence loss between
the student model prediction output ŷv and the output zv of the teacher model GNN
(i.e., the teacher model to the distillation loss of the student model with respect to the
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teacher model), and λ is a factor that balances the supervision loss and the distillation
loss. The purpose of the supervision loss here is to prevent the teacher model from passing
incorrect knowledge to the student model.
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During the knowledge distillation process, the knowledge mastered by the student
model grows progressively, so maintaining a constant distillation temperature for knowl-
edge distillation will result in suboptimal distillation results. Similar to how teachers teach
students knowledge, they tend to transition from simple knowledge to complex knowl-
edge, known as the process of progressive learning. Inspired by this learning process, we
simulated the difficulty of the knowledge distillation process by varying the distillation
temperature. Notably, changing the distillation temperature does not introduce additional
computational costs into the distillation process.

In order to ensure that the distillation temperature is non-negative and remains within
a certain range, the distillation temperature τ is determined by the output of the teacher
model and the student, as shown in Figure 4. It is scaled using the following formula:

τ = τinit + τr

(
σ
(

Tpred

))
(6)

Here, τinit is the initial temperature, τ(r) represents the range of τ, σ(·) is the activation
function, and Tpred is the predicted value (here, τr is set from 1 to 15).
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4.3. Node Feature Enhancement Module

Figure 5 shows the node feature enhancement module framework. In this module,
the perturbation feature matrices X1 and X2 are first generated by randomly discarding
elements from the feature matrix. Then, the perturbed feature matrices are utilized to
generate an enhanced feature matrix. To enrich the node feature matrix and enhance the
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anti-interference ability of the model, we utilize a two-layer MLP for non-linear trans-
formation of the perturbation feature matrix, resulting in a node information matrix that
incorporates structural features. The model can be formalized as follows:

Xv = MLP( [X 1, X2] ) (7)
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Additionally, noise was incorporated into the node feature input of the MLP during
the implementation phase in order to facilitate noise robustness learning. The results also
demonstrated that the model trained in this way is more stable. The formalization of this
process is as follows:

ŷv = MLP(Xv) (8)

Here, Xv is the node feature after feature enhancement through connecting node
content features and structural features. Then, ŷv is used to calculate the knowledge
distillation loss.

5. Experiments
5.1. Datasets

Our evaluation is based on seven public datasets (Cora [40], Citeseer [40], Pubmed [41],
A-computer [42], A-photo [42], Ogbn-Arxiv [43], and Ogbn-Products [43]). Table 1 shows
the statistics of the public datasets.

Table 1. Statistics of the datasets.

Dataset #Nodes #Edges #Features #Classes

Cora 2485 5069 1433 7
Citeseer 2110 3668 3703 6
Pubmed 19,717 44,324 500 3

A-computer 13,381 245,778 767 10
A-photo 7487 119,043 745 8

Ogbn-Arxiv 169,343 1,166,243 128 40
Ogbn-Products 2,449,029 61,859,140 100 47

Table 1 lists the datasets utilized in this study, where #Nodes and #Edges denote the
number of nodes and edges in each dataset, respectively. Additionally, #Features represents
the feature dimensions within the dataset, and #Classes indicates the number of categories
included in the dataset.

Cora is a benchmark citation dataset where each node represents a paper and edges
denote citation relationships between papers. Similarly, Citeseer also represents papers
as nodes, but with higher feature dimensions compared to Cora. Pubmed is a benchmark
dataset formed by diabetes-related papers in Pubmed data. Its node feature is the weighted
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frequency of TF-IDF, and the category is the type of diabetes. A-computer and A-photo
are two benchmark datasets extracted from Amazon co-purchase graphs. In these datasets,
nodes represent products, while edges denote frequent co-purchases between products.
The features encode product reviews using a bag-of-words model (BoW), and the labels
represent product categories. Ogbn-Arxiv is a directed dataset that contains publicly
available papers in the field of computer science on Arxiv. Each paper is a node, the citation
relationship between papers is used as an edge, and its research field is the category of
the paper. Ogbn-Products is an undirected dataset that represents the Amazon product
co-purchase network. The nodes represent products, and the edges represent two products
that are usually purchased by the same customer. Each node has category information,
indicating the category of the product. Among the above-mentioned datasets, Arxiv
and Products are relatively large-scale datasets and are often used for benchmark testing
of graph neural networks. They are already benchmark datasets in the field of graph
machine learning.

5.2. Experiment Setting

For this study, five widely used benchmark datasets were utilized: Cora [40], Cite-
seer [40], Pubmed [41], A-computer, and A-photo [42], as well as two large-scale OGB
datasets: Ogbn-Arxiv [43] and Ogbn-Products [43], to evaluate the proposed model.

For the teacher model architecture, we selected GraphSAGE [18], GCN [19], and
GAT [16] as teacher models in order to eliminate the impact of the teacher model architec-
ture on the performance of the student model. For the experimental results, we recorded
the average and standard deviation of ten runs using different random seeds, measured
the model performance based on node classification accuracy, and conducted testing on the
test dataset.

The experimental results were obtained under two setting conditions: transductive
and inductive. The so-called transductive setting condition means that the GNN model
also includes the data in the test set during the training process, thus lacking the ability to
predict unknown labeled samples; meanwhile, the inductive setting condition means that
the test dataset is not visible during the training phase. In this way, a judgment rule for
data is learned, following which the learned rules are applied to predict or classify unseen
data during the testing phase.

5.3. Model Performance

Table 2 details the node classification accuracy of the model on seven public datasets.
Three teacher model architectures were used for the teacher model: GCN, GAT, and Graph-
SAGE. NOSMOG served as the baseline model for comparison. All experiments were
conducted in both transductive and inductive settings, and the results in the production
(prod) setting represent a combination of tran and ind results in a certain proportion. It can
be observed that the performance impact of the three different teacher model architectures
on the student model was not significant. This suggests that a well-performing teacher
model does not necessarily transfer effective knowledge, and conversely, an average-
performing teacher model may still distill into a better-performing student model. There-
fore, the results of the student model were obtained using GraphSAGE as the teacher
model architecture. The proposed KDGCL method demonstrated the ability to enhance the
performance of the student model to varying degrees in both transductive and inductive
settings, narrowing the gap in classification accuracy between the student model and the
teacher GNN.

Additionally, KDGCL maintained the same parameter count as the baseline model,
NOSMOG, thereby demonstrating superior competitiveness in practical environments.
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Table 2. Node classification results on the seven datasets.

Dataset Eval GCN GAT SAGE MLP NOSMOG Ours ∆NOSMOG

tran 81.82± 1.26 81.89± 0.86 79.94± 2.43 59.18± 1.60 80.47± 1.39 82.83± 1.25 ↑ 2.93%
Cora ind 82.01± 1.68 83.07± 2.06 80.96± 1.90 59.44± 3.36 80.19± 1.81 80.89± 1.79 ↑ 0.87%

prod 81.45 81.62 79.64 59.22 80.57 80.98 ↑ 0.51%

tran 71.79± 1.62 70.97± 1.58 70.52± 1.35 58.51± 1.88 70.81± 2.42 73.46± 1.66 ↑ 3.74%
Citeseer ind 71.79± 3.71 71.13± 3.21 68.81± 3.89 59.34± 4.61 71.06± 2.53 72.15± 2.28 ↑ 1.53%

prod 70.52 70.64 68.71 58.49 66.79 67.50 ↑ 1.06%

tran 77.04± 2.45 75.48± 1.91 75.37± 2.27 68.39± 3.09 75.30± 2.77 76.88± 2.29 ↑ 2.10%
Pubmed ind 76.40± 2.76 75.62± 2.65 75.31± 2.71 68.29± 3.26 75.41± 2.71 75.85± 3.35 ↑ 0.58%

prod 76.01 75.89 75.02 68.29 75.31 75.84 ↑ 0.70%

tran 83.52± 1.05 82.99± 1.32 81.94± 1.75 67.79± 2.16 83.05± 1.71 83.43 ± 1.59 ↑ 0.46%
A-computer ind 82.72± 1.91 83.48± 1.19 82.62± 1.53 67.88± 2.15 83.09 ± 1.99 83.88 ± 1.64 ↑ 0.95%

prod 82.77 82.69 82.49 67.70 82.88 83.46 ↑ 0.70%

tran 91.13± 1.31 91.70± 0.86 91.16± 0.48 77.29± 1.79 92.33± 0.53 92.95 ± 0.82 ↑ 0.67%
A-photo ind 91.74± 1.33 91.79± 1.22 91.18± 1.40 77.44± 1.50 92.52± 0.82 92.39 ± 0.73 ↓ 0.14%

prod 90.68 90.89 91.00 77.29 92.45 92.70 ↑ 0.27%

tran - - 70.69± 0.24 55.57± 0.36 70.44± 0.31 70.98 ± 0.20 ↑ 0.77%
Arxiv ind - - 70.66± 0.39 55.71± 0.36 67.67 ± 0.50 68.31 ± 0.53 ↑ 0.95%

prod - - 70.48 55.65 69.72 ± 0.87 70.42 ± 0.54 ↑ 1.00%

tran - - 77.77± 0.19 59.99± 0.11 77.35± 0.30 77.93± 0.22 ↑ 0.75%
Products ind - - 77.51± 035 59.98± 0.10 76.71± 0.42 77.38± 0.33 ↑ 0.87%

prod - - 77.42 59.25 77.19 77.82 ↑ 0.82%

In Table 2, ↑ indicates increase and ↓ indicates decrease. Under the same experimental
settings, the proposed model was compared with a GNN, an MLP, and the best-performing
NOSMOG. In the transductive setting, our method outperformed the baseline method on
all datasets, achieving an increase of 1.63% in node classification accuracy. Particularly
notable performance improvements were observed on the Citeseer and Cora datasets,
reaching 3.74% and 2.93%, respectively. In the inductive setting, KDGCL outperformed
the baseline model on 6 out of 7 datasets, with significant improvements observed on the
Citeseer, A-computer, and Arxiv datasets (by 1.53%, 0.95%, and 0.95%, respectively). On
average, the node classification accuracy was improved by 0.8% compared to the baseline
model. Furthermore, comparing the standard deviations of the results between KDGCL
and the baseline model, the standard deviation of the results obtained with our method
was smaller than that for the baseline model, indicating that the proposed method is
more stable.

6. Discussion

KDGCL contains different components (i.e., structural features, GCL; knowledge
distillation, KD; and feature enhancement, FA). For this reason, ablation studies were
conducted to analyze the contribution of different components to model performance by
independently deleting each component. In Table 3, it can be seen that, when a certain com-
ponent was removed, the model performance decreased, indicating that each component
effectively contributes to the final model. It can be seen that the structural characteristics of
graph-structured data have the greatest impact on model performance, especially on large-
scale graph datasets. By capturing graph structural features through graph contrastive
learning, KDGCL obtains better performance.

As can be seen in Table 3, the feature enhancement module (FA) contributed the least
to the overall performance on different datasets. This is because the node features had
been enhanced before passing through the MLP, and further enhancement may damage the
enhanced features. The contribution of knowledge distillation in each dataset was moderate,
as the node features after feature enhancement contain more effective information and use
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fewer soft label outputs from the teacher model. The graph contrastive learning module had
a significant impact on model performance, indicating that rich graph structure features can
help improve the performance of the student model. Finally, KDGCL achieved improved
performance on all datasets, demonstrating its overall effectiveness.

Table 3. Accuracy of different model variants.

Datasets w/o GCL w/o KD w/o FA KDGCL ∆GCL ∆KD ∆FA

Cora 80.22± 1.65 80.76± 1.89 81.20± 1.72 82.01± 1.36 ↑ 2.23% ↑ 1.55% ↑ 1.00%
Citeseer 71.01± 2.31 71.51± 2.07 71.86± 3.01 72.31± 2.52 ↑ 1.83% ↑ 1.12% ↑ 0.63%
Pubmed 74.89± 2.08 75.75± 2.19 74.99± 2.68 76.62± 2.54 ↑ 2.31% ↑ 1.15% ↑ 2.17%

A-computer 83.75± 1.98 83.50± 1.79 83.78± 2.01 84.01± 1.76 ↑ 0.31% ↑ 0.31% ↑ 0.27%
A-photo 92.40± 0.79 92.28± 0.98 93.24± 0.89 93.01± 0.86 ↑ 0.66% ↑ 0.79% ↑ 0.83%

Arxiv 63.89± 0.57 67.40± 0.49 68.01± 0.88 68.74± 0.71 ↑ 7.59% ↑ 1.99% ↑ 1.07%
Products 67.48± 0.45 77.30± 0.65 77.59± 0.78 78.03± 0.49 ↑15.63% ↑ 0.94% ↑ 0.57%

7. Conclusions

In this study, we addressed the issues of low task accuracy, instability, and susceptibil-
ity to interference in a student MLP model after distillation from a teacher GNN model.
Specifically, we proposed KDGCL—an optimization method for graph neural networks that
combines knowledge distillation and graph contrastive learning. KDGCL consists of three
modules: the contrastive learning module effectively captures graph structural features; the
variable temperature knowledge distillation module facilitates more efficient knowledge
transfer; and the feature enhancement module improves the stability and robustness of
the student model. Experiments conducted under various conditions on seven datasets
revealed that KDGCL outperforms GNNs and baseline models in terms of classification
accuracy and stability. In transductive settings, KDGCL achieved an average improvement
of 1.63% over baseline models; meanwhile, in inductive settings, KDGCL demonstrated
an average improvement of 0.8% compared to baseline models. Additionally, ablation
studies were carried out, which demonstrated the effectiveness of the components of the
proposed method.
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