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Abstract: Maintaining a harmonious balance between grassland ecology and local economic develop-
ment necessitates effective management of livestock resources. Traditional approaches have proven
inefficient, highlighting an urgent need for intelligent solutions. Accurate identification of livestock
targets is pivotal for precise livestock farming management. However, the You Only Look Once ver-
sion 8 (YOLOv8) model exhibits limitations in accuracy when confronted with complex backgrounds
and densely clustered targets. To address these challenges, this study proposes an optimized CCS-
YOLOv8 (Comprehensive Contextual Sensing YOLOv8) model. First, we curated a comprehensive
livestock detection dataset encompassing the Qinghai region. Second, the YOLOv8n model under-
went three key enhancements: (1) incorporating a Convolutional Block Attention Module (CBAM) to
accentuate salient image information, thereby boosting feature representational power; (2) integrating
a Content-Aware ReAssembly of FEatures (CARAFE) operator to mitigate irrelevant interference,
improving the integrity and accuracy of feature extraction; and (3) introducing a dedicated small
object detection layer to capture finer livestock details, enhancing the recognition of smaller targets.
Experimental results on our dataset demonstrate the CCS-YOLOv8 model’s superior performance,
achieving 84.1% precision, 82.2% recall, 84.4% mAP@0.5, 60.3% mAP@0.75, 53.6% mAP@0.5:0.95,
and 83.1% F1-score. These metrics reflect substantial improvements of 1.1%, 7.9%, 5.8%, 6.6%, 4.8%,
and 4.7%, respectively, over the baseline model. Compared to mainstream object detection models,
CCS-YOLOv8 strikes an optimal balance between accuracy and real-time processing capability. Its
robustness is further validated on the VisDrone2019 dataset. The CCS-YOLOv8 model enables rapid
and accurate identification of livestock age groups and species, effectively overcoming the challenges
posed by complex grassland backgrounds and densely clustered targets. It offers a novel strategy
for precise livestock population management and overgrazing prevention, aligning seamlessly with
the demands of modern precision livestock farming. Moreover, it promotes local environmental
conservation and fosters sustainable development within the livestock industry.

Keywords: precision livestock farming; CCS-YOLOv8; object detection

1. Introduction

Grassland ecosystems are vital to terrestrial ecosystems because they offer a range
of uncommon wild plants and animals, unique habitats, and basic means of production.
They are also a vital resource that pastoral people rely on to survive [1,2]. Many ecological
processes, including soil and water conservation, wind and sand control, air purification,
environmental beautification, and biodiversity protection, are carried out by grasslands,
which serve as an essential ecological barrier. However, several causes, such as climate
change and human activities, have made the deterioration of grasslands worse recently.
This hurts the growth of grassland livestock farming as well as the ecosystems’ ability to
perform their service role [3,4]. Overgrazing is one of the primary anthropogenic factors
contributing to grassland degradation. Improving grazing management is crucial for
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maintaining the multifunctionality of grassland ecosystems [5]. Controlling overgrazing
necessitates effective management of herders’ livestock numbers to maintain the pasture’s
healthy condition and preclude further grassland degradation. At the moment, the primary
technique for determining grassland stocking capacity is manual field surveys carried out
by specialists in plant protection and grassland management [6]. The typical manual survey,
however, has numerous drawbacks, including low representativeness, poor timeliness,
and high subjectivity. It is also time-consuming and difficult, has restricted coverage, and is
hampered by the vastness and complexity of the grassland area [7–9]. Therefore, it is crucial
to advance the intelligent development and automation of livestock detection and early
warning systems.

The use of various intelligent gadgets in contemporary livestock farming together
with computer vision technology in livestock production has become more commonplace
in recent years and has become a hotspot for livestock farming research [10–12]. The uti-
lization of these intelligent devices has markedly enhanced livestock-raising accuracy and
efficiency, reduced dependence on labor and resources, lowered livestock-raising costs, and
fostered sustainable growth in the livestock industry. Computer vision technology can be
employed to analyze livestock through images or videos for disease detection, behavior
monitoring, and individual identification. Among these applications, the identification
and localization of individual livestock using target detection technology constitutes an
important research direction.

Currently, deep learning target recognition methods are categorized into two groups
based on the number of detection stages [13]. Two-stage object detectors entail a detection
process segmented into two stages. In the first stage, regions that potentially contain targets
are selected from the input image, while in the second stage, targets are identified and
located within these candidate regions. Representative methods encompass R-CNN [14],
Fast-RCNN [15], and Faster-RCNN [16] proposed by Girshick et al. While this type of
target detector typically achieves high accuracy, its substantial computational demands and
intricate model structure necessitate more advanced hardware configurations and longer
computation times. By comparison, one-stage models have superior real-time performance
due to their ability to recognize and locate items inside the picture. While their accuracy
may be somewhat lower than that of two-stage models, they can detect things much
faster [17].

Representing single-stage models, the YOLO series achieves rapid and highly accu-
rate detection through the rational design and modification of its network structure [18].
The YOLO series models have shown significant promise in livestock detection appli-
cations [19]. Du and Qi et al. enhanced the YOLOV4 model by incorporating a novel
composite multi-channel attention mechanism. This innovation significantly improved
the model’s performance in livestock detection tasks within agricultural environments,
achieving an mAP of 89.77%. However, it is important to note that the model still faces
challenges with missed detection of small targets, especially when livestock are lying down
or in similar positions. This issue is largely attributed to the horizontal shooting angles
commonly employed in the dataset [20]. Pu and Yu et al. introduced an enhanced Chengdu
horse goat detection algorithm based on TPH-YOLOv5, integrating BiFPN instead of PANet.
This technique successfully identifies Chengdu ma goats in actual indoor cowshed breed-
ing settings, laying the groundwork for precision livestock feeding according to age and
gender. However, its limitation lies in its applicability being restricted to indoor breeding
scenarios and its focus on a single livestock species [21]. Kurniadi and Setianingsih et al.
combined YOLOv5 with UAV imagery and videography to achieve recognition and local-
ization of free-grazing dairy cattle. However, the model’s accuracy significantly decreases
at higher altitudes, making it unsuitable for detecting livestock groups that are easily
startled [22]. Zhang and Xuan et al. integrated a Dyhead module with the detecting head
of the YOLOV7 model. They improved the model via knowledge distillation, enhancing
accuracy while decreasing identification time, furthering the application of sheep facial
recognition technology in real-world applications [23].
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YOLO series models can accurately identify and locate animals and can distinguish
them from the background. Remote sensing using UAVs can gather target imagery rapidly
and comprehensively [24]. The combination of UAV-acquired image data and YOLO target
detection provides a new solution for livestock detection in large-scale pasture grasslands.
This study’s goal is to gather and build an image collection of popular livestock species
(cattle, sheep, and yak) in the Qinghai region while also promoting relevant computer
vision research and applications. Building upon the original YOLOv8n model, this study
proposes improvements and optimizations, resulting in the CCS-YOLOv8 model, which is
aimed at enhancing the detection performance for livestock targets. The following are the
particular optimization techniques:

1. A CBAM is integrated into the C2f module of YOLOv8n to analyze image information
more effectively and emphasize salient features. By enhancing the representational
capacity of the output feature information, the model’s detection accuracy is conse-
quently improved.

2. The lightweight up-sampling operator CARAFE is introduced to solve the shortcom-
ings of conventional up-sampling operators, which have small receptive fields and
disregard the semantic content of feature maps.

3. To mitigate the loss of small target feature information, an additional small object
detection layer is incorporated into the YOLOv8n neck structure. This layer facilitates
the extraction of livestock characteristics and details across multiple receptive fields.

2. Materials and Methodology
2.1. Obtaining Images and Creating Datasets
2.1.1. Data Gathering

The research region is situated in southern Qinghai Province in China’s Hainan Tibetan
Autonomous Prefecture. The area is primarily mountainous and is situated at the center
of the Tibetan Plateau, and it experiences a typical plateau continental climate, which is
part of the Tibetan Plateau climatic system. Animal species that are widely distributed and
raised in the alpine grasslands of the Hainan Tibetan Autonomous Prefecture include yaks,
sheep, and cows. These animals are well-adapted to the local natural habitat and climatic
circumstances. Data collecting was done in September and December of 2023 to guarantee
data variety. The data collection targeted yaks, cattle, and sheep using a DJI Air 3 drone
(DJI, Shenzhen, China). Livestock data were gathered using drone images at various times,
places, perspectives, and elevations to guarantee the images’ applicability to the actual
world and the model’s capacity for generalization.

2.1.2. Preparing Images and Building Datasets

This study used OpenCV (version 4.8.0) to process UAV-captured livestock films,
and pictures were retrieved at 90-frame intervals. After OpenCV processing and discarding
highly repetitive or blurred images, a total of 8750 valid images were obtained. A subse-
quent step involved utilizing the LabelMe data annotation tool (version 5.3.0) to annotate
the livestock in the images. To fulfill the prerequisites of the subsequent study, the various
livestock species were divided into two distinct groups: juveniles (from birth to 1 year old)
and adults (over 1 year old). The YOLO standard format was used to record the annotation
results in TXT files. These files contained the following information: category, relative
center coordinates, relative width, and relative height. Figure 1 provides an example of
a few of the labeled photographs out of the 105,852 livestock instances that were labeled
in total. Ultimately, a ratio of 8:1:1 was employed to partition all images into training,
validation, and test sets, respectively.
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Figure 1. Some annotated samples for livestock detection.

2.2. Network Architecture of CCS-YOLOv8
2.2.1. Model of YOLOv8 Network

The same design team that created YOLOv5 is also working on YOLOv8. Owing to
YOLOv5’s popularity, YOLOv8 adds further enhancements and functionality [25]. Figure 2
depicts the YOLOv8 network’s design.

Figure 2. Architecture of YOLOv8 network.
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In the preprocessing stage of the image, the input side scales the image to the 640 × 640
resolution required by YOLOv8. In addition, YOLOv8 uses data augmentation techniques
such as mosaics to enhance training effectiveness during training.

The CSP architectural concept is carried over into the YOLOv8 backbone network [26].
Five down-samplings of the input characteristics allow for the acquisition of visual features
at five distinct scales. In contrast to the C3 module [27] used in YOLOv5, YOLOv8 employs
the C2f module. The traditional C3 module Dodule is limited to processing neighboring
Bottleneck structures, resulting in extracted features that lack cross-layer information
transfer. The C2f module introduces cross-layer feature transfer, eliminates the branching
convolution, and adds more splitting operations by combining the architecture of the C3
and ELAN modules from YOLOv7 [28]. These modifications allow YOLOv8 to capture
richer gradient flow information. The use of the SPPF module enhances YOLOv8’s ability
to identify small, obstructed, and fuzzy objects compared to the SPP module [29].

YOLOv8’s neck network combines the FPN [30] and PAN [31] architectures to provide
multi-scale picture feature fusion. In contrast to earlier iterations, YOLOv8 eliminates
convolutional structures from PAN-FPN during the sampling phase, guaranteeing the
model’s lightweight and effective operation. Up-sampling is done from top to bottom
via the FPN structure, combining low-level detail information with high-level semantic
characteristics. However, target location data are lacking if FPN is used alone. The PAN
structure down-samples from the top to the bottom and integrates feature maps of different
levels through convolutional layers in order to precisely maintain the target’s spatial
position information. Through the generation of complementing semantic and positional
information, the both-direction fusion of FPN and PAN improves the accuracy of target
recognition in pictures of different sizes.

YOLOv8 adopts a decoupled head structure, meaning that each scale has an indepen-
dent detector, and each detector is responsible for separately predicting the bounding box
for that scale. The detector consists of a set of convolutional and fully connected layers,
which are used to predict the bounding box for the corresponding scale. The convolutional
and fully connected layers are employed for bounding box regression and target classifi-
cation tasks. For the target classification task, the BCE loss is utilized, incorporating the
asymmetric weighting scheme of VFL [32]. For bounding box regression, the Bbox loss
function is employed, which combines the CIoU with the DFL [33]. YOLOv8 introduces an
anchor-free detection head—no longer relying on anchor boxes—thus providing greater
flexibility to better adapt to various target shapes and sizes.

Five models with varied sizes are available in YOLOv8 to achieve a balance between
accuracy and speed in different environments. YOLOv8n is particularly well-suited for
field applications due to its portability and simplicity compared to the other variants.
Consequently, we selected YOLOv8n as our baseline model.

2.2.2. CBAM Attention Mechanism

By focusing on key characteristics of the detected object, the attention process may
be viewed as an allocation mechanism that improves target localization and classification
accuracy. The central concept is to give the raw data varying weights to identify underlying
relationships and highlight important information [34]. Since the majority of the livestock
targets to be recognized are small- and medium-sized, and the background makes up a siz-
able component of the information that is used; it is especially advantageous to incorporate
an attention mechanism. To improve the model’s representation of livestock features, we
integrated CBAM [35] into the C2f module of YOLOv8n. CBAM is a lightweight and end-
to-end attention mechanism. For each feature map, CBAM sequentially applies attention to
the channel and spatial dimensions, achieving comprehensive attention in both aspects.

For the input feature map F1, CBAM initially refines it using the channel attention
module to derive the intermediate feature map F2. Subsequently, F2 undergoes further
refinement through the spatial attention module to produce the final feature map F3,
as Figure 3 illustrates.
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Figure 3. Overview of the CBAM.

In the channel attention module, important feature information is extracted from
the input feature map through GAP and GMP. The channel attention weights are then
determined using an MLP, and normalization is accomplished using the sigmoid function.
Ultimately, channel-wise multiplication is used to apply the acquired weights to the original
input feature maps. This process may be stated as follows:

Mc(F ) = ϕ(MLP1(AvgPool(F )) + MLP2(MaxPool(F )))

= ϕ(W3(W2(F c
avg)) +W3(W2(F c

max))),
(1)

The spatial attention module mainly performs GAP and GMP in the spatial dimension.
This mechanism captures the correlation between spatial features through convolution
while maintaining the input and output dimensions, facilitating the extraction of salient
livestock features. The specific calculations are as follows:

Ss(F ) = ψ(g3×3([AvgPool(F ); MaxPool(F )]))

= ψ(g3×3([F s
avg;F s

max])),
(2)

The newly constructed C2fCBAM module replaces all of the Bottleneck modules
with the BottleneckCBAM module, as shown in Figure 4. To increase the diversity of
learned features at various network levels, this structure combines a cross-stage feature
fusion technique with a truncated gradient flow approach. Consequently, it lessens the
effect of redundant gradient information and enhances the network’s capacity for learning.
The C2fCBAM module is included in the model to improve output feature representation,
which raises the model’s detection accuracy and boosts algorithmic performance as a whole.

Figure 4. Details of the C2fCBAM.

2.2.3. CARAFE

Conventional up-sampling techniques often fail to incorporate semantic information,
leading to the production of feature maps that may lack realism, naturalness, and fidelity
to the original image content. We include the CARAFE [36] lightweight up-sampling
operator into the YOLOv8n baseline model’s feature fusion network. The CARAFE operator
adaptively recombines the up-sampled feature maps, increasing the perceptual range
based on the content and structure of the feature maps, helping the model better capture
global information in the image, thereby improving the accuracy of the reconstruction and
alleviating the inherent limitations of traditional up-sampling techniques.

As illustrated in Figure 5, the CARAFE operator accomplishes efficient feature up-
sampling and reorganization through two principal steps: First, the up-sampling kernel
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prediction module determines the attention weight of each up-sampled site based on the
mapping relationship between the up-sampled sites and the down-sampled feature map.
The input feature map is rearranged in the second stage by the content-aware reorganization
module using the resulting up-sampling kernel to maintain contextual information and
spatial details while enhancing multi-scale target identification performance.

Figure 5. The general structure of CARAFE. The up-sampling factor in the figure is 2.

Define N(Xl , k) as the k × k neighborhood region of X centered at position l. The ker-
nel prediction module predicts a location kernel Wl′ based on N(Xl , kup), represented as:

Wl′ = ψ(N(Xl , kup)), (3)

where ψ is the kernel prediction module.
Subsequently, the content-aware reorganization module recombines the neighborhood

region N(Xl , kup) of Xl with the predicted kernel Wl′ to obtain the up-sampled target
feature X ′

l′ :
X ′

l′ = ϕ(N(Xl , kup),Wl′), (4)

where ϕ is the content-aware reorganization module.
The CARAFE operator offers multiple advantages over traditional up-sampling meth-

ods and other decomposition methods. It possesses a large sensory field, which can better
capture the image’s semantic information during the feature fusion process. Furthermore,
the CARAFE operator provides a potent tool for multi-scale image processing, which is
crucial for enhancing the precision and efficiency of the target detection task. It does this
by amplifying the multi-scale target detection effect following multi-level feature fusion
without adding excessive parameters or calculations. Experiments have demonstrated
that the CARAFE operator can reduce unnecessary interference information and works
effectively with datasets that contain background noise.

2.2.4. Small Object Detection Layer

The YOLOv8 network uses a three-layer proportional feature map architecture in its
neck structure. Three distinct feature maps can be produced following the fusing of features.
Smaller receptive fields and greater information regarding target positions and nearby
features are characteristics of larger-scale feature maps, which make them appropriate
for small target detection. Smaller-scale feature maps, on the other hand, are better at
recognizing huge objects because they contain richer semantic information and broader
receptive fields, but they also lack clear local details. The YOLOv8 network may not fully
meet the requirements for detecting young animals due to its limited 80 × 80 maximum
feature map size.

To improve the recognition performance of young and small target livestock, we added
a small object detection layer to the YOLOv8n network during the neck feature fusion step.
With this improvement, the YOLOv8n network can identify objects in a narrower receptive
field, which improves its capacity to capture the distinctive characteristics and intricate
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details of young livestock. YOLOv8n takes advantage of the four distinct detection layer
scales for feature fusion, which allows the system to efficiently utilize semantic information
and fine-grained details at every level, which reduces the possibility of misidentifying
or omitting small targeted livestock and promotes more precise livestock identification
and localization.

2.2.5. CCS-YOLOv8 Algorithm

As seen in Figure 6, we propose an enhanced model called CCS-YOLOv8, which incor-
porates the CBAM attention mechanism, the CARAFE operator, and a small object detection
layer. By integrating these elements, the CCS-YOLOv8 model enhances feature expression
capabilities, reduces unnecessary interference, and effectively highlights important elements
in the images. The detection performance of the improved CCS-YOLOv8 is significantly
improved compared to before, even when dealing with small and distant objects.

Figure 6. The improved CCS-YOLOv8 model.

2.3. Experimental Design

All experiments were conducted on the Ubuntu 20.04 operating system with two
NVIDIA RTX 1080TI GPUs. The GPUs were accelerated using CUDAv11.7 and CUD-
NNv8.5, and training was based on the deep learning framework Python 2.0.0. The training
parameter settings are shown in Table 1.



Appl. Sci. 2024, 14, 4809 9 of 18

Table 1. Training parameters settings.

Parameter Setting Parameter Setting

optimizer SGD epochs 300
momentum 0.937 batch 16

seed 0 workers 8
imgsz 640 close_mosaic 10

lr0 0.01 lr1 0.01

2.4. Indicators for Model Evaluation

To evaluate the performance of the model at different IOU thresholds, we utilize
several metrics, including precision, recall, and mAP, at different IOU thresholds, such
as 0.5, 0.75, and across the range of 0.5 to 0.95, as well as calculate the F1-score. These
metrics provide insights into the accuracy, completeness, and overall performance of the
model in detecting and localizing objects. Simultaneously, we also consider the number of
parameters and the amount of computation (FLOPs) of the model as auxiliary indices to
evaluate model complexity when comparing it with other mainstream models.

Precision is computed by dividing the number of accurately recognized livestock
instances by the total number of livestock instances detected by the model. It represents
the ratio of correctly identified instances out of all the instances predicted as livestock.
Recall, on the other hand, is determined by dividing the total number of correctly tagged
livestock instances in the dataset by the ratio of properly recognized livestock examples.
It represents the proportion of correctly identified instances out of all the actual livestock
instances present in the dataset. They are calculated as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

The number of livestock cases the YOLOv8 network model successfully identified
is shown by the acronym TP. The number of livestock cases that the model misidentified
as livestock is shown by the acronym FP. The number of livestock cases that the model
overlooked or could not identify is shown by the acronym FN.

The area under the PR curve represents AP, which is the average precision for various
recall settings. The average accuracy for a class is represented by the symbol AP@0.5 when
the IOU threshold for confusion matrices is set to 0.5. To clarify, a predicted bounding box is
only regarded as a true positive and included in the precision computation if it surpasses an
IoU of 0.5 with the matching ground truth bounding box. AP@0.75 is calculated similarly,
yet with a more stringent IoU threshold of 0.75. This imposes greater demands on detection
accuracy, requiring that predicted bounding boxes achieve an IoU of no less than 0.75 with
the ground truth to be acknowledged as correct detections and to be counted towards
the true positive tally. Elevating the IoU threshold from 0.5 to 0.75 introduces a stricter
criterion for classifying a detection as accurate, thus offering a more refined estimate of the
model’s detection efficacy. An extensive analysis of the trade-off between overall detection
precision and localization accuracy is provided via assessments across several IoU levels.
The different AP values are calculated as follows:

AP@0.5 =
∫ 1

0
Precision(Recall)d(Recall), where IoU ≥ 0.5 (7)

AP@0.75 =
∫ 1

0
Precision(Recall)d(Recall), where IoU ≥ 0.75 (8)
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The mAP is the mean of the AP values for all categories. Greater mAP values signify a
model’s elevated average detection precision across all target categories. The mAP values
are calculated as follows:

mAP =
1
Q

Q

∑
q=1

AP(q) (9)

mAP@0.5:0.95 =
1

10

0.95

∑
t=0.5

mAP@t (10)

An important metric for evaluating the efficacy of a binary classification model is the
F1-score. It is an average of precision and recall that is harmonized and takes both into
account. The range of values for the F1-score is 0 to 1. It is calculated as follows:

F1 =
2 × Precision × Recall

Precision + Recall
(11)

3. Experimental Results and Analysis
3.1. Improved CCS-YOLOv8 Model
3.1.1. Changes in Losses

Figure 7 shows the variation curves of box_loss, dfl_loss, and cls_loss of the proposed
CCS-YOLOv8 model on the training and validation sets of common livestock detection
datasets in the Qinghai region, which are used to validate the convergence performance of
the CCS-YOLOv8 model.

Figure 7. Convergence curve of loss function of CCS-YOLOv8.

At first, the loss values drop off quickly, showing that the model is learning and
adapting quickly. Nevertheless, the loss numbers tend to level out and vary within a small
range as the exercise continues. This suggests that the optimization process has converged
and the model has achieved a reasonably stable state. The loss values’ oscillations imply
that the model is adjusting its parameters to strike the best possible balance between gener-
alization and precision. Overall, there are no overfitting or underfitting problems with the
CCS-YOLOv8 model’s generalization capabilities in the livestock target identification test.

3.1.2. Changes in Performance

To evaluate the performance increase for the livestock target recognition task, we used
a set of test images as examples and performed target identification on them using the
YOLOv8n baseline model and the upgraded CCS-YOLOv8 model. Due to the presence
of densely aggregated livestock targets in the example images, directly displaying the
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classification labels and confidence values would lead to visual clutter and affect the
comparison. To evaluate the detection performance of the two models more objectively, we
present the detection results with only the target detection boxes retained while omitting
the confidence value and category label information, as shown in Figure 8.

Figure 8. Exemplary detection results comparing YOLOv8n and CCS-YOLOv8 on the common
livestock detection dataset from Qinghai. (A) The YOLOv8n model misdetects two of the sheep,
counting them as four in the densely distributed group, whereas the CCS-YOLOv8 model correctly
identifies these sheep targets. (B) The YOLOv8n model struggles with missed detections of lambs
and repeated detections of sheep, while the CCS-YOLOv8 model effectively avoids these errors.
(C) The CCS-YOLOv8 model accurately detects a small yak in the distance, a target missed by the
YOLOv8n model.

• In group A images, the YOLOv8n baseline model misdetects two of the sheep as
four for the densely distributed sheep in the overhead view, while the CCS-YOLOv8
model correctly recognizes these sheep targets. Compared to YOLOv8n, CCS-YOLOv8
demonstrates better detection performance when detecting densely distributed sheep
targets with occlusion.

• In group B images, the YOLOv8n model suffers from the problems of missed detection
of lamb targets and repeated detection of adult sheep when dealing with situations
where adult sheep and lambs are in the same frame, while the CCS-YOLOv8 model
effectively avoids such errors. This result indicates that, compared to the baseline
model, CCS-YOLOv8 has a stronger ability to detect lamb targets and significantly
reduces the risk of missed and repeated detections.

• In group C images, in the oblique side view, the CCS-YOLOv8 model accurately detects
a small yak in the distance, while the YOLOv8n model misses the detection. This
confirms that the CCS-YOLOv8 model demonstrates better performance in detecting
small targets.

3.2. Ablation Experiment

We performed eight sets of ablation tests to determine the improvement due to each
module for the YOLOv8n model’s livestock target detection capability. The purpose
of these studies was to assess how various module integrations, either separate or in
combination, affect the model’s overall performance. These tests aimed to ascertain the
optimization contributions of each module and their efficacy in enhancing the YOLOv8n
model’s livestock target identification capabilities.
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Table 2 displays the ablation experiment results. After integrating the small ob-
ject detection layer, the YOLOv8 model demonstrated improvements in precision, recall,
mAP@0.5, mAP@0.75, mAP@0.5:0.95, and F1-score, achieving 84.9%, 77.9%, 82.7%, 59%,
52.7%, and 80.4%, respectively: marking an enhancement of 1.9%, 3.6%, 4.1%, 5.3%, 3.9%,
and 2%, respectively, over the baseline YOLOv8n. This discovery implies that the YOLOv8
network’s capacity to acquire livestock’s finer details is improved by lowering the re-
ceptive field and adding the tiny target detection layer. As a result, the model becomes
more effective at reducing missed detections and false detections of small target livestock.
The addition of the small object detection layer allows the network to focus on and accu-
rately identify fine details, enabling improved performance for detecting and localizing
small livestock instances. Relative to the baseline YOLOv8n, the model’s performance is
enhanced after incorporating the C2fCBAM module, with metrics reaching 85.2%, 74.8%,
79.7%, 55.2%, 49.8%, and 79.4% for precision, recall, mAP@0.5, mAP@0.75, mAP@0.5:0.95,
and F1-score, respectively. In particular, the precision was enhanced by 2.2% relative to
the baseline. The C2fCBAM module allows for more precise focusing on the important
features within the image. This module enhances the quality and diversity of feature
extraction, leading to improved precision in the model’s predictions. By selectively at-
tending to relevant image regions, the C2fCBAM module helps the model capture and
emphasize crucial features, resulting in more accurate and precise detection of livestock
instances. After integrating the CARAFE operator, the YOLOv8 model exhibits metrics
of 82.6%, 76.9%, 79.7%, 55.2%, 50%, and 79.2% in terms of precision, recall, mAP@0.5,
mAP@0.75, mAP@0.5:0.95, and F1-score, respectively. The CARAFE operator demonstrates
a notable enhancement in mAP, and recall improved by 2.6%. This signifies that the model
can leverage contextual information surrounding the target, which is crucial for under-
standing the target’s background environment. By incorporating contextual information,
the model can better analyze the relationships and dependencies between the target and its
surroundings. This contextual understanding aids with improving the accuracy of livestock
detection by reducing false detections and enhancing the model’s ability to discriminate
between livestock and other objects or backgrounds. By considering the broader context,
the model can make more informed decisions about the presence of livestock based on
the surrounding visual cues. This helps to reduce false positives and improve the overall
reliability of the model’s predictions.

Table 2. Ablation experiment results.

Model Precision (%) Recall (%) mAP@0.5 (%) mAP@0.75 (%) mAP@0.5:0.95 (%) F1-Score (%)

YOLOv8n 83 74.3 78.6 53.7 48.8 78.4
+C2fCBAM 85.2 74.8 79.7 55.2 49.8 79.4
+CARAFE 82.6 76.9 79.7 55.2 50 79.2
+small object detection
layer 84.9 77.9 82.7 59 52.7 80.4

+C2fCBAM+CARAFE 82.8 77.2 80.2 56.2 51 79.4
+C2fCBAM+small
object detection layer 84.9 79.3 82.4 59.8 52.8 82

+CARAFE+small object
detection layer 83.9 80.6 82.6 59.6 52.7 81.6

CCS-YOLOv8 84.1 82.2 84.4 60.3 53.6 83.1

The CCS-YOLOv8 model demonstrates the best detection performance. The mAP
and PR curve comparison results can be found in Figure 9. Relative to the baseline model,
the CCS-YOLOv8 model demonstrates significant improvements across all detection met-
rics. The CCS-YOLOv8 model attained 84.1% precision, 82.2% recall, 84.4% mAP@0.5, 60.3%
mAP@0.75, 53.6% mAP@0.5:0.95, and 83.1% F1-score, evidencing its capability to accurately
and efficiently recognize livestock of different species and ages against complex backgrounds.
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Figure 9. (A) The training mAP curves: the CCS-YOLOv8 model surpasses the YOLOv8n model
on the curves of map0.5, map0.75, and map0.5:0.95. (B) The PR curve: The CCS-YOLOv8 model
demonstrates superior performance for detecting and capturing most livestock instances with high
recall and maintaining high accuracy.

3.3. In Contrast to Other Mainstream Models

By contrasting the performance of the CCS-YOLOv8 model with those of other popular
one- and two-stage target detection models, we can further validate the enhanced model’s
efficacy. To assess the model’s complexity in detail, these metrics include the number of
model parameters and the quantity of computations. Faster R-CNN utilizes a two-stage
computational inference design to effectively enhance detection accuracy. However, Faster
R-CNN can encounter challenges with tasks that involve detecting small targets. This
is primarily because the model heavily relies on high-dimensional feature mapping for
prediction, which can lead to the overlooking of fine-grained feature information. Faster
R-CNN’s detection performance on the livestock dataset is noticeably worse than those
of the one-stage algorithmic models, as Table 3 illustrates. Furthermore, the model has
higher training and inference costs due to its large number of parameters and computing
needs, which makes it challenging to satisfy the demands of livestock target monitor-
ing. Among one-stage algorithms, the YOLOv8n model exhibits the lowest complexity.
However, aside from SSD and YOLOv3tiny, it does not demonstrate a clear advantage in
detection performance. By comparison, exceptional detection results are obtained by the
CCS-YOLOv8 model. Meanwhile, the number of parameters and computational volume
being low at 3.38 M and 13.7GFLOPs, respectively, indicate that the model is designed to
be lightweight yet high-performing, making it more practical for real applications.

Table 3. Comparison with other models.

Model Precision
(%)

Recall
(%) mAP@0.5 (%) mAP@0.75

(%)
mAP@0.5:0.95

(%) F1-Score (%) Parameters
(M)

FLOPs
(G)

Faster
R-CNN 75.3 58.3 66.9 46.1 41 65.7 41.75 87.9

SSD [37] 75.6 65.2 75.7 45.6 43.5 70 25.12 88.2
YOLOv3tiny 80.1 68.5 71.1 48 44.5 73.8 12.14 19
YOLOv5s 84.1 80.1 81.1 55.8 50.6 82.1 7.04 16
YOLOXs [38] 80.5 75.8 81.3 53.5 49.6 78.1 8.97 13.4
YOLOv6n [39] 80.1 74.1 76.5 52.8 48.3 77 4.24 11.9
YOLOv7tiny [40] 84.1 79.6 81.7 53.2 49.3 81.8 6.03 13.2
YOLOv8n 83 74.3 78.6 53.7 48.8 78.4 3.01 8.2
YOLOv8s 83.9 80.2 82 59.3 52.8 82 11.1 28.7
CCS-
YOLOv8 84.1 82.2 84.4 60.3 53.6 83.1 3.38 13.7
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3.4. Robustness Test

The VisDrone2019 dataset [41] was collected by the AISKYEYE Machine Learning
and Data Mining Lab team at Tianjin University. It consists of 288 video clips, totaling
261,908 frames, as well as 10,209 still images. These data samples were captured using a
variety of UAV cameras in diverse scenarios. The dataset includes footage from 14 different
cities in China, covering both urban and rural environments. The target objects in the
dataset encompass pedestrians and vehicles, and the scenarios vary in density, ranging
from sparse to congested [42,43].

By conducting experiments on this comprehensive dataset, the study aims to evaluate
and compare the performance of the CCS-YOLOv8 model against the baseline algorithm.
This assessment will provide insights into the model’s robustness in recognizing and
localizing objects in various challenging situations, contributing to the advancement of
object detection techniques in aerial surveillance and monitoring applications.

Table 4 showcases the experimental results. On the VisDrone2019 dataset, the CCS-
YOLOv8 model recorded 42.6% accuracy, 33.5% recall, 31.1% mAP@0.5, 16.8% mAP@0.75,
17.1% mAP@0.5:0.95, and 37.5% F1-score. Regarding accuracy, the CCS-YOLOv8 model
shows an improvement of 2.2% over YOLOv8n, indicating its higher accuracy in detecting
targets. Regarding recall, the CCS-YOLOv8 model demonstrates a 3.8% improvement over
YOLOv8n, indicating its stronger recall ability with fewer missed detections. For mAP@0.5,
mAP@0.75, and mAP@0.5:0.95, the CCS-YOLOv8 model registers improvements of 3.8%,
1.9%, and 2.1%, respectively, over YOLOv8n, indicating enhanced performance across
different IoU thresholds. As a metric combining precision and recall, the F1-score of the CCS-
YOLOv8 model sees a 3.3% improvement over YOLOv8n, highlighting its comprehensive
performance superiority. To sum up, the CCS-YOLOv8 model’s remarkable robustness has
been validated by the experimental findings collected from the VisDrone2019 dataset.

Table 4. Results of the robustness test.

Model Precision (%) Recall (%) mAP@0.5 (%) mAP@0.75 (%) mAP@0.5:0.95 (%) F1-Score (%)

YOLOv8n 40.4 29.7 27.3 14.9 15.0 34.2
CCS-YOLOv8 42.6 33.5 31.1 16.8 17.1 37.5

4. Discussion

The CCS-YOLOv8 model is primarily utilized for the recognition of common livestock
in the Qinghai region and holds potential applications in other animal and remote sensing
target detection tasks. Despite significant improvements over the baseline model, we
acknowledge that there are still instances of false alarms and missed detections. To ad-
dress these issues, we plan to further optimize the model’s training process by adjusting
hyperparameters and exploring ensemble methods, such as combining multiple models to
leverage their strengths and mitigate individual weaknesses. These steps are expected to
enhance the overall detection accuracy and reliability of the model.

Our current dataset primarily includes three types of grasslands: alpine meadows,
alpine steppes, and alpine desert grasslands. To improve our model’s adaptability to
diverse environments, we plan to collect additional datasets with varied backgrounds
in the future. This will help ensure that our dataset encompasses all types of natural
grasslands and improve the model’s performance in various environmental contexts.

To further broaden the utility and applicability of our model, we intend to expand
its capabilities to detect additional livestock species in future work. This expansion will
involve including other commonly raised livestock species, thereby enhancing the model’s
performance and relevance in regions with diverse livestock populations.

As the model aims to strike a balance between accuracy and real-time processing capa-
bility, exploring lightweight optimization techniques is crucial. Techniques such as network
pruning, quantization, and knowledge distillation can reduce model complexity without
sacrificing performance, enabling more efficient inference on resource-constrained devices.
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Going forward, the CCS-YOLOv8 model will be integrated into monitoring platforms
such as drones and intelligent robots to refine the intelligent detection process and achieve
real-time video detection of common livestock. This integration aims to enable proactive
management strategies such as automated alerts for overgrazing, thereby enhancing the
practical utility and impact of the model in real-world applications. By leveraging these
advanced monitoring platforms, the model can provide timely and accurate livestock
management support, ensuring sustainable and efficient livestock farming practices.

To ensure the continued effectiveness and relevance of the CCS-YOLOv8 model in
evolving livestock management contexts, we plan to establish a framework for continuous
evaluation and feedback. This framework will involve collecting feedback from end-
users, monitoring the model’s performance in different scenarios, and incorporating new
data and insights into the model refinement processes. By implementing this continuous
evaluation and feedback loop, we aim to iteratively improve the model over time, ensuring
its adaptability and utility in various real-world applications. This approach will help
us address emerging challenges and maintain the model’s high performance in diverse
livestock management contexts.

5. Conclusions

We have created a common livestock detection dataset in Qinghai by utilizing data
collected by UAVs. As far as we are aware, this is the first dataset of its kind in this field.
The introduction of the CBAM attention mechanism and the CARAFE operator into the
model, coupled with the addition of a small object detection layer, aims to enhance the
detection performance for livestock. Utilizing this dataset, the CCS-YOLOv8 model secured
84.1% accuracy, 82.2% recall, 84.4% mAP@0.5, 60.3% mAP@0.75, 53.6% mAP@0.5:0.95,
and 83.1% F1-score, showing improvements of 1.1%, 7.9%, 5.8%, 6.6%, 4.8%, and 4.7%,
respectively, over the baseline. Relative to other target detection models, the CCS-YOLOv8
model demonstrates excellent performance. By utilizing high-resolution images of livestock
in Qinghai collected by UAVs and integrating the CCS-YOLOv8 model, this approach
enables rapid detection of the ages and species of livestock. This method offers a new way
to effectively manage the number of livestock and control overgrazing, aligning with the
needs of modern precision livestock husbandry.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Average Precision
box_loss Bounding Box Loss
BCE Binary Cross Entropy
CARAFE Content-Aware ReAssembly of FEatures
CBAM Convolutional Block Attention Module
CCS-YOLOv8 Comprehensive Contextual Sensing YOLOv8
cls_loss Localization Loss
CSP Cross Stage Partial DarkNet-53
C3 Cross Stage Partial Network with 3 Convolutions
dfl_loss Distribution Focal Loss
DFL Distribution Focal Loss
Faster R-CNN Faster Region with CNN Feature
FN False Negative
FP False Positive
FPN Feature Pyramid Network
GAP Global Average Pooling
GMP Global Maximum Pooling
IOU Intersection over Union
mAP Mean Average Precision
MLP Multi-Layer Perception
PAN Path Aggregation Network
R-CNN Region with CNN Feature
SPPNet Spatial Pyramid Pooling Network
TP True Positive
UAV Unmanned Aerial Vehicle
YOLO You Only Look Once
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