Identification of the Structure of Liquid–Gas Flow in a Horizontal Pipeline Using the Gamma-Ray Absorption and a Convolutional Neural Network
Abstract
:1. Introduction
2. Gamma Radiation Absorption Method in Liquid–Gas Flow Measurements
3. Laboratory Station
4. Convolutional Neural Network
5. Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hafsa, N.; Rushd, S.; Yousuf, H. Comparative Performance of Machine-Learning and Deep-Learning Algorithms in Predicting Gas–Liquid Flow Regimes. Processes 2023, 11, 177. [Google Scholar] [CrossRef]
- Kuang, B.; Nnabuife, S.G.; Whidborne, J.F.; Sun, S.; Zhao, J.; Jenkins, K. Self-supervised learning-based two-phase flow regime identification using ultrasonic sensors in an S-shape riser. Expert Syst. Appl. 2024, 236, 121414. [Google Scholar] [CrossRef]
- Nnabuife, S.G.; Kuang, B.; Rana, Z.A.; Whidborne, J. Classification of flow regimes using a neural network and a non-invasive ultrasonic sensor in an S-shaped pipeline-riser system. Chem. Eng. J. Adv. 2021, 9, 100215. [Google Scholar] [CrossRef]
- Zhang, Y.; Azman, A.N.; Xu, K.W.; Kang, C.; Kim, H.-B. Two-phase flow regime identification based on the liquid-phase velocity information and machine learning. Exp. Fluids 2020, 61, 212. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, C.; Wang, X.; Cao, Y.; Yu, H.; Li, W.; Guo, L. Machine learning classification of flow regimes in a long pipeline-riser system with differential pressure signal. Chem. Eng. Sci. 2021, 233, 116402. [Google Scholar] [CrossRef]
- Madhumitha, R.; Balachandar, C.; Venkatesan, M. Flow regime identification using fuzzy and neuro-fuzzy inference applied on differential pressure sensor. Flow Meas. Instrum. 2023, 94, 102474. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Ma, W.; Wang, W. Two-phase flow patterns identification in porous media using feature extraction and SVM. Int. J. Multiph. Flow 2022, 156, 104222. [Google Scholar] [CrossRef]
- Chen, T.-C.; Alizadeh, S.M.; Alanazi, A.K.; Guerrero, J.W.G.; Abo-Dief, H.M.; Eftekhari-Zadeh, E.; Fouladinia, F. Using ANN and Combined Capacitive Sensors to Predict the Void Fraction for a Two-Phase Homogeneous Fluid Independent of the Liquid Phase Type. Processes 2023, 11, 940. [Google Scholar] [CrossRef]
- De Kerpel, K.; De Schampheleire, S.; De Keulenaer, T.; De Paepe, M. Two-phase flow regime assignment based on wavelet features of a capacitance signal. Int. J. Heat Fluid Flow 2015, 56, 317–323. [Google Scholar] [CrossRef]
- Shi, X.; Tan, C.; Dong, F.; Santos, E.N.D.; da Silva, M.J. Conductance sensors for multiphase flow measurement: A review. IEEE Sens. J. 2021, 21, 12913–12925. [Google Scholar] [CrossRef]
- Manjrekar, O.N.; Dudukovic, M.P. Identification of flow regime in a bubble column reactor with a combination of optical probe data and machine learning technique. Chem. Eng. Sci. X 2019, 2, 100023. [Google Scholar] [CrossRef]
- Liu, L.; Bai, B. Flow regime identification of swirling gas-liquid flow with image processing technique and neural networks. Chem. Eng. Sci. 2019, 199, 588–601. [Google Scholar] [CrossRef]
- Du, M.; Yin, H.; Chen, X.; Wang, X. Oil-in-water two-phase flow pattern identification from experimental snapshots using convolutional neural network. IEEE Access 2018, 7, 6219–6225. [Google Scholar] [CrossRef]
- Banasiak, R.; Wajman, R.; Jaworski, T.; Fiderek, P.; Fidos, H.; Nowakowski, J.; Sankowski, D. Study on two-phase flow regime visualization and identification using 3D electrical capacitance tomography and fuzzy-logic classification. Int. J. Multiph. Flow 2014, 58, 1–14. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, X.; Chen, B.; Zhang, M.; Li, Y. Imaging of Flow Pattern of Gas-Oil Flows with Convolutional Neural Network. In Proceedings of the 2019 IEEE International Conference on Imaging Systems and Techniques (IST), Abu Dhabi, United Arab Emirates, 9–10 December 2019; pp. 1–6. [Google Scholar]
- Tan, C.; Dong, F.; Wu, M. Identification of gas/liquid two-phase flow regime through ERT-based measurement and feature extraction. Flow Meas. Instrum. 2007, 18, 255–261. [Google Scholar] [CrossRef]
- Schleicher, E.; da Silva, M.J.; Thiele, S.; Wollrab, E.; Hampel, U. Design of an optical tomograph for the investigation of single- and two-phase pipe flows. Meas. Sci. Technol. 2008, 19, 094006. [Google Scholar] [CrossRef]
- Breitenmoser, D.; Prasser, H.-M.; Manera, A.; Petrov, V. Machine learning based flow regime recognition in helically coiled tubes using X-ray radiography. Int. J. Multiph. Flow 2023, 161, 104382. [Google Scholar] [CrossRef]
- Hu, B.; Langsholt, M.; Liu, L.; Andersson, P.; Lawrence, C. Flow structure and phase distribution in stratified and slug flows measured by X-ray tomography. Int. J. Multiph. Flow 2014, 67, 162–179. [Google Scholar] [CrossRef]
- Tambouratzis, T.; Pázsit, I. Non-invasive on-line two-phase flow regime identification employing artificial neural networks. Ann. Nucl. Energy 2009, 36, 464–469. [Google Scholar] [CrossRef]
- Sunde, C.; Avdic, S.; Pázsit, I. Classification of two-phase flow regimes via image analysis and a neuro-wavelet approach. Prog. Nucl. Energy 2005, 46, 348–358. [Google Scholar] [CrossRef]
- Sestito, G.S.; Álvarez-Briceño, R.; Ribatski, G.; da Silva, M.M.; de Oliveira, L.P.R. Vibration-based multiphase-flow pattern classification via machine learning techniques. Flow Meas. Instrum. 2023, 89, 102290. [Google Scholar] [CrossRef]
- Jung, S.; Yang, H.; Park, K.; Seo, Y.; Seong, W. Monitoring severe slugging in pipeline-riser system using accelerometers for application in early recognition. Sensors 2019, 19, 3930. [Google Scholar] [CrossRef] [PubMed]
- Paranjape, S.; Ritchey, S.N.; Garimella, S.V. Electrical impedance-based void fraction measurement and flow regime identification in microchannel flows under adiabatic conditions. Int. J. Multiph. Flow 2012, 42, 175–183. [Google Scholar] [CrossRef]
- Wiedemann, P.; Döß, A.; Schleicher, E.; Hampel, U. Fuzzy flow pattern identification in horizontal air-water two-phase flow based on wire-mesh sensor data. Int. J. Multiph. Flow 2019, 117, 153–162. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, Y.; Gu, H. Experimental investigation of two-phase flow evolution in a tight lattice bundle using wire-mesh sensor. Int. J. Heat Mass Transf. 2021, 171, 121079. [Google Scholar] [CrossRef]
- Hosseini, S.; Iliyasu, A.M.; Akilan, T.; Salama, A.S.; Eftekhari-Zadeh, E.; Hirota, K. Accurate Flow Regime Classification and Void Fraction Measurement in Two-Phase Flowmeters Using Frequency-Domain Feature Extraction and Neural Networks. Separations 2022, 9, 160. Available online: https://www.mdpi.com/2297-8739/9/7/160/pdf?version=1656060017 (accessed on 3 June 2024). [CrossRef]
- Salgado, W.L.; Dam, R.S.D.F.; Desterro, F.S.M.D.; da Cruz, B.L.; Silva, A.X.D.; Salgado, C.M. Application of deep neural network and gamma radiation to monitor the transport of petroleum by-products through polyducts. Appl. Radiat. Isot. 2023, 200, 110973. [Google Scholar] [CrossRef] [PubMed]
- Jeshvaghani, P.A.; Rezaee, K.; Rezaee, K.; Feghhi, S.A.H.; Jafari, A. Using statistical features and a neural network to predict gas volume fractions independent of flow regime changes. Flow Meas. Instrum. 2023, 93, 102430. [Google Scholar] [CrossRef]
- Dam, R.S.D.F.; Salgado, W.L.; Schirru, R.; Salgado, C.M. Application of radioactive particle tracking and an artificial neural network to calculating the flow rate in a two-phase (oil–water) stratified flow regime. Appl. Radiat. Isot. 2022, 180, 110061. [Google Scholar] [CrossRef]
- Sattari, A.M.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [Google Scholar] [CrossRef]
- Roshani, G.H.; Nazemi, E.; Shama, F.; Imani, M.A.; Mohammadi, S. Designing a simple radiometric system to predict void fraction percentage independent of flow pattern using radial basis function. Metrol. Meas. Syst. 2018, 25, 347–358. [Google Scholar] [CrossRef]
- Hanus, R.; Zych, M.; Kusy, M.; Jaszczur, M.; Petryka, L. Identification of liquid-gas flow regime in a pipeline using gamma-ray absorption technique and computational intelligence methods. Flow Meas. Instrum. 2018, 60, 17–23. [Google Scholar] [CrossRef]
- Ochał, P.; Hanus, R.; Zych, M. Application of the convolutional neural network to identify the liquid-gas flow structure in a pipeline using histograms of signals from scintillation detectors. Przegl. Elektrotech. 2022, 98, 185–189. Available online: http://pe.org.pl/articles/2022/11/38.pdf (accessed on 3 June 2024). (In Polish).
- Boorboor, S.; Feghhi, S.A.H.; Jafari, H. Development of an intelligent dual-beam gamma densitometer for real-time recognition of two-phase flow regime in horizontal pipe. Nucl. Instrum. Methods Phys. Res. A 2023, 1054, 168412. [Google Scholar] [CrossRef]
- Iliyasu, A.M.; Mayet, A.M.; Hanus, R.; El-Latif, A.A.A.; Salama, A.S. Employing GMDH-type neural network and signal frequency feature extraction approaches for detection of scale thickness inside oil pipelines. Energies 2022, 15, 4500. Available online: https://www.mdpi.com/1996-1073/15/12/4500 (accessed on 3 June 2024). [CrossRef]
- Hosseini, S.; Taylan, O.; Abusurrah, M.; Akilan, T.; Nazemi, E.; Eftekhari-Zadeh, E.; Bano, F.; Roshani, G.H. Application of Wavelet Feature Extraction and Artificial Neural Networks for Improving the Performance of Gas–Liquid Two-Phase Flow Meters Used in Oil and Petrochemical Industries. Polymers 2021, 13, 3647. [Google Scholar] [CrossRef] [PubMed]
- Hanus, R.; Zych, M.; Jaszczur, M. Computational intelligence approach for liquid-gas flow regime classification based on frequency domain analysis of signals from scintillation detectors. In Advances in Computational Intelligence; Rojas, I., Joya, G., Catala, A., Eds.; IWANN 2019; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11507, pp. 339–349. Available online: https://link.springer.com/chapter/10.1007%2F978-3-030-20518-8_29 (accessed on 3 June 2024).
- Wijayanta, S.; Deendarlianto; Indarto; Prasetyo, A.; Hudaya, A.Z. The effect of the liquid physical properties on the wave frequency and wave velocity of co-current gas-liquid stratified two-phase flow in a horizontal pipe. Int. J. Multiph. Flow 2023, 158, 104300. [Google Scholar] [CrossRef]
- Liu, W.; Lv, X.; Jiang, S.; Li, H.; Zhou, H.; Dou, X. Two-phase flow pattern identification in horizontal gas–liquid swirling pipe flow by machine learning method. Ann. Nucl. Energy 2022, 12, 109644. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Zhao, H.; Yang, X.; Ma, R.; Yuan, Y.; Ma, W. Identification of two-phase flow pattern in porous media based on signal feature extraction. Flow Meas. Instrum. 2022, 83, 102123. [Google Scholar] [CrossRef]
- Liu, H.; Li, W.; Peng, J.; Wang, L.; Jiang, H.; Huang, L.; Li, H. Two-phase flow characterization for metal concentric tubes with capacitance measurement. Int. J. Refrig. 2023, 156, 287–297. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; Yousaf, M.; Yang, X.; Ishii, M. Flow structure and flow regime transitions of downward two-phase flow in large diameter pipes. Int. J. Heat Mass Transf. 2018, 118, 812–822. [Google Scholar] [CrossRef]
- Rosa, E.S.; Salgado, R.M.; Ohishi, T.; Mastelari, N. Performance comparison of artificial neural networks and expert systems applied to flow pattern identification in vertical ascendant gas-liquid flows. Int. J. Multiph. Flow 2010, 36, 738–754. [Google Scholar] [CrossRef]
- Zhao, Y.; Qincheng, B.; Richa, H. Recognition and measurement in the flow pattern and void fraction of gaseliquid two-phase flow in vertical upward pipes using the gamma densitometer. Appl. Therm. Eng. 2013, 60, 398–410. [Google Scholar] [CrossRef]
- Raitoharju, J. Convolutional neural networks. In Deep Learning for Robot Perception and Cognition; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Bahrami, S.; Alamdari, S.; Farajmashaei, M.; Behbahani, M.; Jamshidi, S.; Bahrami, B. Application of artificial neural network to multiphase flow metering: A review. Flow Meas. Instrum. 2024, 97, 102601. [Google Scholar] [CrossRef]
- Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope. Electronics 2021, 10, 2470. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, E.; Espinosa, H.D. Recent advances and applications of machine learning in experimental solid mechanics: A review. Appl. Mech. Rev. 2023, 75, 061001. [Google Scholar] [CrossRef]
- Vinuesa, R.; Brunton, S.L.; McKeon, B.J. The transformative potential of machine learning for experiments in fluid mechanics. Nat. Rev. Phys. 2023, 5, 536–545. [Google Scholar] [CrossRef]
- Available online: https://www.mathworks.com/help/deeplearning/ref/vgg16.html;jsessionid=27ee6b23c86210369251f413f898 (accessed on 3 June 2024).
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2008, arXiv:2008.05756. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef]
Number of Classes | 28 | 56 | 112 | 224 |
---|---|---|---|---|
bubble | 0.969 | 0.958 | 0.938 | 0.958 |
slug | 1 | 1 | 1 | 1 |
plug–bubble | 0.906 | 0.917 | 0.927 | 0.938 |
plug | 0.938 | 0.958 | 0.990 | 0.979 |
Number of Classes | 28 | 56 | 112 | 224 |
---|---|---|---|---|
bubble | 1 | 0.917 | 0.833 | 0.917 |
slug | 1 | 1 | 1 | 1 |
plug–bubble | 0.792 | 0.875 | 0.875 | 0.875 |
plug | 0.833 | 0.875 | 1 | 0.958 |
Number of Classes | 28 | 56 | 112 | 224 |
---|---|---|---|---|
bubble | 0.958 | 0.972 | 0.972 | 0.972 |
slug | 1 | 1 | 1 | 1 |
plug–bubble | 0.944 | 0.931 | 0.944 | 0.958 |
plug | 0.972 | 0.986 | 0.986 | 0.986 |
Number of Classes | 28 | 56 | 112 | 224 |
---|---|---|---|---|
bubble | 0.889 | 0.917 | 0.909 | 0.917 |
slug | 1 | 1 | 1 | 1 |
plug–bubble | 0.826 | 0.808 | 0.840 | 0.875 |
plug | 0.909 | 0.955 | 0.960 | 0.958 |
Number of Classes | 28 | 56 | 112 | 224 |
---|---|---|---|---|
bubble | 0.941 | 0.917 | 0.869 | 0.917 |
slug | 1 | 1 | 1 | 1 |
plug–bubble | 0.809 | 0.840 | 0.857 | 0.875 |
plug | 0.869 | 0.913 | 0.980 | 0.958 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanus, R.; Zych, M.; Ochał, P.; Augustyn, M. Identification of the Structure of Liquid–Gas Flow in a Horizontal Pipeline Using the Gamma-Ray Absorption and a Convolutional Neural Network. Appl. Sci. 2024, 14, 4854. https://doi.org/10.3390/app14114854
Hanus R, Zych M, Ochał P, Augustyn M. Identification of the Structure of Liquid–Gas Flow in a Horizontal Pipeline Using the Gamma-Ray Absorption and a Convolutional Neural Network. Applied Sciences. 2024; 14(11):4854. https://doi.org/10.3390/app14114854
Chicago/Turabian StyleHanus, Robert, Marcin Zych, Piotr Ochał, and Małgorzata Augustyn. 2024. "Identification of the Structure of Liquid–Gas Flow in a Horizontal Pipeline Using the Gamma-Ray Absorption and a Convolutional Neural Network" Applied Sciences 14, no. 11: 4854. https://doi.org/10.3390/app14114854
APA StyleHanus, R., Zych, M., Ochał, P., & Augustyn, M. (2024). Identification of the Structure of Liquid–Gas Flow in a Horizontal Pipeline Using the Gamma-Ray Absorption and a Convolutional Neural Network. Applied Sciences, 14(11), 4854. https://doi.org/10.3390/app14114854