A Spatial Analysis of Urban Tree Canopy Using High-Resolution Land Cover Data for Chattanooga, Tennessee
Abstract
:1. Introduction
1.1. High-Resolution Imagery and the Benefits of Urban Forests
1.2. Study Area
1.3. Mapping Urban Tree Canopy
1.4. Spatial Analysis
2. Methodology
2.1. Object-Based Image Analysis
2.2. Census Block Groups (CBG)
3. Spatial Analysis
3.1. Land Cover Statistics
3.2. Exploratory Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fleming, S. To Protect Trees, Atlanta Nonprofit Maps and Measures Benefits. Retrieved from Esri. 2023. Available online: https://www.esri.com/about/newsroom/blog/trees-atlanta-protects-valuable-city-assets/ (accessed on 8 April 2024).
- Giarrusso, T. 2018 City of Atlanta Urban Tree Canopy Assessment and Change Analysis (2008–2018); Center for Spatial Planning Analytics and Visualization & City of Atlanta Department of Planning and Community Development: Atlanta, GA, USA, 2018. [Google Scholar]
- Holtan, M.T. Social Life Under Cover: Tree Canopy and Social Capital in Baltimore, Maryland. Environ. Behav. 2015, 47, 502–525. [Google Scholar] [CrossRef]
- Riley, C.B.; Gardiner, M.M. Examining the distributional equity of urban tree canopy cover and ecosystem services across United States cities. PLoS ONE 2020, 15, e0228499. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Rush, J.; Bailey, F.; Just, A.C. Accessible Green Spaces? Spatial Disparities in Residential Green Space among People with Disabilities in the United States. Ann. Assoc. Am. Geogr. 2023, 113, 527–548. [Google Scholar] [CrossRef]
- Bornstein, R.; Lin, Q. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ. 2000, 34, 507–516. [Google Scholar] [CrossRef]
- Loughner, C.P.; Allen, D.J.; Zhang, D.-L.; Pickering, K.E.; Dickerson, R.R.; Landry, L. Roles of Urban Tree Canopy and Buildings in Urban Heat Island Effects: Parameterization and Preliminary Results. J. Appl. Meteorol. Clim. 2012, 51, 1775–1793. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Forest Service. Urban Tree Canopy Assessment: A Community’s Path to Understanding and Managing the Urban Forest. FS–1121. Washington, DC. 2019; 16p. Available online: https://www.fs.fed.us/sites/default/files/fs_media/fs_document/Urban%20Tree%20Canopy%20paper.pdf (accessed on 29 May 2024).
- Hall, J.; Hossain, A.K.M.A. Mapping Urbanization and Evaluating Its Possible Impacts on Stream Water Quality in Chattanooga, Tennessee, Using GIS and Remote Sensing. Sustainability 2020, 12, 1980. [Google Scholar] [CrossRef]
- Hossain, A.S.-H. Investigating Urban Heat Island (UHI) Impact for the City of Chattanooga, Tennessee Using GIS and Remote Sensing. In Handbook of Climate Change Mitigation and Adaptation; Lackner, M., Sajjadi, B., Chen, W.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- GISGeogrpahy. What Is Remote Sensing? The Definitive Guide. Available online: https://gisgeography.com/remote-sensing-earth-observation-guide/ (accessed on 10 July 2022).
- Rice, E. Happy Golden Anniversary, Landsat! 2022. Retrieved from ArcGIS Blog. Available online: https://www.esri.com/arcgis-blog/products/arcgis-pro/imagery/happy-golden-anniversary-landsat/ (accessed on 8 July 2022).
- Waterman, R. Living Atlas. Retrieved from ArcGIS Blog. Available online: https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/imagery/whats-new-in-world-imagery-september-2022/ (accessed on 31 May 2024).
- Zhang, F.; Salazar-Miranda, A.; Duarte, F.; Vale, L.; Hack, G.; Chen, M.; Liu, Y.; Batty, M.; Ratti, C. Urban Visual Intelligence: Studying Cities with Artificial Intelligence and Street-Level Imagery. Ann. Assoc. Am. Geogr. 2024, 114, 876–897. [Google Scholar] [CrossRef]
- The Nature Conservancy. Ecoregional Plans-Conservation Gateway. Available online: https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/edc/reportsdata/terrestrial/ecoregional/Pages/default.aspx#ecoregions (accessed on 29 May 2024).
- Lundy, D. Moments in Memory: How Chattanooga Cleaned Up Its Act after Being Named the Dirtiest City in America. Times Free Press, 3 March 2019. Available online: https://www.timesfreepress.com/news/2019/mar/03/moments-memory-how-chattanoogcleaned-its-act/ (accessed on 8 July 2022).
- Climate Central. States at Risk-Tennessee. Available online: https://www.climatecentral.org (accessed on 29 May 2024).
- Terando, A.J.; Costanza, J.; Belyea, C.; Dunn, R.R.; McKerrow, A.; Collazo, J.A. The Southern Megalopolis: Using the Past to Predict the Future of Urban Sprawl in the Southeast U.S. PLoS ONE 2014, 9, e102261. [Google Scholar] [CrossRef] [PubMed]
- U.S. Census Bureau. Glossary. Available online: https://www.census.gov/programs-surveys/geography/about/glossary.html#par_textimage_4 (accessed on 23 May 2024).
- Stow, D.A.; Weeks, J.R.; Toure, S.; Coulter, L.L.; Lippitt, C.D.; Ashcroft, E. Urban Vegetation Cover and Vegetation Change in Accra, Ghana: Connection to Housing Quality. Prof. Geogr. 2013, 65, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Bal, N.; Moosvi, A.R.; Sarkar, S.; Kujur, A. Evaluating Urban Green and Gray Space Interaction: A Spatiotemporal Land-Use Monitoring and Land Degradation Susceptibility Modeling over Balurghat City, India. Prof. Geogr. 2024, 76, 147–169. [Google Scholar] [CrossRef]
- Harvey, C.; Aultman-Hall, L. Measuring Urban Streetscapes for Livability: A Review of Approaches. Prof. Geogr. 2016, 68, 149–158. [Google Scholar] [CrossRef]
- Riemann, R.; Liknes, G.; O’neil-Dunne, J.; Toney, C.; Lister, T. Comparative assessment of methods for estimating tree canopy cover across a rural-to-urban gradient in the mid-Atlantic region of the USA. Environ. Monit. Assess. 2016, 188, 297. [Google Scholar] [CrossRef] [PubMed]
- Multi-Resolution Land Characteristics Consortium. Tree Canopy. Available online: https://www.mrlc.gov/data?f%5B0%5D=category%3ATree%20Canopy (accessed on 29 May 2024).
- Kontgis, K. Global land use/land cover with Sentinel-2 and deep learning. In Proceedings of the IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Zakhor, J.S. Tree Detection in Urban Regions Using Aerial Lidar and Image Data. IEEE Geosci. Remote Sens. Lett. 2007, 4, 196–200. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Ellisa, E.A. Object-based delineation of urban tree canopy: Assessing change in Oklahoma City, 2006–2013. Comput. Environ. Urban Syst. 2019, 73, 85–94. [Google Scholar] [CrossRef]
- Whiteside, B.G. Comparing object-based and pixel-based classifications for mapping savannas. ITC J. 2011, 13, 884–893. [Google Scholar] [CrossRef]
- Pande-Chhetri, R.; Abd-Elrahman, A.; Liu, T.; Morton, J.; Wilhelm, V.L. Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. Eur. J. Remote Sens. 2017, 50, 564–576. [Google Scholar] [CrossRef]
- Weinstein, M.S. Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks. Remote Sens. 2019, 11, 1309. [Google Scholar] [CrossRef]
- Esri. How OLS Regression Works. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/how-ols-regression-works.htm (accessed on 29 May 2024).
- Stuart, W. Mapping Urban Forest Extent and Modeling Sequestered Carbon Across Chattanooga, Tennessee’s Urban Forest Canopy Using GIS and Remote Sensing Principles. Unpublished Thesis, The University of Tennessee at Chattanooga, Chattanooga, TN, USA, 2023. [Google Scholar]
- Schwarz, K.; Fragkias, M.; Boone, C.G.; Zhou, W.; McHale, M.; Grove, J.M.; O’neil-Dunne, J.; McFadden, J.P.; Buckley, G.L.; Childers, D.; et al. Trees Grow on Money: Urban Tree Canopy Cover and Environmental Justice. PLoS ONE 2015, 10, e0122051. [Google Scholar] [CrossRef] [PubMed]
- Coulston, J.W. Modeling percent tree canopy cover—A pilot study. Photogramm. Eng. Remote Sens. 2012, 78, 715–727. [Google Scholar] [CrossRef]
Class Value | Forest | Non Forest Veg | Impervious | Exposed Soil | Water | Total | User Accuracy | Kappa Coefficient |
---|---|---|---|---|---|---|---|---|
Forest | 232 | 12 | 3 | 0 | 0 | 247 | 0.939271 | 0 |
Non Forest Veg | 8 | 90 | 1 | 2 | 0 | 101 | 0.891089 | 0 |
Impervious | 0 | 3 | 117 | 1 | 0 | 121 | 0.966942 | 0 |
Exposed Soil | 0 | 0 | 2 | 8 | 0 | 10 | 0.8 | 0 |
Water | 1 | 0 | 0 | 0 | 27 | 28 | 0.964286 | 0 |
Total | 241 | 105 | 123 | 11 | 27 | 507 | 0 | 0 |
Produce Accuracy | 0.96266 | 0.857143 | 0.95122 | 0.727273 | 1 | 0 | 0.934911 | 0 |
Kappa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.902254 |
Attribute | Source |
---|---|
Mean Household Income | American Community Survey (2020) |
Population Density | American Community Survey (2020) |
Educational Attainment: Bachelor’s Degree | American Community Survey (2020) |
Race White | American Community Survey (2020) |
Race Black | American Community Survey (2020) |
Race Hispanic | American Community Survey (2020) |
Heat Severity (Heat Islands) | Trust for Public Land (2021) |
Explanatory Variable | Adjusted R2 | p-Value | Correlation |
---|---|---|---|
Urban Heat Islands (2021) | 0.31 | 0.01 | negative |
Population Density (2020) | 0.02 | 0.05 | negative |
Mean Income (2020) | 0 | 0 | positive |
% Bachelor’s Degrees (2020) | 0 | not significant | positive |
Race: % White (2020) | 0.02 | 0.1 | positive |
Race: % Black (2020) | 0.02 | 0.05 | negative |
Race: % Hispanic (2020) | 0.05 | 0.05 | negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mix, C.; Hunt, N.; Stuart, W.; Hossain, A.K.M.A.; Bishop, B.W. A Spatial Analysis of Urban Tree Canopy Using High-Resolution Land Cover Data for Chattanooga, Tennessee. Appl. Sci. 2024, 14, 4861. https://doi.org/10.3390/app14114861
Mix C, Hunt N, Stuart W, Hossain AKMA, Bishop BW. A Spatial Analysis of Urban Tree Canopy Using High-Resolution Land Cover Data for Chattanooga, Tennessee. Applied Sciences. 2024; 14(11):4861. https://doi.org/10.3390/app14114861
Chicago/Turabian StyleMix, Charles, Nyssa Hunt, William Stuart, A.K.M. Azad Hossain, and Bradley Wade Bishop. 2024. "A Spatial Analysis of Urban Tree Canopy Using High-Resolution Land Cover Data for Chattanooga, Tennessee" Applied Sciences 14, no. 11: 4861. https://doi.org/10.3390/app14114861
APA StyleMix, C., Hunt, N., Stuart, W., Hossain, A. K. M. A., & Bishop, B. W. (2024). A Spatial Analysis of Urban Tree Canopy Using High-Resolution Land Cover Data for Chattanooga, Tennessee. Applied Sciences, 14(11), 4861. https://doi.org/10.3390/app14114861