
Citation: Nascimento, A.M.;

Shimanuki, G.K.G.; Dias, L.A.V.

Making More with Less: Improving

Software Testing Outcomes Using a

Cross-Project and Cross-Language ML

Classifier Based on Cost-Sensitive

Training. Appl. Sci. 2024, 14, 4880.

https://doi.org/10.3390/app14114880

Academic Editor: Andrea Prati

Received: 14 April 2024

Revised: 21 May 2024

Accepted: 30 May 2024

Published: 4 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Making More with Less: Improving Software Testing Outcomes
Using a Cross-Project and Cross-Language ML Classifier Based
on Cost-Sensitive Training
Alexandre M. Nascimento 1,2,*, Gabriel Kenji G. Shimanuki 3 and Luiz Alberto V. Dias 2

1 Mechanical Engineering Department, Stanford University, Stanford, CA 94305, USA
2 Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos 12228-900, Brazil; vdias@ita.br
3 Department of Computer Engineering and Digital Systems, Escola Politécnica, Universidade de São

Paulo (USP), São Paulo 05508-220, Brazil; gabrielshimanuki@usp.br
* Correspondence: alexandremoreiranascimento@alum.mit.edu

Featured Application: The technique uses Machine Learning (ML) models to support decision-
making on software testing scope and resource allocation to augment the outcomes with the
available resources.

Abstract: As digitalization expands across all sectors, the economic toll of software defects on the
U.S. economy reaches up to $2.41 trillion annually. High-profile incidents like the Boeing 787-Max 8
crash have shown the devastating potential of these defects, highlighting the critical importance of
software testing within quality assurance frameworks. However, due to its complexity and resource
intensity, the exhaustive nature of comprehensive testing often surpasses budget constraints. This
research utilizes a machine learning (ML) model to enhance software testing decisions by pinpointing
areas most susceptible to defects and optimizing scarce resource allocation. Previous studies have
shown promising results using cost-sensitive training to refine ML models, improving predictive
accuracy by reducing false negatives through addressing class imbalances in defect prediction datasets.
This approach facilitates more targeted and effective testing efforts. Nevertheless, these models’
in-company generalizability across different projects (cross-project) and programming languages
(cross-language) remained untested. This study validates the approach’s applicability across diverse
development environments by integrating various datasets from distinct projects into a unified
dataset, using a more interpretable ML technique. The results demonstrate that ML can support
software testing decisions, enabling teams to identify up to 7× more defective modules compared to
benchmark with the same testing effort.

Keywords: machine learning; imbalance; software defect prediction; NASA MDP; random forest;
software quality; generalization; cost-sensitive; cross-language; cross-project

1. Introduction

Over the last decades, society has been experiencing growth in digitalization in practi-
cally all professional activities. As economic activities become more dependent on software,
the impact of software quality issues increases. Studies have estimated the annual cost of
software bugs to the US economy from $59.5 billion to $2.41 trillion [1,2], which means the
per capita yearly cost of software issues is $7230.9. In fact, software malfunctions have been
playing an essential role in accidents damaging the reputation and market value of tradi-
tional companies, such as the example of the Maneuvering Characteristics Augmentation
System (MCAS) in the Boeing 787-Max 8 case [3], resulting in a $29Bi market value loss in a
few days [4] and taking over 350 human lives [5]. Thus, it is possible to say that software
quality assurance plays a pivotal role in the US economy. Since software testing is one of

Appl. Sci. 2024, 14, 4880. https://doi.org/10.3390/app14114880 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14114880
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14114880
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14114880?type=check_update&version=2

Appl. Sci. 2024, 14, 4880 2 of 26

the core activities in software quality assurance [6], ultimately, it plays a crucial role in the
US economy.

However, testing every potential software condition is an unattainable task [7–9].
Despite the resources available to be invested in, it is impossible to test all possible software
conditions [10,11] since it could take millions of years [12], making the activity useless. On
the one hand, because of its complexity, software testing consumes a considerable fraction
of software development projects. In fact, it is estimated that up to 50% of the total budget
is consumed by the testing activity [13]. On the other hand, the resources available for
software testing are usually very scarce [14–17].

As a result, software testing planning requires challenging decision-making to balance
conflicting variables (scope size, test coverage, and resource allocation) to obtain most
of the effort. Managers must be able to plan the activity to cover the software as much
as possible [13]. At the same time, they must be able to reduce the test scope safely [18].
Finally, they need to have the capability to allocate the available resources wisely (testers,
tools, and time) [19] to test the software.

Machine learning (ML) models can help managers make better-informed decisions
about optimizing the outcomes of a software testing effort, given the availability of re-
sources. A commonly utilized protocol in software defect prediction research is illustrated
in Figure 1. ML classifier models are trained to highlight the system modules most prone
to defects [20–22], using a historical dataset containing each module’s static source-code
metrics and an indication of whether it was defective or not [23–27]. By knowing which
software modules have higher defect risks, managers can reduce the software testing scope
around them and assign the available resources to concentrate their efforts on a more
focused approach.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 28 of 28

79. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the IJCAI
International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; Volume 2.

80. Menzies, T.; Di Stefano, J.S. How Good Is Your Blind Spot Sampling Policy. In Proceedings of the Eighth IEEE International
Symposium on High Assurance Systems Engineering, Tampa, FL, USA, 25–26 March 2004; pp. 129–138.

81. Seliya, N.; Khoshgoftaar, T.M.; Van Hulse, J. A Study on the Relationships of Classifier Performance Metrics. In Proceedings of
the International Conference on Tools with Artificial Intelligence (ICTAI), Newark, NJ, USA, 2–4 November 2009.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

Figure 1. Typical ML training process to create a model to predict defective software modules.

An extensive body of research on software defect prediction based on ML models
exists. The literature approaches explore defective prediction models from many per-
spectives [28–37]. One of the most well-known datasets used in many of those studies is
the NASA MDP open datasets [38,39]. Because of their popularity and frequency, they
have been used as a common ground to establish a benchmark to support performance
comparison among distinct studies. Many studies compare the performance of distinct ML
algorithms. Ref. [29] concluded that the utilization of dagging-based classifiers enhanced
software defect prediction models relative to baseline classifiers like Naïve Bayes (NB),
Decision Tree (DT), and k-nearest neighbor (kNN). Ref. [35] conducted a study comparing
Extreme Learning Machine (ELM) and Support Vector Machine (SVM), finding that ELM
exhibited superior performance, boosting accuracy from 78.68% to 84.61%. ELMs can be
understood as a fast supervised learning algorithm for ANNs, in which input weights
are randomly assigned, and output weights are analytically calculated. Finally, the au-
thors suggest a future research direction involving the application of unsupervised and
semi-supervised learning algorithms, considering that most investigations have focused
on supervised learning. Ref. [34] proposes a new method based on Convolutional Neural
Networks (CNNs) to identify patterns associated with software defects. Despite the good
results presented, it is shown that they are too sensitive to hyperparameters and scope
boundaries (focused on an individual version or project) [34]. Therefore, ML techniques

Appl. Sci. 2024, 14, 4880 3 of 26

with prediction performances that are less dependent on hyperparameter optimization are
valuable in this domain because they empower software testers to become less dependent
on ML specialists. Finally, an important aspect related to those studies was pointed out
by [29]. According to [29], the perceived efficacy of ML algorithms can vary depending on
the performance metrics employed and the specific conditions of the experiment. That issue
seems to be related to the use of generic data science metrics for performance evaluation
rather than ones more specific to the context of the field domain.

Another way to approach the problem is to consider it from the perspective of feature
selection (FS). In [33], an FS approach is presented, utilizing the island binary moth flame
combined with SVM, NB, and kNN. Ref. [31] proposed a rank aggregation-based Multi-
Filter Selection Method, outperforming traditional methods by increasing their prediction
accuracies. For example, it increased NBs’ accuracy from 76.33% to 81–82% and DTs’ from
83.01% to almost 85%. Furthermore, the study suggests that future research should broaden
the study’s scope to encompass a wider range of prediction models. In [30,32], both studies
demonstrate that the effectiveness of FS methods is influenced by factors such as choice
of classifiers, evaluation metrics, and dataset. While FS enhances predictive performance,
its efficacy varies across datasets and models, possibly due to class imbalance. While [30]
employs only NB and DT, ref. [32] also utilizes kNN and Kernel Logistic Regression (KLR).

Attempting to address the issue from another perspective, some studies focus on the
quality of the data that the models utilize. [37] proposes a resampling method utilizing
NB, but it fails to outperform benchmarks across all datasets, highlighting that there are no
universally effective imbalance learning methods; thus, selecting appropriate methods is
crucial. Ref. [36] proposes a method and compares it with existing ones, addressing issues
with imbalanced learning, such as interference with real data caused by using SMOTE,
emphasizing the importance of focusing on the data quality of synthetic data. Lastly, in ad-
dressing the imbalance problem, ref. [28] explores the utilization of Generative Adversarial
Networks (GANs) for balancing datasets through synthetic sampling of the minority class.
Empirical evidence suggests that GANs demonstrate superior performance compared to
traditional methods such as SMOTE. However, it is important to note that undersampling
techniques with GANs may result in a degradation in prediction performance due to elimi-
nating crucial samples. Moreover, the authors highlight the potential challenges associated
with hyperparameter optimization in GAN-based methods and its impact on the final
predictive performance of models.

Indeed, a critical aspect of those datasets used for training ML model to predict
defective modules, including NASA’s, is their imbalance. That is because defective modules
are expected to be a small ratio of the system. Thus, since the ratio of dataset instances with
defective modules is usually much smaller than the non-defective ones, the class imbalance
becomes a natural characteristic of those datasets. Proper ML model training compensating
for the imbalance with one of the existing techniques must be used. However, among the
many limitations already pointed out by the literature [39] many studies did not account
for the imbalance of the dataset used to induce the ML models [40]. Consequently, reported
results are biased towards the majority class (non-defective), resulting in high accuracy
levels that hide the ML classifier’s actual performance. That unreal information supports
poor decision-making for software testing because they usually classify many defective
modules as non-defective. Those false negatives (FN) create wrong expectations and
optimism about an unreal software high-quality level, misleading managers to lower the
software testing efforts and deflecting the efforts from those many misclassified defective
modules. Consequently, those issues remain in the software, resulting in future operational
failures that could lead to severe consequences.

Studies proposed novel techniques to enhance the learning of the ML model. For
example, research [22] demonstrated better ML classifiers for predicting defective software
modules using a novel automatic feature engineering approach to create new features that
enabled superior information gain in the ML learning process. However, studies relying on
that strategy tackled only one aspect of the existing issues. Their ML models were superior

Appl. Sci. 2024, 14, 4880 4 of 26

at indicating defective software modules. Nevertheless, that optimization ignored vital
decision-making information: available resources. Ignoring it reduces their practical utility
in actual software testing decision-making since they may suggest a scope that can either
not be afforded by or underuse the available resources.

Previous research proposed and evaluated a novel method to support managers in
making better decisions to optimize the outcomes of a software testing effort. The method
leveraged the dataset imbalance and cost-sensitive ML training to improve the ML model
results, considering resource availability and smoothing unwanted FN effects [40]. Ref. [40]
demonstrated that the method could improve the prediction of defective software modules
in imbalanced datasets. By adjusting the costs (penalty) imposed on FN, the technique
has been shown to support decision-making on software testing scope while considering
resource availability. Nonetheless, the ML model was tested with unseen data derived from
the same single project dataset it used for learning. Although a cross-validation strategy
was used, the study did not investigate the technique’s generalizability in cross-project and
cross-language scenarios inside the same organization (in-organization).

ML generalizability refers to a model’s ability to effectively apply what it has learned
from the training data to a new context. Developing models that can generalize is a
core goal in ML because it directly impacts a model’s practical usefulness. A model that
generalizes well can accurately interpret and predict outcomes in real-world new situations,
highlighting its adaptability and robustness. This is particularly significant in fields like
the one studied here, where ML models must adapt to diverse software projects, teams,
architectures, and programming languages to be useful. Models with low generalizability
perform well on training data but poorly on real-world data, resulting in potentially severe
implications in safety-critical applications [41–43].

In the present domain, in-organization generalizability plays an important role when
a new software system development project begins without a considerable system defect
track record. The lack of a considerable dataset makes it hard for managers to use ML
models to get insights about the software testing scope on which their resources should be
focused. If no data is available, there is not much workaround. Therefore, a cross-project
and cross-language generalizable ML model within the same organization could be a game
changer. That ML model, trained with data from other systems (previously developed or
under simultaneous development) based on other programming languages, would support
managers in making decisions on software testing scope and resource allocation from the
initial software development iterations. That would enhance the practical usefulness of
those ML model-based techniques.

Notably, synthetic data can be used if little data is available, as in [44]. However,
synthetic data has several disadvantages in this domain. First, synthetic data might not
accurately reflect the complexities and nuances of real-world software development projects
in the organization, especially if little and no broader representative data is available to seed
synthetic data generation [45]. This lack of realism can lead to an ML classifier that performs
well on synthetic data but poorly on actual project data. Second, since synthetic data is
artificially created, there might be skepticism about its validity and reliability, impacting
the trust in the predictions made by the ML classifier trained on such data, especially when
they challenge the software testing team members’ expectations or guesses [46]. Third,
creating high-quality synthetic data that accurately mimic real-world scenarios can be
challenging and requires expertise in topics rarely present in software testing teams, which
can raise the ML-based approach adoption barriers [47]. Finally, poorly generated synthetic
data can lead to inaccurate predictions and poor model performance [48], which can result
in disastrous consequences in safety-critical software applications.

Therefore, an ML model trained with data from previous or simultaneously under-
development projects within the same organization would be more beneficial if
in-organization generalizability is demonstrated. This approach leverages real histori-
cal data’s realism and relevance, ensuring the model is influenced by source-code metrics
resulting from the specific processes, team members, tools, and environments used within

Appl. Sci. 2024, 14, 4880 5 of 26

the organization. It also allows for a broader leveraging of proven patterns and trends ob-
served in past projects, potentially leading to more accurate and reliable predictions. While
synthetic data can be a valuable supplement when little data is available, real historical data
from the same organization could potentially provide a more robust foundation for training
ML classifiers in the present domain if in-organization generalizability is demonstrated.

Another limitation of the original study [40] is that it was validated only with a single
ML technique, the artificial neural network (ANN), which has several disadvantages in this
problem domain. ANNs require large amounts of data, considerable training times, and
suitable hardware due to their high computational cost, which may not be available [49–51].
They also require more challenging data preprocessing, feature engineering, and hyper-
parameter tuning, which may require a specialization beyond what can be expected from
the conventional software testing staff [52,53]. Furthermore, they tend to overfit, especially
when the model is too complex relative to the amount and diversity of the training data,
leading to poor generalization in new contexts, which is highly undesired in the domain
investigated [54,55]. Finally, its black-box nature results in poor explainability and inter-
pretability [56,57]. The lack of explainability and interpretability prevents managers from
getting additional information about root causes linked to classifying a module as defective,
which could support proactive actions to improve the development teams continuously.
Thus, a gap exists in evaluating the cost-sensitive approach using lighter, easier-to-use, and
more explainable and interpretable ML techniques.

In this context, the present study aims to tackle those limitations to validate the poten-
tial of the cost-sensitive approach to identify the software testing scope while accounting for
resource availability. A distinct, computationally lighter, and easier-to-use ML technique
with better explainability and interpretability was used on an assembled dataset combining
distinct software development projects within the same organization based on different
programming languages. Furthermore, the present work expanded the investigation, using
a dataset almost 4.5 times larger than that of the baseline study [40]. To our knowledge, no
other study has used the proposed approach in the defect prediction domain and validated
its potential in-organization generalizability in the way executed here. Finally, perfor-
mance evaluation metrics that are more appropriate to the research domain proposed in
the previous study are refined, and new ones are proposed.

This study is organized into five sections. Section 2 presents the methodology used to
support the study’s goal. Section 3 presents the experimental results. Section 4 presents the
discussion. Finally, Section 5 presents the final remarks and conclusions of the present study.

2. Materials and Methods

This section contains the experimental protocol and materials used to support the
research. First, the dataset used for training and evaluating the ML model is described.
Then, a brief overview of the ML technique used to induce the ML model is presented.
Right after, the experimental protocol used to evaluate the experiment is explained. Then,
after the metrics used to evaluate the performance are detailed, a brief description of the
statistical tests performed is presented.

2.1. Dataset

Some requirements were considered in the dataset selection for this study. A dataset
containing information about the defect incidence in software modules from multiple
projects based on distinct programming languages in the same organization was required
to support the achievement of the paper’s goals. Moreover, a well-known and widely
used dataset in the literature of the present research domain was necessary because of the
established references and benchmarks to support future comparisons. Finally, since the
present study’s results are compared to the previous one, using datasets from the same
organization was highly desired.

NASA opened 14 datasets regarding distinct software development projects to support
research on software module defect prediction [58]. The datasets cover 14 distinct software

Appl. Sci. 2024, 14, 4880 6 of 26

development projects based mainly on three programming languages: C, C++, and Java.
The nature of those software systems from the same organization was also different, proba-
bly with distinct architectures and design patterns, since some were related to, for example,
spacecraft instruments (CM1), a storage management system for receiving and processing
ground data (KC1, KC2, and KC3), a combustion experiment of a space shuttle (MC1), a
video guidance system (MC2), a zero-gravity experiment related to combustion (MW1),
flight software from an earth-orbiting satellite (PC1, PC2, and PC4), s dynamic simulator
for attitude control systems (PC2), and a cockpit security increase system (PC5) [59,60].
Finally, the original study used a dataset from a single NASA project, which the present
one seeks to extend. Therefore, the NASA MDP datasets were a natural choice since they
meet all the study’s requirements.

Each instance of NASA MDP datasets corresponds to a software module’s diverse
static source-code metrics (features) and a class indicating whether the module was found
to be defective or not. Those source-code metrics characterize code features associated with
software quality: distinct lines of code measures, McCabe metrics, Halstead’s base, derived
measures, and branch count metrics [61–64]. The number of features in each dataset varies
slightly, with some having additional source-code metrics compared to others. Moreover,
each dataset’s number of instances is distinct because of each project’s different number
of modules. Since NASA MDP datasets became popular, slightly different versions have
been available in distinct repositories. The pre-cleaned version [39] was used in the present
study. Table 1 shows each NASA dataset’s characteristics.

Table 1. A map of dataset characteristics and their features source-code static metrics for supporting
cross–language and cross–project merging. A bold X with a dark gray background indicates the
feature is present in all the datasets.

Merged Datasets (NASA Project Name)

Dataset Characteristics CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Number of Instances (Modules) 344 9591 2095 200 8737 125 263 735 1493 1099 1379 16962
Number of Features 37 21 21 39 38 39 37 37 36 37 37 38
Programming Language C C C++ Java C/C++ C C C C C C C

Feature Name Common features
LOC_BLANK x x x x x x x x x x x
BRANCH_COUNT X X X X X X X X X X X X
CALL_PAIRS x x x x x x x x x x
LOC_CODE_AND_COMMENT X X X X X X X X X X X X
LOC_COMMENTS X X X X X X X X X X X X
CONDITION_COUNT x x x x x x x x x x
CYCLOMATIC_COMPLEXITY X X X X X X X X X X X X
CYCLOMATIC_DENSITY x x x x x x x x x x
DECISION_COUNT x x x x x x x x x x
DECISION_DENSITY x x x x x x x x
DESIGN_COMPLEXITY X X X X X X X X X X X X
DESIGN_DENSITY x x x x x x x x x x
EDGE_COUNT x x x x x x x x x x
ESSENTIAL_COMPLEXITY X X X X X X X X X X X X
ESSENTIAL_DENSITY x x x x x x x x x x
LOC_EXECUTABLE X X X X X X X X X X X X
PARAMETER_COUNT x x x x x x x x x x
HALSTEAD_CONTENT X X X X X X X X X X X X
HALSTEAD_DIFFICULTY X X X X X X X X X X X X
HALSTEAD_EFFORT X X X X X X X X X X X X
HALSTEAD_ERROR_EST X X X X X X X X X X X X
HALSTEAD_LENGTH X X X X X X X X X X X X
HALSTEAD_LEVEL X X X X X X X X X X X X
HALSTEAD_PROG_TIME X X X X X X X X X X X X
HALSTEAD_VOLUME X X X X X X X X X X X X
MAINTENANCE_SEVERITY x x x x x x x x x x

Appl. Sci. 2024, 14, 4880 7 of 26

Table 1. Cont.

Merged Datasets (NASA Project Name)

Dataset Characteristics CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5
MODIFIED_CONDITION_COUNT x x x x x x x x x x
MULTIPLE_CONDITION_COUNT x x x x x x x x x x
NODE_COUNT x x x x x x x x x x
NORMALIZED_CYLOMATIC_
COMPLEXITY x x x x x x x x x x

NUM_OPERANDS X X X X X X X X X X X X
NUM_OPERATORS X X X X X X X X X X X X
NUM_UNIQUE_OPERANDS X X X X X X X X X X X X
NUM_UNIQUE_OPERATORS X X X X X X X X X X X X
NUMBER_OF_LINES x x x x x x x x x x
PERCENT_COMMENTS x x x x x x x x x x
LOC_TOTAL X X X X X X X X X X X X
GLOBAL_DATA_COMPLEXITY x x x x
GLOBAL_DATA_DENSITY x x x x

Based on them, an assembled dataset was used to support the investigation of the
cost-sensitive approach [40] regarding cross-project and cross-language in-organization
generalizability. Its assembly was done by carefully merging the NASA MDP datasets.
From the original NASA database, KC2 and KC4 were excluded due to significant feature
discrepancies that could jeopardize the experiments. Thus, 12 NASA MDP datasets re-
mained to be merged. However, the slight difference in each dataset’s number and type
of features imposes some challenges in this merging process, since it cannot be done by
simply concatenating all the files into a single one. That could be one of the reasons for the
existing literature gap, since it may have prevented the exploration of this repository’s full
potential to investigate in-company cross-project and cross-language generalizability.

When multiple datasets have some features in common and others distinct, such as
NASA MDP datasets, a proper dataset merging strategy must first identify all the features
present in all the datasets (features in common). Then, all the other features that are not
contained in at least one dataset must be removed from all the datasets they are contained
in. Finally, with all the datasets containing the same number and type of features, all
their contents can be copied into a single new file. That process makes all the datasets
compatible by ensuring they contain only features in common among all of them before
they are merged.

Therefore, first, all the distinct features from all the 12 NASA MDP datasets were
identified, as shown in Table 1. Then, each dataset containing each one of those 39 distinct
features was identified (marked with “x” in a light gray background cell in Table 1). Right
after, all the features contained in the 12 NASA MDP datasets were identified (i.e., with
all the corresponding cells marked with “x” in a light gray background cell in Table 1). As
a result, a total of 20 features were identified as present in all datasets (marked with “X”
in a darker gray background in Table 1). All the other 19 features were removed from the
datasets containing them. Finally, all the now compatible 12 NASA MDP datasets were
merged into a new single file. The “NASA MDP CROSS-PROJECTS DATASET” was the
resulting single cross-project and cross-language dataset, which was used to support the
present study and will be opened to the research community for future investigations.

While the dataset used in the original study had 9593 instances with 21 features of a
single project’s software modules in C language, the assembled dataset contains 43,023 in-
stances and 20 features based on source-code static metrics corresponding to software
modules in C, C++, and Java, with no missing values. As expected, the assembled dataset is
imbalanced because only 7.4% of modules were defective. Although that imbalance is more
aggressive than the original study’s (18.33% of the classes defective), no technique, such
as oversampling [65], under-sampling [66,67], case weighting [68], or synthetic minority
oversampling technique (SMOTE) [69], was used to balance the dataset classes to follow
the same protocol used by the original research.

Appl. Sci. 2024, 14, 4880 8 of 26

2.2. Machine Learning Framework and Technique

Although advanced cutting-edge ML techniques with excellent hyperparameter opti-
mization running on sophisticated ML frameworks requiring coding skills could potentially
achieve superior performance, they reduce the intention of software testing professionals
to adopt AI-based solutions by negatively impacting some of the factors influencing their
intention to do so: facilitating conditions, expected effort, and self-efficacy [70]. Since
software testers and their managers are not likely to be experts in ML, using a codeless ML
framework and a more straightforward ML technique that could achieve good performance
even without hyperparameter optimization (i.e., using default settings) were requirements.

Therefore, the ML framework used was WEKA (Waikato Environment for Knowledge
Analysis) version 3.8.6 [71]. WEKA is a popular, versatile, and accessible open-source ML
and data-mining framework developed at the University of Waikato in New Zealand. It
provides a Graphical User Interface for a codeless environment encompassing a collection
of visualization tools and algorithms for data analysis and predictive modeling for anyone
interested in data mining and machine learning, from beginners to advanced practitioners.

Regarding the ML technique, although ANNs are very popular, diverse, and powerful,
they have essential disadvantages in applications related to the current study’s domain, as
previously mentioned. Thus, unlike the ANN approach used in the original study [40] to
avoid the weaknesses of ANNs, the present research used Random Forest (RF) as the ML
technique to induce the ML models.

RF is a decision tree-based ML technique using the ensemble method principle by
averaging multiple DTs to improve predictive accuracy and control overfitting. This
approach leverages the strengths of multiple DTs, each trained on random subsets of the
data and features, to produce a more robust model than any single tree could offer. RF
significantly reduces the variance without substantially increasing bias by aggregating the
predictions from many trees through majority voting for classification tasks or averaging
for regression tasks [72].

RFs have many advantages over ANNs. RF requires smaller datasets than ANNs to
perform similarly, making the ML approach more suitable for situations with limited data
availability [73]. It also requires shorter training times and less advanced hardware for
training [74]. Unlike ANNs, RFs can handle categorical and numerical data without exten-
sive preprocessing or feature scaling and require much simpler hyperparameter tuning, not
requiring highly specialized staff to use them [73]. Although hyperparameter optimization
has important implications for the performance of the ML model, since RF is less dependent
on it and ML technique simplicity was a study requirement, the RF classifier default settings
in the WEKA framework were used in all experiments in the present study. The underlying
idea was that if the cost-sensitive approach using RF with default hyperparameter values
could reach good results using data from multiple in-company projects with some distinct
programming languages, that would be compelling enough since it could indicate that
even superior results could be achieved with proper hyperparameter tuning. Additionally,
that would demonstrate software testing professionals without much experience in ML
would be able to use it in practical applications.

Moreover, RF is less prone to overfitting than ANNs because of the ensemble method
of averaging multiple DTs, which leads to better generalization by reducing variance, which
is essential in the investigated domain [72]. Finally, although RFs are not entirely white-box,
they have higher explainability and interpretability than ANNs since their induced decision
paths through the trees can be examined [75]. Feature importance scores can be generated,
offering insights into model decisions, and supporting managers’ decision-making on
policies and actions to improve software quality in future development iterations. Thus,
higher explainability and interpretability could augment the utility of the research domain
in using ML to identify defective modules.

Appl. Sci. 2024, 14, 4880 9 of 26

2.3. Experimental Protocol

The same protocol used in the original study [40] protocol was replicated here. How-
ever, a distinct ML classifier type was used in the present study to support its goals. Like
in [40], a cost-sensitive approach was used in training to compensate for the harmful effect
of the unbalanced dataset in generating the high FN ratios. Therefore, distinct cost values
were assigned as a penalty to the FNs to reduce the ML model bias towards the most
represented class (non-defective) without changing the cost of false positives (FP), which
creates relative costs (RC) effect between the FN and FP penalty values. That aims to
understand the effect of assigning different cost values to the quality of the final model
predictions and lower the FN rate. However, a larger range of RC values assigned to FN
({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 100}) was experimented to broaden
the investigation of the effects of the cost-sensitive training in the present domain. Since, as
in [76,77], distinct, and a larger number of ML classifiers (RF) models were induced when
compared to [40]. The dataset composition and research protocol are depicted in Figure 2.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 28

classifier default settings in the WEKA framework were used in all experiments in the

present study. The underlying idea was that if the cost-sensitive approach using RF with

default hyperparameter values could reach good results using data from multiple in-

company projects with some distinct programming languages, that would be compelling

enough since it could indicate that even superior results could be achieved with proper

hyperparameter tuning. Additionally, that would demonstrate software testing

professionals without much experience in ML would be able to use it in practical

applications.

Moreover, RF is less prone to overfitting than ANNs because of the ensemble method

of averaging multiple DTs, which leads to better generalization by reducing variance,

which is essential in the investigated domain [72]. Finally, although RFs are not entirely

white-box, they have higher explainability and interpretability than ANNs since their

induced decision paths through the trees can be examined [75]. Feature importance scores

can be generated, offering insights into model decisions, and supporting managers’

decision-making on policies and actions to improve software quality in future

development iterations. Thus, higher explainability and interpretability could augment

the utility of the research domain in using ML to identify defective modules.

2.3. Experimental Protocol

The same protocol used in the original study [40] protocol was replicated here.

However, a distinct ML classifier type was used in the present study to support its goals.

Like in [40], a cost-sensitive approach was used in training to compensate for the harmful

effect of the unbalanced dataset in generating the high FN ratios. Therefore, distinct cost

values were assigned as a penalty to the FNs to reduce the ML model bias towards the

most represented class (non-defective) without changing the cost of false positives (FP),

which creates relative costs (RC) effect between the FN and FP penalty values. That aims

to understand the effect of assigning different cost values to the quality of the final model

predictions and lower the FN rate. However, a larger range of RC values assigned to FN

({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 100}) was experimented to broaden

the investigation of the effects of the cost-sensitive training in the present domain. Since,

as in [76,77], distinct, and a larger number of ML classifiers (RF) models were induced

when compared to [40]. The dataset composition and research protocol are depicted in

Figure 2.

Figure 2. Protocol used to create distinct models to predict defective software modules using

different RC values to support decision-making.
Figure 2. Protocol used to create distinct models to predict defective software modules using different
RC values to support decision-making.

As in the benchmark study [40], for each distinct cost value assigned for the FN,
distinct ML classifiers (RF) were induced using a 10 × 10-fold cross-validation strategy [78].
The 10 × 10-fold cross-validation supports a more reliable validation of the proposed
technique. Among the arguments by [79], the 10-fold was used rather than the leave-one-
out cross-validation because it yields better results for the size of the dataset and results in
less variance, which helps to compare the performance of distinct ML models induced as
the FN assigned cost is increased. It smooths out the extreme effects of the luckiest and
unluckiest data selection for training and testing, which leads to more realistic conclusions.
Moreover, compared to vanilla train/test dataset split strategies, it reduces problems like
underfitting and overfitting and helps to estimate better how accurately the model will
perform in practice.

For all the executions, a unitary cost (1) was assigned to true positive (TP), true
negative (TN), and FP. That is, the default penalty value (=1) was kept for TP, TN, and FP
to train all the ML models in this study. Moreover, the default FN penalty value (=1) was
also maintained for the experiments investigating RC = 1 (baseline). However, for all other
RC values, the FN cost (penalty value) was set equal to the corresponding investigated RC
value. Thus, in the setup for the experiment to investigate RC = 2, FN cost was set to 2. In
the setup for the experiment to investigate RC = 3, FN cost was set to 3, and so on, until
FN was set to 100 for RC = 100. Since 20 values of RC were investigated, 20 executions of
10 × 10-fold cross-validation were executed in total, as illustrated in Figure 2. Therefore,
for each value of RC explored, 10 repetitions of 10-fold cross-validation were performed,

Appl. Sci. 2024, 14, 4880 10 of 26

resulting in 100 ML models trained and validated for each distinct cost assigned to FN.
Finally, for each one of the 20 executions, the average value of the evaluation metrics
(detailed in the next subsection) from the 100 RF was computed and further analyzed (as
presented in Section 3). Since 20 distinct FN cost values were used, a total of 2000 RFs were
generated considering all the executions.

Following the 10-fold cross-validation protocol, for each execution, the NASA MDP
CROSS-PROJECTS DATASET was split into 10 equal-size subsets. Then, all 10 possible
combinations of 9 subsets were used to train the RF, and each subset left aside per com-
bination was used to evaluate the performance of the ML model. Since a 10 × 10-fold
cross-validation was used, that process was repeated 10 times per value of RC evaluated.
It is noteworthy that for each repetition, a random split of the dataset into 10 equal-size
subsets was performed. Therefore, using this protocol, 100 random combinations of data
seen (for ML training) and unseen (for ML performance evaluation) among the multiple
projects inside an organization were obtained.

2.4. Evaluation Metrics

Various metrics were collected or computed to evaluate the ML model’s performance.
They were all average values computed from the 100 samples measured from the RFs
induced for each cost value assigned. The fundamental metrics collected were those from
the confusion matrix. The true positive (TP) is the number of defective software modules
correctly classified as defective by the ML model. Thus, they correctly inform the software
testing team about the modules that must be considered in the software testing scope
because they are defective, using the available resources appropriately. The true negative
(TN) is the number of non-defective software modules correctly classified as non-defective
by the ML model. Thus, they correctly inform the software testing team about the modules
that could be left outside the software testing scope since they are not defective, saving the
available resources appropriately. The false positive (FP) is the number of non-defective
software modules incorrectly classified as defective by the ML model. Thus, they wrongly
induce the software testing team to consider them inside the testing scope, although they
are not defective, wasting resources, which reduces their efficiency. The false negative (FN)
is the number of defective software modules incorrectly classified as non-defective by the
ML model. Thus, they wrongly induce the software testing team to leave those defective
modules outside the testing scope, reducing their efficacy. Therefore, FNs are dangerous
and must be avoided since those defective modules can cause severe consequences when
the software operates in production.

When managers design the software testing scope informed by the ML classifier, they
include all the modules classified as defective (TP + FP). Thus, the metric number of
modules tested (MT) is defined by Equation (1) [40],

MT = TP + FP. (1)

Therefore, using a decision-making process informed by the ML classifier, managers
will exclude from the software testing scope the modules indicated as non-defective
(TN + FN). Thus, Equation (2) defines the metric number of modules not tested (MNT),

MNT = TN + FN. (2)

When the ML model supports decision-making, the result is a reduction in software
testing scope, according to [40]. Equation (3) defines the metric scope reduction (SR) [40],

SR =
MNT

MT + MNT
(3)

On the other hand, the fraction of the total number of modules suggested by the ML
classifier as the proper software testing scope is the relative test scope (RTS) [40], defined
in Equation (4),

Appl. Sci. 2024, 14, 4880 11 of 26

RTS = 1 − SR. (4)

Cost-sensitive training is influenced by the relationship between the costs assigned to
FN (CFN) and FP (CFP). Therefore, the approach core strategy is increasing the relative cost
(RC) [40], defined by Equation (5), between the cost assigned to FN and FP and evaluating
the average performance of the ML models.

RC =
CFN
CFP

, (5)

where, in the present research, CFP = 1, thus,

RC = CFN . (6)

Since CFN ⊂ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 100}, RC ⊂ {1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30, 40, 50, 100}.

As defined by [40], Precision (P) [80], in this research domain, translates the efficiency
(Eff) of the test effort, because it represents the total number of defective modules detected
from the total number of modules tested. Ideally, software testing effort should be spent
only on defective modules indicated by a 100% efficient ML model. Equation (7) indicates
the expression used to compute the Model’s Eff [40],

E f f = P =
TP

(TP + FP)
. (7)

Analogously, according to [40], Recall (R) [80] can be referred to as efficacy (Ef), since
it indicates how effective the test effort can be following, considering exactly the software
testing scope suggested by the ML model. Since the software testing goal is to discover
100% of the defective modules in the system, R measures the fraction of the goal achieved
by the test effort informed by the ML model. A software testing scope delineated by a 100%
effective ML model would discover all the defective modules. Equation (8) indicates the
expression used to compute the Model’s Ef [40].

E f = R =
TP

(TP + FN)
. (8)

Furthermore, the ML model Accuracy (Acc) [80,81] indicates the ratio of software mod-
ules correctly classified (TP + TN) from the total number of modules (TP + TN + FP + FN).
A 100% accurate ML model would result in no misclassification, that is, nor FP or FN.
Although that seems highly desirable, paradoxically, an ML model with 100% accuracy
usually has an overfit, indicating compromised generalizability. That is highly undesirable
since it reduces its practical application. Equation (9) indicates the expression used to
compute the Model’s Acc [80,81].

ACCRC =
(TPRC + TNRC)

(TPRC + TNRC + FPRC + FNRC)
. (9)

As used by [40], a benchmark based on the unitary cost ML Model was used to
evaluate how software testing efforts using the scope suggested by the induced ML models
with higher RC values performed (Eff and Ef) compared to those with RC = 1. Thus,
the relative efficiency to the unitary cost ML model (REffU) and the relative efficacy
to the unitary cost ML model (REfU) were computed for each RC > 1 to support those
comparisons using Equations (10) and (11), respectively.

RE f f URC =
E f f RC

E f f RC=1
, (10)

Appl. Sci. 2024, 14, 4880 12 of 26

RE f URC =
E f RC

E f RC=1
. (11)

As suggested by [40], another benchmark was used to evaluate how software testing
efforts using the scope suggested by the induced ML models performed (Eff and Ef)
compared to similar software testing efforts with identical scope sizes but based on the
random selection of modules, representing a decision-making not informed by the ML
models. The efficiency of the random selection (EffR) was computed using Equation (12),
which pTP is the probability of a defective module being selected randomly, which is 7.4%
for the assembled dataset used in this study and is not affected by RC values. The efficacy
of the random selection (EfR) was computed for each RC to support those comparisons
using Equation (13).

E f f RRC = pTP = 7.4%, (12)

E f RRC = E f f RRC × RTSRC = 7.4% × RTSRC. (13)

Aiming to compare Eff to EffR and Ef to EfR, some additional ratios were computed.
The relative efficiency to the random selection (REffR) was computed using Equation (14).
The relative efficacy to the random selection (REfR) was computed for each RC to support
those comparisons using Equation (15).

RE f f RRC =
E f f RC

E f f RRC
, (14)

RE f RRC =
E f RC

E f RRC
. (15)

As in the original study [40], other performance comparisons were performed using
the metric Relative Percent Correct (RPC), which represents the ratio of the number of
modules classified correctly by the ML model to the number of modules classified correctly
by each benchmark. The Relative Percent Correct relative to the Unitary cost ML model
benchmark (RPCU) was computed using Equation (16), while the Relative Percent Correct
relative to the Random selection of modules (RPCR) was computed using Equation (17).

RPCURC =
ACCRC

ACCRC=1
, (16)

RPCRRC =
ACCRC

7.4%
. (17)

The metric Misclassified Defective Modules (MDM) indicates the ratio of the number
of defective modules misclassified as non-defective by the ML model to the total number
of existing defective modules in the system (3196 in the assembled dataset, and k is the
number of folds). The metric Misclassified Non-defective Modules (MNDM) indicates the
ratio of the number of non-defective modules misclassified as defective by the ML model to
the total number of existing non-defective modules in the system (39827 in the assembled
dataset, and k is the number of folds). Those metrics were computed for each RC value
using Equations (18) and (19), respectively.

MDMRC =
FNRC

3196
k

, (18)

MNDMRC =
FPRC
39827

k
. (19)

Finally, the metric Unnecessary Tests (UT) [40] was computed to evaluate the ratio of
module tests that were wasted because they were unnecessary. Equation (20) shows how
the UT was calculated for each value of RC evaluated,

Appl. Sci. 2024, 14, 4880 13 of 26

UT =
FPRC
MTRC

. (20)

2.5. Statistical Tests

A paired t-test (with correction) was used to evaluate if the average value of the
evaluated metrics for each RC greater than 1 was statistically significant at a 5% level
(p-value ≤ 0.05) compared to the average value of the equivalent metric for RC = 1 (bench-
mark with no increment of penalty value for FN). Thus, in all the results, the metrics values
found to have statistically significant differences compared to their benchmarks (RC = 1)
were marked with “*”.

3. Results

The protocol described in the previous section was executed entirely, providing a
dataset of results with the metrics used to support the analysis presented here. In all tables
with results, “*” indicates the statistical significance at a 5% level of the paired t-test with
correction (compared to the benchmark, RC = 1).

Table 2 shows the models’ accuracies for each relative cost. A paired t-test (with correc-
tion) was used to compare the accuracies’ averages with the significance test performed at
a 5% level. The statistical significance of the t-test is indicated by “*” where the p-value was
lower than 5% (compared to the benchmark, RC = 1). Like in the reference study [40], as
RC increases, the accuracy decreases. However, here, the reduction was only 2.2% (93.27%
to 91.19%), much smaller than that observed in the reference study, where it was reduced
to almost half (52%) when the RC was 10 times higher. Notably, an average accuracy
of 92.27% cannot be considered a good result for a model trained with an imbalanced
binary dataset, with 92.6% of the instances belonging to the most representative class
(non-defective module). Finally, all values of ACC (RC > 1) were statistically significant
compared to its baseline value (RC = 1) at a 5% level.

Table 2. TP, TN, FP, FN, MT, MNT, SR × RC.

RC ACC TP FP TN FN MT MNT SR

1 93.3% 84.04 54.11 3928.59 235.56 138.15 4164.15 96.8%
2 92.9% * 115.65 * 101.62 * 3881.08 * 203.95 * 217.27 * 4085.03 * 94.9% *
3 92.6% * 127.42 * 127.5 * 3855.2 * 192.18 * 254.92 * 4047.38 * 94.1% *
4 92.3% * 134.5 * 144.87 * 3837.83 * 185.1 * 279.37 * 4022.93 * 93.5% *
5 92.2% * 139.28 * 157.48 * 3825.22 * 180.32 * 296.76 * 4005.54 * 93.1% *
6 92.0% * 143.87 * 168.35 * 3814.35 * 175.73 * 312.22 * 3990.08 * 92.7% *
7 91.8% * 147.32 * 179.02 * 3803.68 * 172.28 * 326.34 * 3975.96 * 92.4% *
8 91.5% * 150.83 * 195.57 * 3787.13 * 168.77 * 346.4 * 3955.9 * 91.9% *
9 91.3% * 152.98 * 205.86 * 3776.84 * 166.62 * 358.84 * 3943.46 * 91.7% *

10 91.2% * 157.08 * 216.51 * 3766.19 * 162.52 * 373.59 * 3928.71 * 91.3% *
11 91.1% * 159.89 * 225.09 * 3757.61 * 159.71 * 384.98 * 3917.32 * 91.1% *
12 90.9% * 162.06 * 234.29 * 3748.41 * 157.54 * 396.35 * 3905.95 * 90.8% *
13 90.7% * 165.53 * 244.49 * 3738.21 * 154.07 * 410.02 * 3892.28 * 90.5% *
14 90.6% * 168.42 * 253.82 * 3728.88 * 151.18 * 422.24 * 3880.06 * 90.2% *
15 90.5% * 171.04 * 262.29 * 3720.41 * 148.56 * 433.33 * 3868.97 * 89.9% *
20 89.8% * 183.01 * 303.94 * 3678.76 * 136.59 * 486.95 * 3815.35 * 88.7% *
30 88.4% * 203.88 * 383.56 * 3599.14 * 115.72 * 587.44 * 3714.86 * 86.3% *
40 86.8% * 220.73 * 468.54 * 3514.16 * 98.87 * 689.27 * 3613.03 * 84.0% *
50 85.7% * 234.74 * 529.99 * 3452.71 * 84.86 * 764.73 * 3537.57 * 82.2% *
100 79.8% * 275.76 * 824.1 * 3158.6 * 43.84 * 1099.86 * 3202.44 * 74.4% *

Note: A paired t-test (with correction) was used to compare the accuracies’ averages at a 5% significance level.
“*” indicates p-values lower than 5% (compared to the benchmark, RC = 1).

Table 2 also shows the information from the confusion matrix (TP, TN, FP, FN), indi-
cating how its distribution and RC change. All values of TP, FP, TN, FN, and MT for RC > 1
were statistically significant compared to their baseline values (RC = 1) at a 5% level. As

Appl. Sci. 2024, 14, 4880 14 of 26

found in the reference study, increasing RC results in increasing TP and decreasing FN,
which is positive for using ML models to support test effort allocation. However, while
the TP almost doubled from RC = 1 to 10, it increased to over seven times in the reference
study using a different classifier on a single project and language dataset. Naturally, the
increase in TP and the decrease in FN could only happen with an increase in FP (~4×)
and a slight decrease in TN (4%). Consequently, as shown in Table 2, the number the
classifier indicates to be tested (MT) grows as RC increases. That growth (2.7×) is lower
than observed in the reference study (18.4). Moreover, while SR was reduced from 96% to
29% in the benchmark research, the reduction was much more moderate (96.8% to 91.3%)
for the protocol run. Figure 3 illustrates the behavior of TP, TN, FP, FN, MT, and MNT over
the distinct costs. Like all charts with results in the present study, the lower chart represents
the full range of RC evaluated, and the upper one zooms in on RC [1,15] to better observe
the initial behavior in a range compatible with the benchmark study. It is worth noting
that the findings reveal a pattern of decreasing marginal returns leading to a saturation of
earnings with the technique, demonstrating an asymptotic behavior that persists from the
initial points onward. Finally, all values of MT, MNT, and SR (RC > 1) were statistically
significant compared to their baseline values (RC = 1) at a 5% level.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 28

(a) Initial RC range

(b) Full RC range

Figure 3. {TP, TN, FP, FN, MT and MNT} × RC.

Table 3 shows the classifiers’ test efficiency and efficacy metrics and a theoretical

benchmark obtained with the expected results from a random selection of modules to be

tested with the same scope size for each RC. Except for EffR, all other metrics in Table 3

were statistically significant for RC > 1 compared to their baseline values (RC = 1) at a 5%

level. The TP, TN, FP, and FN changes have essential implications for the efficiency,

efficacy, and scope of software testing activities. The RC increase implicated in ML models

resulted in lower test efficiency and higher efficacy with an increase of RTS, which

corroborated the benchmark study’s findings. However, in the benchmark study [40], the

efficiency is reduced to 41.4% when 𝑅𝐶 ൌ 10, while in the present study, a much lower

reduction for the same RC was observed, equivalent to 68.9% of the initial one, indicating

a smoother effect on the efficiency. In the same way, the efficacy increased by 7.6×,

comparing the model with 𝑅𝐶 ൌ 10 to 𝑅𝐶 ൌ 1 in the benchmark study [40], while in the

present study, a smoother effect was observed since it was increased by 1.9×. Finally, a

smoother effect was also observed for RTS (an increase of 2.7×) compared to the reference

study (an increase of 17.8×).

Figure 3. {TP, TN, FP, FN, MT and MNT} × RC.

Table 3 shows the classifiers’ test efficiency and efficacy metrics and a theoretical
benchmark obtained with the expected results from a random selection of modules to be
tested with the same scope size for each RC. Except for EffR, all other metrics in Table 3
were statistically significant for RC > 1 compared to their baseline values (RC = 1) at a 5%
level. The TP, TN, FP, and FN changes have essential implications for the efficiency, efficacy,
and scope of software testing activities. The RC increase implicated in ML models resulted
in lower test efficiency and higher efficacy with an increase of RTS, which corroborated
the benchmark study’s findings. However, in the benchmark study [40], the efficiency is

Appl. Sci. 2024, 14, 4880 15 of 26

reduced to 41.4% when RC = 10, while in the present study, a much lower reduction for
the same RC was observed, equivalent to 68.9% of the initial one, indicating a smoother
effect on the efficiency. In the same way, the efficacy increased by 7.6×, comparing the
model with RC = 10 to RC = 1 in the benchmark study [40], while in the present study, a
smoother effect was observed since it was increased by 1.9×. Finally, a smoother effect was
also observed for RTS (an increase of 2.7×) compared to the reference study (an increase
of 17.8×).

Table 3. EFFICIENCY and EFFICACY (Models and Random Benchmarks), RTS, RELATIVE EF-
FICIENCY, EFFICACY and RPC (Benchmark: Unitary Cost ML Model and Benchmark: Random
Selection) × RC.

RC
ML Model

Benchmarks

Random Selection Unitary Cost ML Model

Eff Ef RTS EffR EfR REffR REfR RPC REffU REfU RPC

1 61.0% 26.0% 3.2% 7.4% 0.2% 821.2% 10,899.8% 1255.6% 100.0% 100.0% 100.0%
2 53.0% * 36.0% * 5.1% * 7.4% 0.4% * 713.5% * 9596.2% * 1250.6% * 86.9% * 138.5% * 99.6% *
3 50.0% * 40.0% * 5.9% * 7.4% 0.4% * 673.1% * 9087.6% * 1246.1% * 82.0% * 153.8% * 99.2% *
4 48.0% * 42.0% * 6.5% * 7.4% 0.5% * 646.2% * 8706.9% * 1242.9% * 78.7% * 161.5% * 99.0% *
5 47.0% * 44.0% * 6.9% * 7.4% 0.5% * 632.7% * 8587.0% * 1240.5% * 77.0% * 169.2% * 98.8% *
6 46.0% * 45.0% * 7.3% * 7.4% 0.5% * 619.2% * 8347.3% * 1238.5% * 75.4% * 173.1% * 98.6% *
7 45.0% * 46.0% * 7.6% * 7.4% 0.6% * 605.8% * 8163.6% * 1236.2% * 73.8% * 176.9% * 98.5% *
8 44.0% * 47.0% * 8.1% * 7.4% 0.6% * 592.3% * 7858.0% * 1232.1% * 72.1% * 180.8% * 98.1% *
9 43.0% * 48.0% * 8.3% * 7.4% 0.6% * 578.8% * 7747.0% * 1229.6% * 70.5% * 184.6% * 97.9% *

10 42.0% * 49.0% * 8.7% * 7.4% 0.6% * 565.4% * 7596.2% * 1227.6% * 68.9% * 188.5% * 97.8% *
11 42.0% * 50.0% * 8.9% * 7.4% 0.7% * 565.4% * 7521.9% * 1225.8% * 68.9% * 192.3% * 97.6% *
12 41.0% * 51.0% * 9.2% * 7.4% 0.7% * 551.9% * 7452.2% * 1223.5% * 67.2% * 196.2% * 97.4% *
13 40.0% * 52.0% * 9.5% * 7.4% 0.7% * 538.5% * 7345.0% * 1221.5% * 65.6% * 200.0% * 97.3% *
14 40.0% * 53.0% * 9.8% * 7.4% 0.7% * 538.5% * 7269.6% * 1219.5% * 65.6% * 203.8% * 97.1% *
15 39.0% * 54.0% * 10.1% * 7.4% 0.7% * 525.0% * 7217.2% * 1217.6% * 63.9% * 207.7% * 97.0% *
20 38.0% * 57.0% * 11.3% * 7.4% 0.8% * 511.5% * 6779.3% * 1208.3% * 62.3% * 219.2% * 96.2% *
30 35.0% * 64.0% * 13.7% * 7.4% 1.0% * 471.2% * 6309.7% * 1190.0% * 57.4% * 246.2% * 94.8% *
40 32.0% * 69.0% * 16.0% * 7.4% 1.2% * 430.8% * 5797.7% * 1168.6% * 52.5% * 265.4% * 93.1% *
50 31.0% * 73.0% * 17.8% * 7.4% 1.3% * 417.3% * 5528.5% * 1153.8% * 50.8% * 280.8% * 91.9% *
100 25.0% * 86.0% * 25.6% * 7.4% 1.9% * 336.5% * 4528.5% * 1074.6% * 41.0% * 330.8% * 85.6% *

Note: A paired t-test (with correction) was used to compare the accuracies’ averages at a 5% significance level.
“*” indicates p-values lower than 5% (compared to the benchmark, RC = 1).

Furthermore, Table 3 and Figure 4 support a comparison between the software testing
efforts informed by ML models and the benchmark’s performance based on a non-informed
approach, where the modules for software testing are selected randomly. Notably, in the
present study, the random benchmarks are worse than in the reference study because of
the higher imbalance of the dataset used here. In the original study, the ratio of defective
classes is 2.5, the number of defective classes in the current dataset, resulting in a random
benchmark efficiency 2.5× higher than the one obtained here. The results indicate that,
despite the RC value, the informed approach outperforms the non-informed approach,
demonstrating superior performance. That corroborates findings from the benchmark
study. Moreover, it also aligns with the field literature since, despite the existing gaps and
limitations, the results indicate that even a suboptimal ML model can improve the software
testing performance and outperform a non-informed approach.

Aiming to compare, quantitatively, the ratio of the decrease in efficiency with the
increase in efficacy as RC is increased, a linear model was built with a linear regression
to explain the efficacy and efficiency behaviors, having RC as the independent variable,
resulting in Equations (21) and (22). The coefficient of determination (R2) was computed to
measure the proportion of variance in the dependent variables that is predictable from the
independent variable (RC) for each regression model. For any regression, R2 is calculated as

Appl. Sci. 2024, 14, 4880 16 of 26

R2 = 1 − SSres
SStot

, where SSres (Residual Sum of Squares) is the sum of the squared differences
between the observed values and the values predicted by the model, and SStot (Total Sum
of Squares) is the sum of the squared differences between the observed values and the
mean of the observed values.

E f f = (0.0151 · RC + 0.3348)× 100%; R2 = 0.8394, (21)

E f = (−0.012 · RC + 0.5497)× 100%; R2 = 0.8322. (22)

It is important to highlight that all linear regressions conducted in this study were
tailored to RC ranges from 1 to 15 for two primary reasons. Firstly, the baseline study [40]
had a narrower range of 1 to 10, necessitating an adjustment of parameters to facilitate a
more accurate comparison. Secondly, the focal point of our current research lies in assessing
the aggressiveness of initial RC range gains. Therefore, the extrapolation employed in these
current experiments aimed to provide a comprehensive view of the models’ performance
in higher-cost scenarios.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 28

Table 3. EFFICIENCY and EFFICACY (Models and Random Benchmarks), RTS, RELATIVE

EFFICIENCY, EFFICACY and RPC (Benchmark: Unitary Cost ML Model and Benchmark: Random

Selection) × RC.

RC
ML Model

Benchmarks

Random Selection Unitary Cost ML Model

Eff Ef RTS EffR EfR REffR REfR RPC REffU REfU RPC

1 61.0% 26.0% 3.2% 7.4% 0.2% 821.2% 10,899.8% 1255.6% 100.0% 100.0% 100.0%

2 53.0% * 36.0% * 5.1% * 7.4% 0.4% * 713.5% * 9596.2% * 1250.6% * 86.9% * 138.5% * 99.6% *

3 50.0% * 40.0% * 5.9% * 7.4% 0.4% * 673.1% * 9087.6% * 1246.1% * 82.0% * 153.8% * 99.2% *

4 48.0% * 42.0% * 6.5% * 7.4% 0.5% * 646.2% * 8706.9% * 1242.9% * 78.7% * 161.5% * 99.0% *

5 47.0% * 44.0% * 6.9% * 7.4% 0.5% * 632.7% * 8587.0% * 1240.5% * 77.0% * 169.2% * 98.8% *

6 46.0% * 45.0% * 7.3% * 7.4% 0.5% * 619.2% * 8347.3% * 1238.5% * 75.4% * 173.1% * 98.6% *

7 45.0% * 46.0% * 7.6% * 7.4% 0.6% * 605.8% * 8163.6% * 1236.2% * 73.8% * 176.9% * 98.5% *

8 44.0% * 47.0% * 8.1% * 7.4% 0.6% * 592.3% * 7858.0% * 1232.1% * 72.1% * 180.8% * 98.1% *

9 43.0% * 48.0% * 8.3% * 7.4% 0.6% * 578.8% * 7747.0% * 1229.6% * 70.5% * 184.6% * 97.9% *

10 42.0% * 49.0% * 8.7% * 7.4% 0.6% * 565.4% * 7596.2% * 1227.6% * 68.9% * 188.5% * 97.8% *

11 42.0% * 50.0% * 8.9% * 7.4% 0.7% * 565.4% * 7521.9% * 1225.8% * 68.9% * 192.3% * 97.6% *

12 41.0% * 51.0% * 9.2% * 7.4% 0.7% * 551.9% * 7452.2% * 1223.5% * 67.2% * 196.2% * 97.4% *

13 40.0% * 52.0% * 9.5% * 7.4% 0.7% * 538.5% * 7345.0% * 1221.5% * 65.6% * 200.0% * 97.3% *

14 40.0% * 53.0% * 9.8% * 7.4% 0.7% * 538.5% * 7269.6% * 1219.5% * 65.6% * 203.8% * 97.1% *

15 39.0% * 54.0% * 10.1% * 7.4% 0.7% * 525.0% * 7217.2% * 1217.6% * 63.9% * 207.7% * 97.0% *

20 38.0% * 57.0% * 11.3% * 7.4% 0.8% * 511.5% * 6779.3% * 1208.3% * 62.3% * 219.2% * 96.2% *

30 35.0% * 64.0% * 13.7% * 7.4% 1.0% * 471.2% * 6309.7% * 1190.0% * 57.4% * 246.2% * 94.8% *

40 32.0% * 69.0% * 16.0% * 7.4% 1.2% * 430.8% * 5797.7% * 1168.6% * 52.5% * 265.4% * 93.1% *

50 31.0% * 73.0% * 17.8% * 7.4% 1.3% * 417.3% * 5528.5% * 1153.8% * 50.8% * 280.8% * 91.9% *

100 25.0% * 86.0% * 25.6% * 7.4% 1.9% * 336.5% * 4528.5% * 1074.6% * 41.0% * 330.8% * 85.6% *

Note: A paired t-test (with correction) was used to compare the accuracies’ averages at a 5%

significance level. “*” indicates p-values lower than 5% (compared to the benchmark, RC = 1).

Furthermore, Table 3 and Figure 4 support a comparison between the software

testing efforts informed by ML models and the benchmark’s performance based on a non-

informed approach, where the modules for software testing are selected randomly.

Notably, in the present study, the random benchmarks are worse than in the reference

study because of the higher imbalance of the dataset used here. In the original study, the

ratio of defective classes is 2.5, the number of defective classes in the current dataset,

resulting in a random benchmark efficiency 2.5× higher than the one obtained here. The

results indicate that, despite the RC value, the informed approach outperforms the non-

informed approach, demonstrating superior performance. That corroborates findings

from the benchmark study. Moreover, it also aligns with the field literature since, despite

the existing gaps and limitations, the results indicate that even a suboptimal ML model

can improve the software testing performance and outperform a non-informed approach.

(a) Initial RC range

Appl. Sci. 2024, 14, x FOR PEER REVIEW 17 of 28

(b) Full RC range

Figure 4. {Eff, Ef, RTS, EffR, and EfR} × RC.

Aiming to compare, quantitatively, the ratio of the decrease in efficiency with the

increase in efficacy as RC is increased, a linear model was built with a linear regression to

explain the efficacy and efficiency behaviors, having RC as the independent variable, re-

sulting in Equations (21) and (22). The coefficient of determination (𝑅ଶ) was computed to

measure the proportion of variance in the dependent variables that is predictable from the

independent variable (RC) for each regression model. For any regression, 𝑅ଶ is calculated
as 𝑅ଶ ൌ 1 െ

ௌௌೝೞ
ௌௌ

, where 𝑆𝑆௦ (Residual Sum of Squares) is the sum of the squared dif-

ferences between the observed values and the values predicted by the model, and 𝑆𝑆௧௧
(Total Sum of Squares) is the sum of the squared differences between the observed values

and the mean of the observed values.

𝐸𝑓𝑓  ൌ ሺ0.0151 ⋅ 𝑅𝐶   0.3348ሻ ൈ 100%; 𝑅ଶ ൌ 0.8394, (21)

𝐸𝑓  ൌ  ሺെ0.012 ⋅ 𝑅𝐶   0.5497ሻ ൈ 100%;  𝑅ଶ ൌ 0.8322. (22)

It is important to highlight that all linear regressions conducted in this study were

tailored to RC ranges from 1 to 15 for two primary reasons. Firstly, the baseline study [40]

had a narrower range of 1 to 10, necessitating an adjustment of parameters to facilitate a

more accurate comparison. Secondly, the focal point of our current research lies in as-

sessing the aggressiveness of initial RC range gains. Therefore, the extrapolation em-

ployed in these current experiments aimed to provide a comprehensive view of the mod-

els’ performance in higher-cost scenarios.

The plots and descriptions of those models are illustrated in Figure 4. Since both

models reached 𝑅ଶ > 80%, they can be considered suitable for explaining efficiency and

efficacy variances by RC changes. Comparing the effect sizes of RC on efficiency (−0.0120)

and efficacy (0.0151), each decrease in test efficiency (caused by the increase of the RC)

results in an average rise of test efficacy that is 25.8% higher than the efficiency decrease.

Thus, each RC unit increment returns an improvement in test efficacy higher by almost

26% (on average) than the price paid in test efficacy decrease. Since the reduction in effi-

ciency is less than the improvement in efficacy, the same advantage observed in the bench-

mark study was demonstrated in the present study.

Those results indicate that conveniently adjusting RC makes finding an optimal equi-

librium between efficiency and efficacy and the extent of testing coverage possible. This is

the core idea of the approach, which has been demonstrated only for a single project da-

taset until now. Thus, it indicates that the approach’s core idea can be generalized for a

larger dataset encompassing multiple projects developed in distinct moments by different

teams involving distinct technologies (programming languages).

Consequently, by adjusting the RC, test managers can use ML models to optimize

the test scope according to the resources available for the software testing effort. Using

Figure 4. {Eff, Ef, RTS, EffR, and EfR} × RC.

The plots and descriptions of those models are illustrated in Figure 4. Since both
models reached R2 > 80%, they can be considered suitable for explaining efficiency and
efficacy variances by RC changes. Comparing the effect sizes of RC on efficiency (−0.0120)
and efficacy (0.0151), each decrease in test efficiency (caused by the increase of the RC)
results in an average rise of test efficacy that is 25.8% higher than the efficiency decrease.
Thus, each RC unit increment returns an improvement in test efficacy higher by almost 26%
(on average) than the price paid in test efficacy decrease. Since the reduction in efficiency

Appl. Sci. 2024, 14, 4880 17 of 26

is less than the improvement in efficacy, the same advantage observed in the benchmark
study was demonstrated in the present study.

Those results indicate that conveniently adjusting RC makes finding an optimal equi-
librium between efficiency and efficacy and the extent of testing coverage possible. This
is the core idea of the approach, which has been demonstrated only for a single project
dataset until now. Thus, it indicates that the approach’s core idea can be generalized for a
larger dataset encompassing multiple projects developed in distinct moments by different
teams involving distinct technologies (programming languages).

Consequently, by adjusting the RC, test managers can use ML models to optimize the
test scope according to the resources available for the software testing effort. Using ML
models with lower RC will help prioritize a narrower scope of testing while maintaining
high efficiency, which is advisable in scenarios where testing resources are constrained. On
the other hand, in scenarios where available resources are less constrained, using higher RC
values will help to expand the testing scope wisely, aiming for an improvement in efficacy
despite a potential reduction in efficiency.

Additionally, Table 3 presents comparisons of efficiency and efficacy with other bench-
marks. One of the benchmarks used was the efficiency and efficacy of the unitary cost
model (RC = 1). Thus, for each RC value, the table shows how the ML model’s perfor-
mance (efficiency and efficacy) compares to the baseline model’s performance (RC = 1).
Table 3 also shows the RPC, supporting a comparison between the number of modules
correctly classified by each model obtained for RC > 1 and the baseline (RC = 1). Chart
(a) in Figure 5 shows the plot of the relative efficiency and efficacy, as well as the RPC,
considering the unitary cost as a baseline.

The same analysis performed for the absolute values of efficiency and efficacy was
performed here to compare quantitatively the ratio of the decrease in relative efficiency
with the increase in efficacy as RC is increased using a linear model. The expressions of
regressions are shown in Equations (23) and (24),

RE f f U = (0.058 · RC + 1.2875)× 100%; R2 = 0.8394, (23)

RE f U = (−0.0196 · RC + 0.9012)× 100%; R2 = 0.8322. (24)

The plots and descriptions of those models are illustrated in Figure 5. Since all the
regressions reached R2 > 80%, they can be considered suitable for explaining relative
efficiency and relative efficacy variances by RC changes. Comparing the effect sizes of RC
on efficiency (−0.0196) and efficacy (0.0580), each decrease in the relative test efficiency
(caused by the increase of the RC) results in an average rise of relative test efficacy that is 3×
higher than the efficiency decrease. Thus, each RC unit increment returns an improvement
in relative test efficacy 3× higher (on average) than the decline observed in relative test
efficacy on average, corroborating the benchmark study’s finding.

Another benchmark comparison shown in Table 3 was related to using the random
benchmark. The test efficiency and efficacy reached by each ML model induced with
distinct RC values were compared against the baseline value of non-informed software
testing based on random module selection. Chart (c) in Figure 5 shows the plot of the
relative efficiency, efficacy, and RPC, with the random benchmark as the baseline. The
results also corroborate the benchmark study’s findings, where the relative efficacy drops
faster than the relative efficiency as RC is increased. Still, those values are always higher
than 100%, demonstrating that the ML-based approach outperforms the non-informed
selection of modules for testing. However, since an increase in RC implicates an increase
in test scope, it is natural to expect that as the scope increases, it weakens the ML-based
approach advantages since, ultimately, when 100% of the modules are tested, an ML-based
approach offers no additional value when compared to the random selection of modules to
be tested. Finally, charts (b) and (d) of Figure 5 show the same analyses for a more extensive
RC range encompassing higher values.

Appl. Sci. 2024, 14, 4880 18 of 26

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 28

ML models with lower RC will help prioritize a narrower scope of testing while

maintaining high efficiency, which is advisable in scenarios where testing resources are

constrained. On the other hand, in scenarios where available resources are less

constrained, using higher RC values will help to expand the testing scope wisely, aiming

for an improvement in efficacy despite a potential reduction in efficiency.

Additionally, Table 3 presents comparisons of efficiency and efficacy with other

benchmarks. One of the benchmarks used was the efficiency and efficacy of the unitary

cost model (𝑅𝐶 ൌ 1). Thus, for each RC value, the table shows how the ML model’s

performance (efficiency and efficacy) compares to the baseline model’s performance

(𝑅𝐶 ൌ 1). Table 3 also shows the RPC, supporting a comparison between the number of

modules correctly classified by each model obtained for RC > 1 and the baseline (𝑅𝐶 ൌ 1).
Chart (a) in Figure 5 shows the plot of the relative efficiency and efficacy, as well as the

RPC, considering the unitary cost as a baseline.

The same analysis performed for the absolute values of efficiency and efficacy was

performed here to compare quantitatively the ratio of the decrease in relative efficiency

with the increase in efficacy as RC is increased using a linear model. The expressions of

regressions are shown in Equations (23) and (24),

𝑅𝐸𝑓𝑓𝑈  ൌ  ሺ0.058 ⋅ 𝑅𝐶   1.2875ሻ ൈ 100%;  𝑅ଶ ൌ 0.8394, (23)

𝑅𝐸𝑓𝑈  ൌ  ሺെ0.0196 ⋅ 𝑅𝐶   0.9012ሻ ൈ 100%;  𝑅ଶ ൌ 0.8322. (24)

(a) Benchmark: Unitary Cost ML Model–Partial RC range.

(b) Benchmark: Unitary Cost ML Model–Full RC range.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 28

(c) Benchmark: Random Selection–Partial RC range.

(d) Benchmark: Random Selection–Full RC range.

Figure 5. {REffR, RefR, RPC} × RC.

The plots and descriptions of those models are illustrated in Figure 5. Since all the

regressions reached 𝑅ଶ > 80%, they can be considered suitable for explaining relative effi-

ciency and relative efficacy variances by RC changes. Comparing the effect sizes of RC on

efficiency (−0.0196) and efficacy (0.0580), each decrease in the relative test efficiency

(caused by the increase of the RC) results in an average rise of relative test efficacy that is

3× higher than the efficiency decrease. Thus, each RC unit increment returns an improve-

ment in relative test efficacy 3× higher (on average) than the decline observed in relative

test efficacy on average, corroborating the benchmark study’s finding.

Another benchmark comparison shown in Table 3 was related to using the random

benchmark. The test efficiency and efficacy reached by each ML model induced with dis-

tinct RC values were compared against the baseline value of non-informed software test-

ing based on random module selection. Chart (c) in Figure 5 shows the plot of the relative

efficiency, efficacy, and RPC, with the random benchmark as the baseline. The results also

corroborate the benchmark study’s findings, where the relative efficacy drops faster than

the relative efficiency as RC is increased. Still, those values are always higher than 100%,

demonstrating that the ML-based approach outperforms the non-informed selection of

modules for testing. However, since an increase in RC implicates an increase in test scope,

it is natural to expect that as the scope increases, it weakens the ML-based approach ad-

vantages since, ultimately, when 100% of the modules are tested, an ML-based approach

offers no additional value when compared to the random selection of modules to be

tested. Finally, charts (b) and (d) of Figure 5 show the same analyses for a more extensive

RC range encompassing higher values.

The last analysis was to understand how RC increases affect MDM, MNDM, and UT.

Table 4 shows the values of each of those metrics for each RC value. All those metrics were

statistically significant for RC > 1 compared to their baseline values (RC = 1) at a 5% level.

The experiments were conducted using a 10-fold cross-validation approach. Thus, each

Figure 5. {REffR, RefR, RPC} × RC.

Appl. Sci. 2024, 14, 4880 19 of 26

The last analysis was to understand how RC increases affect MDM, MNDM, and UT.
Table 4 shows the values of each of those metrics for each RC value. All those metrics
were statistically significant for RC > 1 compared to their baseline values (RC = 1) at a 5%
level. The experiments were conducted using a 10-fold cross-validation approach. Thus,
each fold contained, on average, 320 defective modules (used for MDM calculation) and
3983 non-defective modules (used for MNDM calculation) with k = 10. Figure 6 shows
those metrics plotted for each RC value. The upper chart of Figure 6 is focused on a narrow
range of RC, while the bottom one shows a chart encompassing the full range of RC.

The behavior of MDM, MNDM, and UT versus RC was compared using linear models
obtained with linear regressions. The regressions expressions are shown in Equations (25)–(27),

UT = (0.0119 · RC + 0.4509)× 100%; R2 = 0.8284, (25)

MDM = (−0.0151 · RC + 0.6652)× 100%; R2 = 0.8394, (26)

MNDM = (0.0033 · RC + 0.0197)× 100%; R2 = 0.8997. (27)

Those models reached values R2 greater than 80%, indicating they could adequately
explain the variance of those metrics using the independent variable RC. The linear model
expressions are expressed in the chart. The MDM, MNDM, and UT effect sizes in the
models were −0.0151, 0.0033, and 0.0119, respectively. Those coefficients indicate that each
increase in RC causes a reduction in MDM that is 26.9% higher than the increase it causes
in UT. Moreover, they suggest that each rise in RC causes a decrease of 457.6% in MDM,
which is higher than the increase it causes in MNDM. MDMs are dangerous, especially in
safety-critical systems, because they divert the software testing effort to evaluate properly
those misclassified defective classes, increasing the risks of failure during customer use.
Thus, they are highly undesired. Using the proposed approach, the MDM is reduced in a
ratio much higher than it increases the MNDM. Although MNDMs are undesired, their
negative outcome is to induce the software testing effort in testing a non-defective software
module, which wastes resources. Still, they do not cause dangerous situations that could
cause more severe losses, such as jeopardizing life or property.

Table 4. MDM, MNDM, and UT × RC.

RC MDM MNDM UT

1 74.0% 1.0% 39.2%
2 64.0% * 3.0% * 46.8% *
3 60.0% * 3.0% * 50.0% *
4 58.0% * 4.0% * 51.9% *
5 56.0% * 4.0% * 53.1% *
6 55.0% * 4.0% * 53.9% *
7 54.0% * 4.0% * 54.9% *
8 53.0% * 5.0% * 56.5% *
9 52.0% * 5.0% * 57.4% *

10 51.0% * 5.0% * 58.0% *
11 50.0% * 6.0% * 58.5% *
12 49.0% * 6.0% * 59.1% *
13 48.0% * 6.0% * 59.6% *
14 47.0% * 6.0% * 60.1% *
15 46.0% * 7.0% * 60.5% *
20 43.0% * 8.0% * 62.4% *
30 36.0% * 10.0% * 65.3% *
40 31.0% * 12.0% * 68.0% *
50 27.0% * 13.0% * 69.3% *
100 14.0% * 21.0% * 74.9% *

Note: A paired t-test (with correction) was used to compare the accuracies’ averages at a 5% significance level.
“*” indicates p-values lower than 5% (compared to the benchmark, RC = 1).

Appl. Sci. 2024, 14, 4880 20 of 26

Appl. Sci. 2024, 14, x FOR PEER REVIEW 20 of 28

fold contained, on average, 320 defective modules (used for MDM calculation) and 3983

non-defective modules (used for MNDM calculation) with 𝑘 ൌ 10. Figure 6 shows those

metrics plotted for each RC value. The upper chart of Figure 6 is focused on a narrow

range of RC, while the bottom one shows a chart encompassing the full range of RC.

(a) Initial RC range

(b) Full RC range

Figure 6. {MDM, MNDM, and UT} × RC.

Table 4. MDM, MNDM, and UT × RC.

RC MDM MNDM UT

1 74.0% 1.0% 39.2%

2 64.0% * 3.0% * 46.8% *

3 60.0% * 3.0% * 50.0% *

4 58.0% * 4.0% * 51.9% *

5 56.0% * 4.0% * 53.1% *

6 55.0% * 4.0% * 53.9% *

7 54.0% * 4.0% * 54.9% *

8 53.0% * 5.0% * 56.5% *

9 52.0% * 5.0% * 57.4% *

10 51.0% * 5.0% * 58.0% *

11 50.0% * 6.0% * 58.5% *

12 49.0% * 6.0% * 59.1% *

13 48.0% * 6.0% * 59.6% *

14 47.0% * 6.0% * 60.1% *

15 46.0% * 7.0% * 60.5% *

20 43.0% * 8.0% * 62.4% *

30 36.0% * 10.0% * 65.3% *

40 31.0% * 12.0% * 68.0% *

50 27.0% * 13.0% * 69.3% *

100 14.0% * 21.0% * 74.9% *

Figure 6. {MDM, MNDM, and UT} × RC.

The consistent statistically significant differences obtained for RC > 1 for all the
evaluated metrics compared to their baseline values reinforce the promising results of the
cost-sensitive approach found in [40] and confirm them in the specific in-company cross-
project and cross-language scenario evaluated in the present study. The results show that
the approach can be very appealing in terms of informing the software testing plan since it
can improve the quality of the software testing effort, making it possible to accomplish more
with the same (or less) available resources. Therefore, besides corroborating the benchmark
study’s findings, this last analysis demonstrated that the cost-sensitive approach can
potentially suit hybrid software development environments involving diverse projects with
distinct programming languages and software development teams.

4. Discussion

This section discusses the implications of software testing scope decision-making
based on the cross-project and cross-language ML models induced using the cost-sensitive
approach in a hypothetical scenario.

The test manager has a budget of nt software testers and nt days available for software
testing. Equation (28) gives the available software testing budget in hours (B), considering
a workday of 8 h/day,

B = 8 × nt × nd (28)

In a comparative hypothetical situation, as presented in Figure 7, 8 software testers
are available for a 17-day effort, resulting in B equal to 1088 h. The project’s average effort
to test a software module (E) was estimated to be 5 h. Thus, the available budget can afford
to test around 218 modules on average. In Table 2, the closest MT value to 218 is 217, which
corresponds to RC = 2; therefore, the ML model to be used to support the decision-making
on software testing must be one that is trained with RC = 2.

Appl. Sci. 2024, 14, 4880 21 of 26Appl. Sci. 2024, 14, x FOR PEER REVIEW 22 of 28

Figure 7. Comparison of the value added by the proposed technique in a hypothetical scenario with

four decisions regarding the software testing scoping and allocation of available software testing

resources.

When 𝑅𝐶 ൌ 2, the average number of defective modules discovered by a software

testing effort following the ML model corresponding scope is 116 (Figure 7([1])),

according to Table 2. If the same software testing effort was performed in a same-size

scope encompassing modules randomly selected, only 16 defective modules would be

discovered (Figure 7 ([3])). That equivalent number of defective modules discovered

with random selection (DR) is defined by Equation (29).

𝐷𝑅  ൌ 𝑝𝑇𝑃 ൈ MT ൌ 7.4% ൈ 217 ൌ 16 (29)

Thus, using the same budget available, the effort would identify over seven times

more defective modules when an ML model-based decision-making process is used rather

than a random selection of modules, which is quite impressive (Figure 7([1]) × Figure

7([3])). Moreover, a manager would need a testing effort (𝑻𝑬𝑹𝒂𝒏𝒅𝒐𝒎) of 7840 h (given by
Equation (30)) to test 1568 software modules randomly picked to accomplish an

equivalent performance in the number of defective modules discovered (Figure 7([1]) ×

Figure 7([2])). In other words, the manager would need a software testing budget 7.2 times

higher without using the ML model to select the modules to be tested for achieving the

same accomplishments, which is quite impressive.

𝑇𝐸ோௗ ൌ
𝑇𝑃
𝑝்

 ൈ 𝐸 ൌ
116

7.4%
 ൈ 5 ൌ 7840. (30)

Considering this hypothetical scenario, following the ML model recommendations,

the software testing productivity (Prod) would be 9.4 h to find each defective module on

average, given by Equation (31).

Figure 7. Comparison of the value added by the proposed technique in a hypothetical scenario
with four decisions regarding the software testing scoping and allocation of available software
testing resources.

When RC = 2, the average number of defective modules discovered by a software
testing effort following the ML model corresponding scope is 116 (Figure 7([1])), accord-
ing to Table 2. If the same software testing effort was performed in a same-size scope
encompassing modules randomly selected, only 16 defective modules would be discovered
(Figure 7([3])). That equivalent number of defective modules discovered with random
selection (DR) is defined by Equation (29).

DR = pTP × MT = 7.4% × 217 = 16 (29)

Thus, using the same budget available, the effort would identify over seven times more
defective modules when an ML model-based decision-making process is used rather than a
random selection of modules, which is quite impressive (Figure 7([1]) × Figure 7([3])). More-
over, a manager would need a testing effort (TERandom) of 7840 h (given by Equation (30))
to test 1568 software modules randomly picked to accomplish an equivalent performance
in the number of defective modules discovered (Figure 7([1]) × Figure 7([2])). In other
words, the manager would need a software testing budget 7.2 times higher without using
the ML model to select the modules to be tested for achieving the same accomplishments,
which is quite impressive.

TERandom =
TP
pTP

× E =
116

7.4%
× 5 = 7840. (30)

Appl. Sci. 2024, 14, 4880 22 of 26

Considering this hypothetical scenario, following the ML model recommendations,
the software testing productivity (Prod) would be 9.4 h to find each defective module on
average, given by Equation (31).

Prod =
MT
TP

× E =
217
116

× 5 = 9.4. (31)

Thus, to reach the equivalent result of the random selection (ER) (16 defective
modules), the software testing team informed by the ML model would need to test around
30 modules (Figure 7([3]) × Figure 7([4])), according to Equation (32), which would require
a total effort of only 30 × 9.4 = 282 h,

ER =
MT
TP

× DR =
217
116

× 16 ≈ 30 (32)

Those results demonstrate the power of using ML models to support decision-making
on software testing scope definition and resource allocation, helping quality assurance
efforts accomplish better results with the available resources or even using fewer resources.

5. Conclusions

The current research validated the generalizability of the original study’s findings
in a broader scenario. While the original study used MLP classifiers and a single project
dataset based on a single programming language, the present research demonstrated
the generalizability of the cost-sensitive approach across multiple projects with multiple
languages within the same organization. The NASA MDP datasets were used because
they belong to the same organization and involve various languages. Although it was
in a specific scenario, expanding the generalizability comprehension of the cost-sensitive
approach in this domain is one of the present research’s relevant contributions since
it demonstrates that the approach can potentially be useful and reliable across various
situations involving distinct projects, languages, and teams inside the same organization,
indicating that it can be effective in practical applications. However, more investigation into
broader generalization scenarios is needed, such as validating the technique on projects
from different organizations (cross-organizational validation).

Aiming to address the issues pointed out by [29], performance evaluation metrics
more specific to the context of the software testing domain were refined (from the previous
study) and proposed.

Furthermore, although the study aimed to validate that the ML model can be inter-
changeable between languages, a very small number of languages were used, and they
have similarities (C, C++, Java). Despite these similarities, Java has considerable differences,
for example, in memory management and exception handling, indicating promising results
in generalization across different languages but cannot be generalized without further
studies. Therefore, new explorations with additional software development projects based
on other programming languages with more significant structural differences should be
the target of future investigations.

Validating the results for RF is an important contribution since RF has advantages over
MLP, the ML approach used in the original study. It is more adaptable to different data
types and manages missing values better. Also, it requires less data preprocessing, such as
data scaling. It can efficiently process large datasets, requiring less computation, making its
training process orders of magnitude faster and cheaper than MLP or more complex ANNs.
It offers very rapid predictions after training. It is suitable for solving complex nonlinear
relationships between the target and independent variables. Moreover, as demonstrated in
this study, where default parameters were used, RF can achieve good results, even without
good hyperparameter tuning, which are often comparable to those achieved by well-tuned
MLPs. Therefore, RF usage reduces the need for an ML expert. Finally, RF can achieve
high accuracies even with smaller data samples, which is crucial to the present application
domain since many software development projects are small or medium, and there may

Appl. Sci. 2024, 14, 4880 23 of 26

not be a high volume of historical data about static source-code metrics and defects. Thus,
RF can reduce the entry barrier for software testing informed by ML models.

However, it is noteworthy that although RFs tend to be more resistant to overfitting
compared to individual DTs or MLPs because they average multiple decision trees and
introduce randomness through bootstrap sampling and feature selection, they are not
entirely immune to it. Thus, additional explorations using different datasets with possible
distinct noise patterns and ML techniques to validate the current study results will be
performed in future studies.

Although the proposed approach uses ML model prediction to inform decision-making
on software testing scoping, an essential aspect of ML is the potential value added with
its explainability and interpretability. By using RF rather than MLP, the present study
also gave an additional step towards a better explainability and interpretability of the
cost-sensitive trained models. Higher explainability and interpretability can better inform
the software development and quality assurance managers about the main contributing
features or source-code characteristics related to software defects, instrumenting them
to act on the software development teams to improve the quality of their deliveries in
a continuous quality improvement framework. Since enhancing the explainability and
interpretability of the cost-sensitive approach can expand its utility for software quality
assurance, future studies on this topic are highly recommended.

The research also explored a more comprehensive range [1, 100] of costs (RC) associ-
ated with FN compared to the original study [1, 10]. With that, it was possible to observe an
asymptotic behavior in the plots of most analyzed metrics. The effect of the marginal gains
decreasing with RC increments indicates the cost-sensitive approach reduces its advantages
as the test scope is broadened. Thus, as the software testing scope reduction decreases,
becoming closer to a complete test, the cost-sensitive approach exhausts its advantages. It
is noteworthy that this range may change the observed effects based on the ML algorithm
used to induce the ML model; therefore, future investigations must explore distinct RC
ranges for different ML algorithms.

The results indicate the possibility of using historical data from previous projects
inside the organization combined with the current one at its beginning when almost no
historical data is available yet. That enables the early use of ML models to inform software
testing scope. However, compared to the benchmark study’s findings, the desired positive
effects were smoother in the current research. Although the reason is still unknown, when
considerable historical data about a system under development or maintenance is already
available, it may be better to use the cost-sensitive approach based on a single system’s own
historical data. The reason for that difference will be the subject of a future study, which
will also explore some of the limitations of the current one, such as evaluating other types of
ML models, such as Bayesian, meta, tree-based, rule-based, and function-based classifiers.

Finally, the novel dataset (“NASA MDP CROSS-PROJECTS DATASET”), merging all
NASA MDP projects and encompassing all their common source-code static features, will
be made accessible to the research community. This initiative aims to facilitate further
investigations into the effects of cross-language and cross-project dynamics, enabling
broader exploration and analysis of the generalization process within the software defect
prediction domain.

Author Contributions: Conceptualization, A.M.N.; Methodology, A.M.N.; Project administration,
A.M.N. and L.A.V.D.; Software, A.M.N.; Supervision, A.M.N. and L.A.V.D.; Visualization, A.M.N.
and G.K.G.S.; Writing—original draft, A.M.N., G.K.G.S. and L.A.V.D.; Writing—review and editing,
A.M.N., G.K.G.S. and L.A.V.D.; Funding acquisition, A.M.N. and G.K.G.S. All authors have read and
agreed to the published version of the manuscript.

Funding: The APC was funded by 2 A.M. Treinamento e Consultoria Ltda.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2024, 14, 4880 24 of 26

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare that this study received funding from 2 A.M. Treinamento e
Consultoria Ltda. The funder was not involved in the study design, collection, analysis, interpretation
of data, the writing of this article or the decision to submit it for publication.

References
1. Cohane, R. Financial Cost of Software Bugs. Available online: https://medium.com/@ryancohane/financial-cost-of-software-

bugs-51b4d193f107 (accessed on 31 March 2024).
2. Krasner, H. The Cost of Poor Software Quality in the US: A 2020 Report. Proc. Consortium Inf. Softw. QualityTM (CISQTM) 2021,

1–46. Available online: https://www.it-cisq.org/cisq-files/pdf/CPSQ-2020-report.pdf (accessed on 13 April 2024).
3. Schlappig, B. Regulators Discover New 737 MAX Autopilot Problem. Available online: https://onemileatatime.com/737-max-

autopilot-problems/ (accessed on 31 March 2024).
4. Al Root. Boeing Stock’s $29 Billion in Lost Value Tells a Story About Earnings. Available online: https://www.barrons.com/

articles/boeing-stock-crash-market-value-earnings-51552425879 (accessed on 31 March 2024).
5. Rivero, N. Everything We Know about the Boeing 737 Max 8 Crisis. Available online: https://qz.com/1578227/everything-we-

know-about-the-boeing-737-max-8-crashes (accessed on 31 March 2024).
6. Moreira Filho, T.R.; Rios, E. Projeto & Engenharia de Software: Teste de Software; ALTA BOOKS: San Francisco, CA, USA, 2003.
7. Alyahya, S. Collaborative Crowdsourced Software Testing. Electronics 2022, 11, 3340. [CrossRef]
8. Zeng, F.; Liu, S.; Yang, F.; Xu, Y.; Zhou, G.; Xuan, J. Learning to Prioritize Test Cases for Computer Aided Design Software via

Quantifying Functional Units. Appl. Sci. 2022, 12, 10414. [CrossRef]
9. Khatibsyarbini, M.; Isa, M.A.; Jawawi, D.N.A.; Hamed, H.N.A.; Suffian, M.D.M. Test Case Prioritization Using Firefly Algorithm

for Software Testing. IEEE Access 2019, 7, 132360–132373. [CrossRef]
10. Software testing techniques (2nd Edn). B. Beizer, Published by Van Nostrand Reinhold, New York, 1990. ISBN 0-442-20672-0, 550

pages. Price: £36.50, Hard Cover. Softw. Test. Verif. Reliab. 1992, 2, 215–216. [CrossRef]
11. Evans, I. A Practitioner’s Guide to Software Test Design. By Lee Copeland. Published by Artech House, Norwood, MA, U.S.A.,

2004. ISBN: 1-58053-791-X, 320 pages. Softw. Test. Verif. Reliab. 2004, 14, 283–284. [CrossRef]
12. Myers, G.J.; Thomas, T.M.; Sandler, C. The Art of Software Testing, 3rd ed.; Wily: Hoboken, NJ, USA, 2011; Volume 1.
13. Li, K.; Wu, M. Effective Software Test Automation: Developing an Automated Software Testing Tool; John Wiley & Sons: Hoboken, NJ,

USA, 2006.
14. bin Ali, N.; Engström, E.; Taromirad, M.; Mousavi, M.R.; Minhas, N.M.; Helgesson, D.; Kunze, S.; Varshosaz, M. On the search for

industry-relevant regression testing research. Empir. Softw. Eng. 2019, 24, 2020–2055. [CrossRef]
15. Jamil, M.A.; Nour, M.K.; Alotaibi, S.S.; Hussain, M.J.; Hussaini, S.M.; Naseer, A. Software Product Line Maintenance Using

Multi-Objective Optimization Techniques. Appl. Sci. 2023, 13, 9010. [CrossRef]
16. Leicht, N.; Blohm, I.; Leimeister, J.M. Leveraging the Power of the Crowd for Software Testing. IEEE Softw. 2017, 34, 62–69.

[CrossRef]
17. Lachmann, R. 12.4—Machine Learning-Driven Test Case Prioritization Approaches for Black-Box Software Testing. In Proceedings

of the ettc2018—European Test and Telemetry Conference, Nürnberg, Germany, 26–28 June 2018.
18. Rätzmann, M.; De Young, C. Software Testing and Internationalization; Lemoine International, Incorporated: Salt Lake City, UT,

USA, 2003.
19. Broekman, B.; Notenboom, E. Testing Embedded Software; Pearson Education: London, UK, 2003.
20. Grbac, T.G.; Runeson, P.; Huljenic, D. A Second Replicated Quantitative Analysis of Fault Distributions in Complex Software

Systems. IEEE Trans. Softw. Eng. 2012, 39, 462–476. [CrossRef]
21. Mauša, G.; Grbac, T.G. Co-evolutionary multi-population genetic programming for classification in software defect prediction:

An empirical case study. Appl. Soft Comput. 2017, 55, 331–351. [CrossRef]
22. Nascimento, A.M.; de Melo, V.V.; Dias, L.A.V.; da Cunha, A.M. Increasing the Prediction Quality of Software Defective Modules

with Automatic Feature Engineering. In Information Technology-New Generations: 15th International Conference on Information
Technology; Springer: Berlin/Heidelberg, Germany, 2018; Volume 738.

23. Elish, K.O.; Elish, M.O. Predicting defect-prone software modules using support vector machines. J. Syst. Softw. 2008, 81, 649–660.
[CrossRef]

24. Li, J.; He, P.; Zhu, J.; Lyu, M.R. Software Defect Prediction via Convolutional Neural Network. In Proceedings of the 2017 IEEE
International Conference on Software Quality, Reliability and Security (QRS 2017), Prague, Czech Republic, 25–29 July 2017.

25. Ordonez, M.J.; Haddad, H.M. The State of Metrics in Software Industry. In Proceedings of the International Conference on
Information Technology: New Generations (ITNG 2008), Las Vegas, NE, USA, 7–9 April 2008.

26. Shiva, S.G.; Shala, L.A. Software Reuse: Research and Practice. In Proceedings of the International Conference on Information
Technology-New Generations (ITNG 2007), Las Vegas, NE, USA, 2–4 April 2007.

27. Zhang, H.; Zhang, X.; Gu, M. Predicting Defective Software Components from Code Complexity Measures. In Proceedings of the
13th Pacific Rim International Symposium on Dependable Computing (PRDC 2007), Melbourne, Australia, 17–19 December 2007.

https://medium.com/@ryancohane/financial-cost-of-software-bugs-51b4d193f107
https://medium.com/@ryancohane/financial-cost-of-software-bugs-51b4d193f107
https://www.it-cisq.org/cisq-files/pdf/CPSQ-2020-report.pdf
https://onemileatatime.com/737-max-autopilot-problems/
https://onemileatatime.com/737-max-autopilot-problems/
https://www.barrons.com/articles/boeing-stock-crash-market-value-earnings-51552425879
https://www.barrons.com/articles/boeing-stock-crash-market-value-earnings-51552425879
https://qz.com/1578227/everything-we-know-about-the-boeing-737-max-8-crashes
https://qz.com/1578227/everything-we-know-about-the-boeing-737-max-8-crashes
https://doi.org/10.3390/electronics11203340
https://doi.org/10.3390/app122010414
https://doi.org/10.1109/access.2019.2940620
https://doi.org/10.1002/stvr.4370020406
https://doi.org/10.1002/stvr.305
https://doi.org/10.1007/s10664-018-9670-1
https://doi.org/10.3390/app13159010
https://doi.org/10.1109/ms.2017.37
https://doi.org/10.1109/tse.2012.46
https://doi.org/10.1016/j.asoc.2017.01.050
https://doi.org/10.1016/j.jss.2007.07.040

Appl. Sci. 2024, 14, 4880 25 of 26

28. Alqarni, A.; Aljamaan, H. Leveraging Ensemble Learning with Generative Adversarial Networks for Imbalanced Software
Defects Prediction. Appl. Sci. 2023, 13, 13319. [CrossRef]

29. Babatunde, A.N.; Ogundokun, R.O.; Adeoye, L.B.; Misra, S. Software Defect Prediction Using Dagging Meta-Learner-Based
Classifiers. Mathematics 2023, 11, 2714. [CrossRef]

30. Balogun, A.O.; Basri, S.; Mahamad, S.; Abdulkadir, S.J.; Almomani, M.A.; Adeyemo, V.E.; Al-Tashi, Q.; Mojeed, H.A.; Imam,
A.A.; Bajeh, A.O. Impact of Feature Selection Methods on the Predictive Performance of Software Defect Prediction Models: An
Extensive Empirical Study. Symmetry 2020, 12, 1147. [CrossRef]

31. Balogun, A.O.; Basri, S.; Mahamad, S.; Abdulkadir, S.J.; Capretz, L.F.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Kumar, G.
Empirical Analysis of Rank Aggregation-Based Multi-Filter Feature Selection Methods in Software Defect Prediction. Electronics
2021, 10, 179. [CrossRef]

32. Balogun, A.O.; Basri, S.; Abdulkadir, S.J.; Hashim, A.S. Performance Analysis of Feature Selection Methods in Software Defect
Prediction: A Search Method Approach. Appl. Sci. 2019, 9, 2764. [CrossRef]

33. Khurma, R.; Alsawalqah, H.; Aljarah, I.; Elaziz, M.; Damaševičius, R. An Enhanced Evolutionary Software Defect Prediction
Method Using Island Moth Flame Optimization. Mathematics 2021, 9, 1722. [CrossRef]

34. Pan, C.; Lu, M.; Xu, B.; Gao, H. An Improved CNN Model for Within-Project Software Defect Prediction. Appl. Sci. 2019, 9, 2138.
[CrossRef]

35. Rath, S.K.; Sahu, M.; Das, S.P.; Bisoy, S.K.; Sain, M. A Comparative Analysis of SVM and ELM Classification on Software Reliability
Prediction Model. Electronics 2022, 11, 2707. [CrossRef]

36. Tong, H.; Wang, S.; Li, G. Credibility Based Imbalance Boosting Method for Software Defect Proneness Prediction. Appl. Sci. 2020,
10, 8059. [CrossRef]

37. Wu, Y.; Yao, J.; Chang, S.; Liu, B. LIMCR: Less-Informative Majorities Cleaning Rule Based on Naïve Bayes for Imbalance Learning
in Software Defect Prediction. Appl. Sci. 2020, 10, 8324. [CrossRef]

38. Shepperd, M.; Song, Q.; Sun, Z.; Mair, C. Data Quality: Some Comments on the NASA Software Defect Datasets. IEEE Trans.
Softw. Eng. 2013, 39, 1208–1215. [CrossRef]

39. Gray, D.; Bowes, D.; Davey, N.; Sun, Y.; Christianson, B. The Misuse of the NASA Metrics Data Program Data Sets for Automated
Software Defect Prediction. In Proceedings of the IET Seminar Digest, Durham, UK, 11–12 April 2011; Volume 2011.

40. Moreira Nascimento, A.; Vismari, L.F.; Cugnasca, P.S.; Camargo Junior, J.B.; Rady De Almeira Junior, J. A Cost-Sensitive Approach
to Enhance the Use of ML Classifiers in Software Testing Efforts. In Proceedings of the 18th IEEE International Conference on
Machine Learning and Applications (ICMLA 2019), Boca Raton, FL, USA, 16–19 December 2019.

41. Freiesleben, T.; Grote, T. Beyond generalization: A theory of robustness in machine learning. Synthese 2023, 202, 1–28. [CrossRef]
42. Maleki, F.; Ovens, K.; Gupta, R.; Reinhold, C.; Spatz, A.; Forghani, R. Generalizability of Machine Learning Models: Quantitative

Evaluation of Three Methodological Pitfalls. Radiol. Artif. Intell. 2023, 5, e220028. [CrossRef]
43. Verkerken, M.; D’hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F. Towards Model Generalization for Intrusion Detection:

Unsupervised Machine Learning Techniques. J. Netw. Syst. Manag. 2022, 30, 12. [CrossRef]
44. Sankaranarayanan, S.; Balaji, Y.; Jain, A.; Lim, S.N.; Chellappa, R. Learning from Synthetic Data: Addressing Domain Shift for

Semantic Segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018.

45. Langford, M.A.; Cheng, B.H.C. “know What You Know”: Predicting Behavior for Learning-Enabled Systems When Facing
Uncertainty. In Proceedings of the 2021 International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2021), Madrid, Spain, 18–24 May 2021.

46. Feng, S.; Keung, J.; Yu, X.; Xiao, Y.; Zhang, M. Investigation on the stability of SMOTE-based oversampling techniques in software
defect prediction. Inf. Softw. Technol. 2021, 139, 106662. [CrossRef]

47. Pachouly, J.; Ahirrao, S.; Kotecha, K.; Selvachandran, G.; Abraham, A. A systematic literature review on software defect prediction
using artificial intelligence: Datasets, Data Validation Methods, Approaches, and Tools. Eng. Appl. Artif. Intell. 2022, 111, 104773.
[CrossRef]

48. Hall, T.; Beecham, S.; Bowes, D.; Gray, D.; Counsell, S. A Systematic Literature Review on Fault Prediction Performance in
Software Engineering. IEEE Trans. Softw. Eng. 2012, 38, 1276–1304. [CrossRef]

49. Abdolrasol, M.G.M.; Hussain, S.M.S.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A.
Artificial Neural Networks Based Optimization Techniques: A Review. Electronics 2021, 10, 2689. [CrossRef]

50. Panerati, J.; Schnellmann, M.A.; Patience, C.; Beltrame, G.; Patience, G.S. Experimental methods in chemical engineering: Artificial
neural networks–ANNs. Can. J. Chem. Eng. 2019, 97, 2372–2382. [CrossRef]

51. Chen, S.; Ren, Y.; Friedrich, D.; Yu, Z.; Yu, J. Sensitivity analysis to reduce duplicated features in ANN training for district heat
demand Prediction. Energy AI 2020, 2, 100028. [CrossRef]

52. Zhou, T.; Wang, F.; Yang, Z. Comparative Analysis of ANN and SVM Models Combined with Wavelet Preprocess for Groundwater
Depth Prediction. Water 2017, 9, 781. [CrossRef]

53. Shah, D.; Wang, J.; He, Q.P. Feature engineering in big data analytics for IoT-enabled smart manufacturing—Comparison between
deep learning and statistical learning. Comput. Chem. Eng. 2020, 141, 106970. [CrossRef]

54. Chu, J.; Liu, X.; Zhang, Z.; Zhang, Y.; He, M. A novel method overcomeing overfitting of artificial neural network for accurate
prediction: Application on thermophysical property of natural gas. Case Stud. Therm. Eng. 2021, 28. [CrossRef]

https://doi.org/10.3390/app132413319
https://doi.org/10.3390/math11122714
https://doi.org/10.3390/sym12071147
https://doi.org/10.3390/electronics10020179
https://doi.org/10.3390/app9132764
https://doi.org/10.3390/math9151722
https://doi.org/10.3390/app9102138
https://doi.org/10.3390/electronics11172707
https://doi.org/10.3390/app10228059
https://doi.org/10.3390/app10238324
https://doi.org/10.1109/tse.2013.11
https://doi.org/10.1007/s11229-023-04334-9
https://doi.org/10.1148/ryai.220028
https://doi.org/10.1007/s10922-021-09615-7
https://doi.org/10.1016/j.infsof.2021.106662
https://doi.org/10.1016/j.engappai.2022.104773
https://doi.org/10.1109/tse.2011.103
https://doi.org/10.3390/electronics10212689
https://doi.org/10.1002/cjce.23507
https://doi.org/10.1016/j.egyai.2020.100028
https://doi.org/10.3390/w9100781
https://doi.org/10.1016/j.compchemeng.2020.106970
https://doi.org/10.1016/j.csite.2021.101406

Appl. Sci. 2024, 14, 4880 26 of 26

55. Lin, C.-J.; Wu, N.-J. An ANN Model for Predicting the Compressive Strength of Concrete. Appl. Sci. 2021, 11, 3798. [CrossRef]
56. Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018, 6,

52138–52160. [CrossRef]
57. Razavi, S. Deep learning, explained: Fundamentals, explainability, and bridgeability to process-based modelling. Environ. Model.

Softw. 2021, 144, 105159. [CrossRef]
58. Chapman, M.; Callis, P.; Menzies, T. JM1/Software Defect Prediction 2004. Available online: http://promise.site.uottawa.ca/

SERepository/datasets/jm1.arff (accessed on 13 April 2024).
59. Ma, Y.; Luo, G.; Zeng, X.; Chen, A. Transfer learning for cross-company software defect prediction. Inf. Softw. Technol. 2012, 54,

248–256. [CrossRef]
60. Alsghaier, H.; Akour, M. Software fault prediction using Whale algorithm with genetics algorithm. Softw. Pract. Exp. 2021, 51,

1121–1146. [CrossRef]
61. Gaffney, J.E., Jr. Metrics in Software Quality Assurance. In Proceedings of the ACM’81 conference, Los Angeles, CA, USA, 9–11

November 1981; pp. 126–130.
62. Halstead, M.H. Toward a theoretical basis for estimating programming effort. In Proceedings of the 1975 Annual Conference,

Minneapolis, MV, USA, 20–22 October 1975; pp. 222–224. [CrossRef]
63. McCabe, T.J.; Butler, C.W. Design complexity measurement and testing. Commun. ACM 1989, 32, 1415–1425. [CrossRef]
64. McCabe, T.J. A Complexity Measure. IEEE Trans. Softw. Eng. 1976, SE 2, 308–320. [CrossRef]
65. Wilson, D.L. Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE Trans. Syst. Man Cybern. 1972, 2, 408–421.

[CrossRef]
66. Lewis, D.D.; Catlett, J. Heterogeneous Uncertainty Sampling for Supervised Learning. In Proceedings of the 11th International

Conference on Machine Learning (ICML 1994), New Brunswick, NJ, USA, 10–13 July 1994.
67. Kubat, M.; Matwin, S. Addressing the Curse of Imbalanced Training Sets: One-Sided Selection. In Proceedings of the International

Conference on Machine Learning, Nashville, TN, USA, 8–12 July 1997.
68. Chambers, R.L. Robust Case-Weighting for Multipurpose Establishment Surveys. J. Off. Stat.-Stockh. 1996, 12, 3–32.
69. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
70. Nascimento, A.M.; de S. Meirelles, F. An Artificial Intelligence Adoption Intention Model (AI2M) Inspired by UTAUT. In

Proceedings of the Information Systems in Latin America (ISLA 2022), Virtually, 8–10 August 2022.
71. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software: An Update. ACM

SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]
72. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
73. Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral

prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev.
2015, 71, 804–818. [CrossRef]

74. Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22.
75. Robinson, R.L.M.; Palczewska, A.; Palczewski, J.; Kidley, N. Comparison of the Predictive Performance and Interpretability of

Random Forest and Linear Models on Benchmark Data Sets. J. Chem. Inf. Model. 2017, 57, 1773–1792. [CrossRef]
76. Kumaravel, A.; Vijayan, T. Comparing cost sensitive classifiers by the false-positive to false-negative ratio in diagnostic studies.

Expert Syst. Appl. 2023, 227, 120303. [CrossRef]
77. Meekins, R.; Adams, S.; Beling, P.A.; Farinholt, K.; Hipwell, N.; Chaudhry, A.; Polter, S.; Dong, Q. Cost-Sensitive Classifier

Selection When There is Additional Cost Information. In Proceedings of the Machine Learning Research, 2018; Volume 88.
Available online: https://proceedings.mlr.press/v88/meekins18a.html (accessed on 13 April 2024).

78. Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B (Methodol.) 1974, 36, 111–133.
[CrossRef]

79. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the IJCAI
International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; Volume 2.

80. Menzies, T.; Di Stefano, J.S. How Good Is Your Blind Spot Sampling Policy. In Proceedings of the Eighth IEEE International
Symposium on High Assurance Systems Engineering, Tampa, FL, USA, 25–26 March 2004; pp. 129–138.

81. Seliya, N.; Khoshgoftaar, T.M.; Van Hulse, J. A Study on the Relationships of Classifier Performance Metrics. In Proceedings of
the International Conference on Tools with Artificial Intelligence (ICTAI), Newark, NJ, USA, 2–4 November 2009.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app11093798
https://doi.org/10.1109/access.2018.2870052
https://doi.org/10.1016/j.envsoft.2021.105159
http://promise.site.uottawa.ca/SERepository/datasets/jm1.arff
http://promise.site.uottawa.ca/SERepository/datasets/jm1.arff
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1002/spe.2941
https://doi.org/10.1145/800181.810326
https://doi.org/10.1145/76380.76382
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/tsmc.1972.4309137
https://doi.org/10.1613/jair.953
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.oregeorev.2015.01.001
https://doi.org/10.1021/acs.jcim.6b00753
https://doi.org/10.1016/j.eswa.2023.120303
https://proceedings.mlr.press/v88/meekins18a.html
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

	Introduction
	Materials and Methods
	Dataset
	Machine Learning Framework and Technique
	Experimental Protocol
	Evaluation Metrics
	Statistical Tests

	Results
	Discussion
	Conclusions
	References

