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Abstract: Traditional automatic gardening pruning robots generally employ electronic fences for the
delineation of working boundaries. In order to quickly determine the working area of a robot, we
combined an improved DeepLabv3+ semantic segmentation model with a simultaneous localization
and mapping (SLAM) system to construct a three-dimensional (3D) semantic map. To reduce the
computational cost of its future deployment in resource-constrained mobile robots, we replaced the
backbone network of DeepLabv3+, ResNet50, with MobileNetV2 to decrease the number of network
parameters and improve recognition speed. In addition, we introduced an efficient channel attention
network attention mechanism to enhance the accuracy of the neural network, forming an improved
Multiclass MobileNetV2 ECA DeepLabv3+ (MM-ED) network model. Through the integration of this
model with the SLAM system, the entire framework was able to generate a 3D semantic point cloud
map of a lawn working area and convert it into octree and occupancy grid maps, providing technical
support for future autonomous robot operation and navigation. We created a lawn dataset containing
7500 images, using our own annotated images as ground truth. This dataset was employed for
experimental purposes. Experimental results showed that the proposed MM-ED network model
achieved 91.07% and 94.71% for MIoU and MPA metrics, respectively. Using a GTX 3060 Laptop
GPU, the frames per second rate reached 27.69, demonstrating superior recognition performance
compared to similar semantic segmentation architectures and better adaptation to SLAM systems.

Keywords: semantic segmentation; improved DeepLabv3+; ORB-SLAM3; attention mechanism; 3D
semantic maps

1. Introduction

In recent years, with continuous advancements in computer vision, deep learning,
and artificial intelligence technologies, the widespread application of depth sensors [1] and
Light Detection and Ranging (LiDAR) [2] has propelled the rapid development of three-
dimensional (3D) semantic maps [3]. Robots are playing an increasingly important role in
daily life, undertaking various tasks to make our lives more convenient. To better fulfill
these tasks, higher demands are placed on the performance of robots. In the construction of
3D semantic maps for unstructured scenes such as lawns [4,5], surrounding environment
perception, autonomous navigation, localization, and scene understanding become crucial
for gardening pruning robots, assisting them in achieving better lawn-mowing results.

In the field of deep learning, although object detection [6] can identify the positions
and categories of objects in images, it cannot accurately detect the specific boundaries of
large or irregular targets, such as lawns, streets, sky, and wall cracks. However, medical
applications and applications in intelligent robots, drones, and other technologies often
require the precise identification of the locations and boundaries of target areas, involving
a region target recognition and boundary localization problem which can be generalized
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as a boundary detection problem [7]. When addressing the issue of lawn area and its
boundary detection, it is necessary to identify the lawn and other elements by analyzing the
semantics of the image scene. Based on this information, the boundaries of the lawn and
the positions of obstacles must be located to support the robot’s autonomous navigation
and obstacle avoidance.

Typically, the maintenance of lush lawns is carried out by gardeners using hand-held
mowers or riding mowers. In recent years, some smart lawn mowers have also emerged,
but they often require the installation of electronic fences [8] before they begin working.
These fences delineate the robot’s maximum working range to prevent it from entering
inappropriate areas and causing equipment damage. Overall, traditional lawn-mowing
methods primarily rely on the autonomous responses of humans or robots, lacking a
holistic awareness of the required working area. Lawn trimming is usually a manual, labor-
intensive, and time-consuming task. However, with labor shortages, aging populations,
and declining birth rates becoming common challenges faced by agriculture and other
labor-intensive industries, the development of robotic technology becomes an optimal
strategy for addressing this problem, enabling robots to replace gardeners in performing
lawn trimming tasks.

In recent years, semantic image segmentation [9] has emerged as a key task in image
processing. This rapid progress has led to a paradigm shift in the way many fields approach
problem solving. Consequently, the benefits of utilizing semantic image segmentation in
autonomous lawnmowers are evident. It enables better recognition of the surrounding
environment, accurately identifying environmental information, thereby facilitating the
creation of a global map of the environment for improved path planning in the future.

In this study, we created a lawn dataset using self-annotated images as ground truth.
We employed the proposed Multi-Class MobileNetV2 ECA DeepLabv3+ (MM-ED) net-
work to segment the lawn dataset and compared its performance with other deep learning
algorithms. Experimental results show that compared to other algorithms, the architecture
proposed in this paper is suitable for integration into ORB-SLAM3 and demonstrates higher
accuracy relative to other algorithms, making it suitable for real-time, resource-constrained
mobile robot applications. Moreover, the system framework proposed in this paper, which
integrates MM-ED and ORB-SLAM3, can effectively generate 3D semantic point cloud
maps, enabling the robust reconstruction of the working area and providing crucial techni-
cal support for the autonomous operation and navigation of gardening pruning robots.

2. Related Work
2.1. Technology for the Semantic Segmentation Recognition of Images

For gardening pruning robots, detecting a viable working area is a prerequisite for
autonomous navigation. In the realm of semantic detection, scholars worldwide have
proposed a plethora of detection algorithms for image semantic segmentation in recent
decades, such as PSPNet, U-Net, and HRNet. Although research on the semantic segmen-
tation of lawn scenes is relatively scarce, semantic segmentation networks have found
widespread application in other areas.

In terms of reducing the complexity of the backbone network, Yan et al. proposed a
method for tea bud segmentation and picking point localization based on a lightweight
convolutional neural network, Multiclass DeepLabV3+ MobileNetV2 (MC-DM). By op-
timizing MobileNetV2 and introducing a densely connected spatial pyramid pooling
module, they achieved high-precision tea bud segmentation [10]. Shi et al., aiming to
achieve the automatic and effective extraction of stand-alone tree elements in images, pro-
posed a lightweight network segmentation model, SENet and MobileNet embedded in
DeepLabV3+ (SEMD). By choosing DeepLabV3+ as a base framework, integrating Mo-
bileNet to reduce complexity, and introducing SENet to capture feature information, they
managed to achieve the high-precision segmentation of stand-alone tree images against
complex backgrounds [11].
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In terms of enhancing model accuracy, Feng et al. improved the DeepLabV3+ network
model by embedding the CBAM module and utilizing SENet to optimize the decoding
part, significantly enhancing the accuracy and localization precision of semantic segmenta-
tion for parts of Tilapia, effectively addressing the issues of target edge and small object
segmentation [12]. Cai et al., addressing the issue of the inaccurate segmentation of straw-
berries at different maturity stages, proposed a method based on an improved DeepLabV3+
model. By introducing an attention mechanism to adjust the weights of neural network
feature channels, they significantly enhanced the feature information of strawberry images,
markedly improving segmentation precision [13]. Zheng et al. proposed a Lateral Hierar-
chically Refining Network (LHRNet) for the precise detection of salient objects, effectively
integrating multi-level features and merging coarse semantics with fine details to produce
more reliable predictions [14].

Regarding fusion with other algorithms, Chen et al. proposed a non-contact mea-
surement method for concrete plane structure cracks based on binocular vision, using an
improved DeepLabV3+ model for crack area segmentation combined with SIFT feature-
point-matching principles to calculate crack width, proving that this method solves the
problem of the rapid and convenient measurement of concrete crack width in outdoor
environments [15].

It is evident that semantic segmentation has provided rich solutions for addressing var-
ious issues, hence the motivation to apply this approach to constructing lawn environments
with the intention to achieve effective lawn semantic segmentation results.

2.2. Three-Dimensional Semantic Map Technology

Unstructured 3D point cloud maps are crucial for perceiving surrounding environ-
ments, autonomous navigation, and autonomous scene understanding. For gardening
pruning robots, unstructured 3D point cloud semantic segmentation technology is a key
technology for achieving autonomous operation and navigation. Three-dimensional se-
mantic maps can assist gardening robots in recognizing and detecting obstacles, thereby
providing obstacle avoidance and motion path-planning capabilities, significantly improv-
ing the operation and production efficiency of gardening robots. After performing semantic
segmentation on captured images to obtain the semantic information of different objects,
directly mapping the semantic mask images to actual physical 3D coordinates can establish
a 3D point cloud map of the working environment.

In terms of integrating the construction of 3D semantic maps with deep learning
methods, Cui et al. integrated an improved YOLOV3 algorithm to propose a new method
for constructing 3D semantic maps for mobile robots, combining it with a SLAM system
for pose estimation and three-dimensional environment construction [16]. Chen et al., by
improving the neural network structure of RandLA-Net, constructed a deep 3D point cloud
semantic segmentation model for large-scale unstructured agricultural scenes [17]. Yajima
et al. utilized Structure from Motion (SFM) to create 3D point clouds and employed deep
learning for the segmentation and classification of highway assets, addressing the issues of
labor-intensive and time-consuming processes in highway maintenance and infrastructure
monitoring [18].

Regarding research on constructing semantic maps of different scales, Koch et al.
focused on small-scale 3D reconstruction to generate detailed, brief, and safe flight plans
for unmanned aerial vehicles (UAVs) in environments, considering semantic properties
through discrete optimization [19]. Zhang et al. proposed a method for reconstructing
dense, large-scale outdoor 3D semantic maps based on monocular vision, achieving seman-
tic segmentation through visual odometry, depth estimation, and a deep learning-based
conditional random field (CRF) image segmentation system, ultimately producing dense
urban environment 3D semantic maps with global consistency [20].

It is clear that in many instances, establishing 3D semantic maps can significantly aid
in improving work processes and solving many previously unresolved issues, making the
construction of 3D semantic maps for lawn environments both necessary and meaningful.
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3. Materials and Methods
3.1. Semantic Segmentation Module
3.1.1. Basic Principles of Deeplabv3+

DeepLabv3+ [21] is a representative architecture in the field of semantic segmentation,
having evolved from DeepLabv1, which was released by Google in 2014. It enhances the
speed and accuracy of semantic segmentation by introducing concepts such as conditional
random fields (CRFs), Atrous Spatial Pyramid Pooling (ASPP), and the encoder–decoder
architecture. It mainly consists of two parts: an encoder module and a decoder module.
In the encoding stage, the input image is first passed through a backbone network; some
researchers use residual networks (ResNet) as backbone networks to obtain feature maps
which are downsampled 16 times. Then, these downsampled feature maps are fed into
the ASPP module. The ASPP module consists of a 1 × 1 convolution, an average pooling
layer with global information, and three 3 × 3 dilated convolution layers with dilation
rates of 6, 12, and 18, respectively. Finally, the feature maps obtained from the ASPP
module are concatenated, and the channel number is compressed to 256 through a 1 × 1
convolution. In the decoding part, the output feature maps from the encoding part are
upsampled four times using a bilinear interpolation algorithm. Then, they are concatenated
with same-resolution feature maps extracted by the backbone network. Lastly, a 3 × 3
convolution refines the concatenated features, resulting in the segmentation output. The
overall architecture of DeepLabv3+ is illustrated in Figure 1.
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3.1.2. Improved DeepLabv3+ Architecture

In this paper, an improvement scheme is proposed for the original DeepLabv3+ model,
which has problems such as a large number of model parameters, inconvenient portability,
and poor real-time performance. The improved network structure is shown in Figure 2, and
the improved lightweight real-time multi-object semantic segmentation detection network
is called Multiclass MobileNetV2 ECA DeepLabv3+ (MM-ED). The improvement is mainly
reflected in the following two aspects:

1. The lightweight architecture MobileNetV2 [22] is introduced in the backbone network.
This effectively reduces redundant computations and memory accesses, decreases
model size, and speeds up inference.

2. The Efficient Channel Attention Network (ECANet) attention mechanism [23] is
introduced at the end of the backbone network, incorporating channel attention. This
greatly enhances the feature extraction capability of the model.
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The model improvements proposed in this paper were optimized considering the
limited computational capabilities and small storage spaces often found in the embedded
platforms carried by gardening pruning robots devices. Reducing the size of the backbone
network is conducive to operating efficiently on such platforms. Additionally, incorporating
attention mechanisms can enhance the model’s recognition accuracy within constrained
computational resources.
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3.1.3. Lightweight Backbone Network MobileNetV2

MobileNetV2 is a lightweight neural network model proposed by the Google team in
2018. Compared to the traditional residual structure of ResNet, MobileNetV2 has fewer
parameters, a simpler model structure, and a faster network training speed.

The MobileNet architecture introduces depthwise separable convolution to replace
standard convolution, reducing computational complexity and model parameters. Depth-
wise separable convolution decomposes a regular convolution into depthwise convolution
and pointwise convolution. It first decomposes the input features into multiple single-
channel features and applies a 3 × 3 convolution kernel on each channel, which is known as
depthwise convolution. Then, pointwise convolution convolves the result of the depthwise
convolution with a 1 × 1 convolution, assembling the output features. Depthwise separable
convolution can significantly reduce computational complexity compared to standard
convolution with a relatively modest decrease in prediction accuracy.

Building upon depthwise separable convolution, MobileNetV2 introduces an inverted
residual structure and employs a linear layer in the final layer, further enhancing network
performance. The inverted residual structure consists of three main parts. First, it increases
the dimension of input features using a 1 × 1 convolution. Then, it extracts features using
a 3 × 3 depthwise separable convolution, followed by a dimension reduction using a
1 × 1 convolution. Unlike the residual structure, the inverted residual structure avoids
the drawback of the network performing well only on low-dimensional features when
the input feature channel count is low, leading to the loss of high-dimensional feature
information. To prevent the destruction of features by the ReLU function, the inverted
residual structure employs 1 × 1 convolutions for dimensionality expansion before the
3 × 3 network structure and for dimensionality reduction after the 3 × 3 network structure.
The Rectified Linear Unit (ReLU) activation function is replaced with a linear function to
minimize the loss of useful network information. The network architecture of MobileNetV2
is shown in Table 1.
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Table 1. MobileNetV2 network architecture.

Input Network t c n s

224 × 224 × 3 Conv2d - 32 1 2
112 × 112 × 32 Bottleneck 1 16 1 1
112 × 112 × 16 Bottleneck 6 24 2 2
56 × 56 × 24 Bottleneck 6 32 3 2
28 × 28 × 32 Bottleneck 6 64 4 2
14 × 14 × 64 Bottleneck 6 96 3 1
14 × 14 × 96 Bottleneck 6 160 3 1
7 × 7 × 160 Bottleneck 6 320 1 2
7 × 7 × 320 Conv2d 1 × 1 - 1280 1 1

7 × 7 × 1280 Avgpool 7 × 7 - - 1 -
1 × 1 × 1280 Conv2d 1 × 1 - k - -

In Table 1, “Input” represents the size of the input feature map for the current layer.
“Network” shows the network structure of each layer in MobileNetV2, including regular
convolution layers, inverted residual structures, and average pooling layers. “t” is the
expansion factor for channels in the inverted residual structure, “n” is the repetition count
for the current layer, “c” is the number of output channels, and “s” is the convolution stride
for the current layer.

The method proposed in this paper ultimately needs to ensure that the neural network
model can be invoked in ORB-SLAM3; in practical applications, it must be deployed on
embedded devices. Typically, algorithms running on embedded devices have a faster
recognition speed and utilize less storage space while achieving approximate recognition
accuracy. MobileNetV2 is a lightweight network suitable for embedding in mobile devices.
Compared to the ResNet series network originally used as the backbone feature extraction
network in DeepLabv3+, MobileNetV2 is better suited for deployment on edge devices,
offering more efficient parameters and a faster speed.

3.1.4. Attention Mechanism ECA

In the original DeepLabv3+ model, after passing through the backbone network,
the model directly enters the ASPP layer for processing, with the importance of each
channel’s semantic information weighted equally by default. The attention mechanism
can be considered a dynamic weight adjustment process based on input features. In the
visual domain, humans can extract information from areas of interest in complex scenes
using the brain. Inspired by this observation, attention mechanisms have been introduced
in computer vision to mimic this aspect of the human visual system.

ECANet is an image attention mechanism focused on enhancing the model’s attention
to edge information, aiming to improve the performance of image-processing tasks. Here
are some key features of ECANet:

1. ECANet introduces a contextual attention mechanism to allow the model to better
understand relationships between pixels in an image. This helps the model capture
contextual information in the image more effectively.

2. By enhancing attention to edge information, ECANet improves the model’s perception
of details. This is crucial for many image-processing tasks such as object detection
and image segmentation.

3. ECANet introduces an adaptive pooling mechanism to dynamically adjust the size of
attention, enabling the model to adapt better to targets or details of different sizes.

The design of ECANet aims to enhance the model’s perception of important infor-
mation in the image, particularly when dealing with complex images. This mechanism
has demonstrated good performance in many image-processing tasks. Figure 3 provides a
schematic diagram of the ECANet attention mechanism’s network structure.
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In Figure 3, “k“ represents the optimal range for channel information interaction,
which is the kernel size of the one-dimensional convolution, calculated using Formula (1).
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γ

+
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In Formula (1), “C” is the number of feature channels, and in this paper, γ and b are set
to 2 and 1, respectively. These parameters are used to adjust the ratio between the number
of channels “C” and the kernel size “k”. When there are many channels, the kernel size “k”
increases with “C” and vice versa when there are fewer channels. This approach enables
effective interactions between different channels, promoting fusion.

In the context of image semantic segmentation tasks, low-level feature maps play
a crucial role as they contain the original details and texture information of the image.
In the structure presented in this paper, the ECANet attention mechanism is introduced
before the high-level information is fed to the ASPP and is also added to the low-level
features provided to the decoding part. The inclusion of the ECA module enhances the
network’s ability to express local features, expands the receptive field, and facilitates the
capture of more diverse feature information. The adaptive channel weighting of feature
maps enhances correlation between different channels, allowing for a better exploration of
details and texture information and thus improving the recognition of object boundaries
and shapes.

3.1.5. Model Deployment

Due to the fact that the lightweight, real-time semantic segmentation network MM-
ED is implemented based on PyTorch [24] and the ORB-SLAM3 system cannot directly
invoke PyTorch models, it is necessary to export this architecture in a form that can be
used in the ORB-SLAM3 system. To achieve this, we chose to use TorchScript, a tool in
PyTorch for converting models into an efficiently executable intermediate representation,
to enhance model performance and deployment efficiency. In this paper, we converted the
inference model into the TorchScript format and invoked it using LibTorch in C++, thereby
implementing the inference functionality.

This deployment approach offers flexibility and high performance, enabling the MM-
ED network to be seamlessly integrated into the ORB-SLAM3 system, providing an efficient
solution for real-time segmentation tasks. By utilizing TorchScript and LibTorch, we can
leverage the powerful capabilities of PyTorch and achieve high-performance inference using
the model in different environments. This integrated approach provides a convenient and
effective way of applying the architecture, making the deployment of deep learning models
in practical systems more feasible. Figure 4 illustrates the deployment and invocation
process of our model.
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3.2. Visual SLAM System Framework

In the exploration of unknown environments, mobile robots utilize various sensors to
gather environmental information. Currently, there are two mainstream SLAM methods:
Visual SLAM [25] and LiDAR-based SLAM [26]. They each have their advantages and find
widespread application in their respective domains. LiDAR, which is used for constructing
3D point clouds, operates under various lighting conditions and provides precise measure-
ments and localization. However, LiDAR devices are relatively expensive compared to
the cameras used in Visual SLAM. Therefore, the lawn semantic map construction system
designed in this paper utilizes Visual SLAM technology. The main visual sensors are
categorized into three types, monocular cameras [27], stereo cameras [28], and RGB-D
depth cameras, corresponding to different types of Visual SLAM technologies.

Compared to monocular and stereo cameras, RGB-D cameras have significant ad-
vantages in building 3D point cloud maps. Firstly, RGB-D cameras can provide depth
information for each pixel simultaneously while capturing color images, whereas stereo
cameras require stereo-vision-matching calculations to obtain depth information. This
allows RGB-D cameras to avoid additional and complex depth calculations during the
mapping process, reducing the computational burden and enhancing real-time mapping
efficiency. Secondly, RGB-D cameras can comprehensively capture the three-dimensional
information of a scene. Monocular cameras provide only two-dimensional image informa-
tion, and although stereo cameras can obtain depth information, their disparity calculations
and matching process are susceptible to factors like lighting and texture. RGB-D cameras,
by directly measuring depth, overcome these issues, resulting in a more accurate and stable
construction of the 3D point cloud map. This is crucial for the navigation and localization
of mobile robots in unknown environments. In summary, RGB-D cameras are superior at
building 3D point cloud maps, providing essential support for the efficient and reliable
perception and navigation of mobile robots in complex environments. Since the method
proposed in this paper requires the construction of a 3D point cloud map, using an RGB-D
camera is more efficient.

SLAM technology mainly consists of four key components: sensor data acquisition,
motion estimation and localization optimization, loop closure detection, and map construc-
tion. A typical Visual SLAM framework, as illustrated in Figure 5, is roughly divided into
two main modules: a frontend and a backend. The frontend is responsible for sensor data
collection and visual odometry, while the backend includes nonlinear optimization and
map-building loop closure detection to correct the results obtained by the frontend. This
system enables robots to explore unknown and unstructured environments, acquiring rich
and specific information within their unstructured surroundings. This information can be
utilized for future analysis, localization, and navigation within the environment.
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The ORB-SLAM [29], proposed in 2015, stands out as one of the most sophisticated
and user-friendly SLAM systems in contemporary robotics and computer vision appli-
cations. ORB-SLAM3, an enhanced version of its predecessor ORB-SLAM2, integrates
state-of-the-art Oriented FAST and Rotated BRIEF (ORB) feature description and match-
ing techniques. This system provides robust and efficient visual odometry and mapping
capabilities. We will further explore the realm of 3D semantic maps of unstructured lawn
scenes by combining our MM-ED model with ORB-SLAM3.

3.3. Mapping Module

To obtain more comprehensive 3D map information, we extended ORB-SLAM3 to
achieve semantic map construction for lawn scenes. Originally, ORB-SLAM3 provided
a sparse map, but we aimed to combine feature points and distance information from
RGB-D cameras to generate a denser point cloud map. Building upon ORB-SLAM3, we
introduced an additional thread dedicated to constructing a dense point cloud map. To
avoid unnecessary calculations and redundant information, we chose to pass RGB images
and depth information into the point cloud construction thread upon keyframe recognition,
efficiently generating a dense point cloud map.

Figure 6 illustrates how we improved the processing pipeline for point cloud maps.
In the original dense point cloud construction process, the camera captures video and
ORB-SLAM3 extracts keyframe information from the video. By combining RGB images
and depth information from the keyframes, a dense point cloud is obtained. In our new
processing pipeline, RGB images are inputted into our proposed MM-ED network model
to obtain masked images. These masked images are then combined with depth information
to obtain a 3D semantic map.
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Our point cloud construction system not only considers the geometric structure of
the map but also incorporates semantic information by processing RGB images using the
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MM-ED neural network. This step aids in identifying regions in the image with semantic
information, generating corresponding mask images. Subsequently, we construct a point
cloud map based on this semantic information, enabling the map to not only include
geometric structures but also possess semantic information. This enhances the map’s
expressive capabilities, significantly reduces point cloud storage space, and optimizes map
representation efficiency by eliminating many irrelevant points.

In this paper, we fully consider the semantic map construction module and propose the
simultaneous construction of two forms of maps. By transforming point cloud information
into an OctoMap [30] and an occupancy grid map [31], we comprehensively express the
features and semantic information of the environment.

OctoMap is a highly efficient three-dimensional spatial data structure. It implicitly
represents and manages objects in space by recursively dividing three-dimensional space
into eight subnodes. It does not require the explicit storage of triangular meshes, greatly
saving memory. OctoMap can efficiently and finely manage and represent objects in
three-dimensional space, which is a significant advantage of its use in three-dimensional
applications. In terms of navigation, the octree structure efficiently represents hierarchical
information in space, allowing the map to describe the details of the environment more
finely, including objects and structures at different levels, providing good assistance for
three-dimensional navigation.

The advantage of occupancy grid maps lies in their ability to perform more accurate
path planning. By partitioning a map into grids, obstacles and passable areas can be
clearly represented, allowing for more precise calculations of optimal paths. Grid maps
can also help a robot avoid obstacles and choose shorter, safer paths when selecting routes.
Additionally, grid maps can be used for real-time updates, adjusting paths based on
actual conditions, making path planning more flexible and adaptive to changes. By fully
leveraging the advantages of grid maps, we can improve the accuracy and efficiency of
path planning, achieving superior navigation and path guidance.

The corresponding semantic map construction framework is illustrated in Figure 7.
The map models obtained through this method serve as relative position references for the
robot when it needs to reposition itself in similar environments.
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4. Experiments and Evaluation

In this section, we conduct experiments with and validate the proposed MM-ED
network model. In Section 4.1, we introduce the dataset used and its annotation details.
Section 4.2 provides a detailed description of our experimental platform and parameter
settings. Subsequently, in Section 4.3, we present the metrics used to evaluate the improved
model. In Section 4.4, we conduct a series of comparative experiments and ablation
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studies aimed at demonstrating the effectiveness of the improvements in the backbone
and attention mechanism on model performance. We compare the proposed method
with representative methods in the segmentation field, including U-Net [32], HRNet [33],
FCN [34], and DeepLabv3+. In Section 4.5, we integrate the improved MM-ED network into
the ORB-SLAM3 system for the establishment of a 3D point cloud semantic map, generating
occupancy grid maps and OctoMaps. This step aims to validate the effectiveness of the
mapping method proposed in this paper.

4.1. Dataset Descriptions
4.1.1. Image Annotation

We used the open-source semantic segmentation image labeling tool ISAT_with_
segment_anything [35] for image annotation. This tool is built on top of the latest semantic
segmentation model, Segment Anything [36], which allows users to utilize the model’s
prediction results to assist in labeling, significantly improving efficiency and effectively
reducing our workload. The model achieved higher accuracy on multiple datasets com-
pared to previous models, with higher segmentation accuracy and generalization capability,
thereby enhancing the quality of the annotations. Additionally, the tool employs interactive
logic, allowing for iterative improvements on selected areas to ensure the desired accuracy.
Specifically, when labeling lawn areas, for example, users only need to click on any point
within the lawn area and the tool will invoke the model for prediction and generate a drag-
gable polygon based on the prediction results. The accuracy of whether objects are correctly
labeled primarily depends on whether the labeled contours match the outer boundaries
of the objects. If the generated prediction results do not align with our desired outcome,
corrections can be made within the tool through smudging and dragging operations to
ensure accuracy in labeling. Compared to traditional tools like Labelme (where labeling
blocks requires outlining their entire contours), using this tool for annotation is much faster.
The final annotation results for each object are manually verified by us to ensure accuracy
and are then used as ground truth images. In the experiments, the dataset was divided into
a 70:30 ratio for training and testing.

The interface of the annotation tool is as shown in Figure 8, where the red area
represents the lawn region automatically predicted by the model Segment Anything. We
can further adjust it to meet our desired objectives.
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We manually divided the collected images into seven categories: Background (cls0,
black), Lawn (cls1, red), Trunk (cls2, green), Edge (cls3, yellow), People (cls4, blue), Obstacle
(cls5, purple), and Bushes (cls6, cyan). The original image was a 24-bit RGB image, and its
corresponding visual labels are illustrated in Figure 9.
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Figure 9. Lawn images and their corresponding visualization labels.

Our explanation of the annotation situation is based on the working conditions of
common gardening pruning robots. “Lawn” represents the robot’s working area, while
“Edge” delineates the boundaries of the robot’s operation. The weeding tasks of the
robot are carried out within this boundary, and the yellow-bordered area serves as a
traditional electronic fence. Within the robot’s working area, it is not limited to only the
lawn; sometimes, objects such as “Bushes,” an “Obstacle,” or a “Trunk” may appear in
the lawn area. In this study, these three types of objects are taken as representatives of
obstacles, forming prohibited areas for the robot. During the pruning process, there are
always “People” appearing nearby. These individuals might be supervising the robot’s
work or simply passing by. Unlike other static objects, “People” are dynamic and somewhat
special, so they need to be annotated separately.

4.1.2. Lawn Environment

We collected and established a dataset containing 7500 images of various lawn scenes.
The lawn images used in the experiments were obtained on various lawns on the campus
from mid-March to mid-September 2023. To validate the effectiveness of our semantic
segmentation architecture, we typically used lawn environments such as the one shown in
Figure 10. This image is presented from a bird’s-eye view and depicts our envisioned lawn
working scenario, which is not a completely flat area without obstacles. Instead, it often
includes a variety of obstacles that hinder the operation of gardening pruning robots. It is
precisely because of the presence of various obstacles that there is a need to establish 3D
semantic maps to assist gardening pruning robots in working more efficiently.
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We captured some images with a resolution of 1280 × 1920 using an Azure Kinect
DK and some with a resolution of 640 × 480 using an Intel Realsense D455 camera. High-
resolution images were primarily used to aid with learning image information, while
low-resolution photos were used for SLAM mapping. Generally, the shooting time was
from 5:00 a.m. to 7:00 p.m. to ensure the diversity of the lawn environment, capturing
lawns with different lighting conditions, locations, and obstacle situations.

Figure 11 selects some of the pictures from our dataset, displaying the annotated
labels overlaid on the original images. Regarding the overall lawn environment, we have
demonstrated in Figure 11a,b that the pictures contain all the elements we mentioned
previously, including lawns, people, obstacles, bushes, tree trunks, and boundaries. How-
ever, capturing only pictures of types (a) and (b) would result in a large area of lawn in
the pictures, making it difficult for other types of labels to be learned by the semantic
segmentation network. Therefore, for other types of objects, we used pictures in which
they appear extensively, such as in Figure 11c, where our picture focuses on an Edge, and
similarly, in Figure 11d, which focuses on Bushes. For the labels People, Obstacles, and
Trunk, we also obtained many pictures in which these objects appear extensively to aid in
the learning of our network.
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4.2. Hardware and Software Configuration

The entire model training process was implemented by renting a “Tianchi Cloud”
shared GPU server. The server’s CPU is an Intel(R) Xeon(R) E5-2686 v4 @ 2.30 GHz with
60 GB of memory (Intel, Luoyang, China). The operating system used was Ubuntu 20.04,
64 bit, with Python 3.10, PyTorch 2.0.1, CUDA 11.8, and cuDNN 8 used for model training.
A GPU (NVIDIA RTX A4000, NVIDIA, Santa Clara, CA, USA, 16 GB VRAM) was utilized to
optimize the training speed. For experiments establishing the lawn working environment,
a handheld depth camera and a laptop were used. The test model’s frames per second (FPS)
value was evaluated using an NVIDIA GeForce RTX 3060 Laptop GPU (6 GB) (NVIDIA,
Santa Clara, CA, USA) and an Intel Core 12th i7-12700H CPU (Intel, Luoyang, China).
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Table 2 provides detailed parameters for model training, such as the maximum iterations,
learning rate, and the number of classes.

Table 2. DeepLabv3+ training parameters.

Parameter Value

Leaning Rate 0.01
Weight Decay 0.0005
Momentum 0.9

Epoch 140,000
Batch Size 4

Number of Classes 7
Crop Size 512 × 512

4.3. Evaluation Indicators

To objectively assess the semantic segmentation model’s performance on the lawn
segmentation dataset and facilitate comparisons with various methods, the following
evaluation metrics were adopted: the MIoU (Mean Intersection over Union) and MPA
(Mean Pixel Accuracy).

The MIoU is widely used to measure pixel-level overlap between model-predicted
segmentation results and actual labels. It calculates the intersection of predicted values and
actual values for individual pixel classes. The MIoU reflects a model’s ability to accurately
segment image pixels by averaging the IoUs for all categories. In lawn segmentation tasks,
a higher MIoU indicates the model’s ability to accurately capture the boundaries and shapes
of objects in the lawn environment. The formula is as follows (2):

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(2)

The CPA (Category Pixel Accuracy) measures how many pixels predicted to be positive
by the model are true positives. The calculation formula is as follows (3):

class i : Pi =
TPi

TPi + FP′
i

(3)

The MPA (Mean Pixel Accuracy) calculates the proportion of correctly classified pixels
in each class, i.e., the CPA, and then computes the average through accumulation, as shown
in Formula (4):

MPA =
sum(Pi)

number o f classes
(4)

The calculation of these two parameters is carried out through a pixel-level comparison
between the model’s predicted results and the actual labels. These metrics provide robust
support for objectively evaluating the performance of semantic segmentation models.
Here, the symbol “k” represents the number of segmentation classes, and the symbol “i”
represents the predicted category. True Positive (TP), False Negative (FP), True Negative
(TN), and False Positive (FN) parameters are used, and this series of parameters forms a
solid foundation for the in-depth analysis of the performance of semantic segmentation
models.

In this study, the backbone network was replaced, and the original model under-
went lightweight processing. Therefore, it was necessary to evaluate the model’s size
and running speed to verify the effectiveness of the improvements. We used metrics
such as Giga Floating-Point Operations Per Second (GFLOPs), Params, and FPS for a
comprehensive comparison.

Floating-Point Operations Per Second (FLOPs) is a critical metric for measuring the
computational complexity and performance of neural network models. It represents the
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number of floating-point operations performed per second. In neural networks, floating-
point operations involve floating-point arithmetic operations on weights, inputs, and
activation values. GFLOPs, indicating billions of floating-point operations per second, is
a key indicator for assessing model complexity. For resource-constrained devices such as
mobile or edge devices, lower GFLOPs values may be more suitable to ensure the model
runs smoothly on these devices.

Params refers to the number of parameters that the model needs to learn. These
parameters include weights and bias terms which are adjusted during the model’s training
process to enable it to learn from input data and produce appropriate outputs. This is also
an important metric for evaluating the complexity of a neural network model.

The FPS metric is used to evaluate detection speed, indicating the number of images
processed per second or the time required to process a single image. A shorter time implies
a higher speed. In this paper, we use the FPS metric to objectively evaluate the actual
running speed of the proposed model.

By comprehensively comparing these metrics, we can gain a comprehensive under-
standing of the proposed model’s advantages and disadvantages in terms of its complexity,
scale, and practical running speed.

4.4. Experiment and Analysis
4.4.1. Backbone Comparison Experiment

In this study, we conducted experiments on different backbone networks for the en-
coder, aiming to compare their performance in lawn environment segmentation. Taking
DeepLabV3+ as the baseline, we substituted the backbone network and carried out com-
parative experiments involving major backbones such as MobileNetV2, ResNet18 [37],
ResNet50, and ResNet101.

By observing Table 3, we can see that among various backbone networks, MobileNetV2
achieves satisfactory results owing to its depthwise separable convolutional structure. Not
only does this model reduce to a comparable level with ResNet18 in terms of GFLOPs
and its parameter count but also in the recognition metric of FPS; the recognition speed of
MobileNetV2 is almost twice that of ResNet50. It is noteworthy that although ResNet18
has a relatively small parameter count, its recognition accuracy is lower than that of
MobileNetV2. Although the MIoU of MobileNetV2 is only 0.33% higher than that of
ResNet18, the FPS value of ResNet18 is 16 higher than that of MobileNetV2, which might
lead to the misconception that ResNet18 performs better. However, in practical applications,
we need to input semantic segmentation results into ORB-SLAM3 systems to generate
3D semantic maps, with the system being most suitable for processing speeds of around
30 FPS. Exceeding this speed would result in an excessive burden on the system, possibly
leading to delays in processing. Therefore, when FPS requirements are met, MobileNetV2,
which has a higher MIoU, is the more appropriate choice.

Table 3. Backbone comparative results: MobileNetV2 achieves the best balance between accuracy
and model parameters.

Backbone MIoU/% MPA/% GFLOPs Params/M FPS

ResNet18 90.24 93.74 54.27 11.75 44.85
ResNet50 92.28 95.52 176.52 39.31 14.86
ResNet101 91.91 95.30 254.31 57.42 10.40

MobileNetV2 90.55 94.66 68.24 14.32 28.39

Hence, in scenarios in which simplifying backbone networks, improving recognition
speed, and adapting to ORB-SLAM3 systems are objectives, selecting MobileNetV2 as the
backbone network is an extremely attractive option. Overall, the results of this experiment
indicate that in the task of lawn environment segmentation, MobileNetV2 demonstrates
excellent performance and efficiency as the backbone network, providing strong support
for achieving model lightweighting and accelerating recognition speed.
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4.4.2. Experiment Comparing Attentional Mechanisms

From Table 3, it can be observed that adopting MobileNetV2 as the backbone network
undoubtedly reduces the model parameters and GFLOPs while improving the recognition
speed. However, both the MIoU and MPA show a decreasing trend compared to the
commonly used original backbone network in DeepLabv3+, ResNet50. In order to maintain
the lightweight effect at the network level by retaining MobileNetV2 as the backbone
network while improving the accuracy of model recognition, we conducted experiments
by introducing various attention mechanisms at the same position in the network.

We selected representative attention mechanisms for integration, including Efficient
Channel Attention (ECA), a Squeeze-and-Excitation (SE) block [38], a Convolutional Block
Attention Module (CBAM) [39], and Coordinate Attention (CA) [40]. These attention
mechanisms were embedded at the same location within the backbone network to explore
their impact on model performance.

The SE mechanism, through the introduction of a “Squeeze-and-Excitation” block
structure, explicitly learned relationships between channels, resulting in more effective
attention allocation. ECA focused primarily on channel dimensions, allowing the network
to concentrate more on crucial features in the image, enhancing its perception of global
information. The CBAM comprehensively considered both spatial and channel attention,
capturing key information in the feature map. The CA attention mechanism encoded precise
positional information in the neural network, aiding in modeling channel relationships and
long-term dependencies.

The comparative experiments from Table 4 reveal that ECA demonstrates the most
significant improvement in the MIoU when employed as the backbone network in the
MobileNetV2-based model, showcasing its remarkable performance. Therefore, we opted
for ECA as the attention mechanism for our model in this paper, aiming to further en-
hance the model’s performance. Regarding the MIoU parameter rather than the MPA,
the introduction of the ECA attention mechanism leads to a 0.52% increase in the MIoU
for models switched to lightweight backbone networks. The MIoU serves as a metric for
measuring the degree of overlap between predicted results and ground truth labels in
semantic segmentation models, whereas the MPA predominantly focuses on the accuracy
of predicted results. In the comparison provided in Table 4, we place greater emphasis on
the impact on the MIoU because it not only considers the accuracy of predicted results but
also consistency with ground truth labels. Therefore, in the comparison of these attention
mechanisms, the MIoU holds more reference value.

Table 4. Comparative results of attention mechanisms: ECA attention mechanism achieves the best
performance in MIoU metric.

Backbone Attention MIoU/% MPA/%

MobileNetV2 90.55 94.66
MobileNetV2 ECA 91.07 94.71
MobileNetV2 SE 90.66 94.85
MobileNetV2 CBAM 90.89 94.88
MobileNetV2 CA 90.73 94.39

4.4.3. Ablation Experiment

This section evaluates modular variables in different neural networks and analyzes
the factors influencing neural network performance. We used DeepLabv3+ as the baseline,
using ResNet50 as the baseline’s backbone. We conducted improvement experiments on
the following different network structures: (1) Baseline + A, an ECA attention module
embedded in the baseline method. (2) Baseline + B, with MobileNetV2 replacing the base-
line method’s backbone. We initially conducted single-variable improvement experiments.
(3) Baseline + A + B: Both variables were added and experiments were performed to exam-
ine the combined effects on the model. Quantitative evaluations were performed on the
test set for each experiment, and the results are presented in Table 5.
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Table 5. Ablation experiment results.

Method MIoU/% MPA/% GFLOPs Params FPS

Baseline 92.28 95.52 176.52 39.31 14.86
Baseline + A 92.86 96.13 176.53 40.87 14.85
Baseline + B 90.55 94.66 68.24 14.32 28.39

Baseline + B + A 91.07 94.71 68.25 15.10 27.69

From Table 5, it can be observed that our method exhibited a steady improvement in
segmentation results compared to the baseline. The addition of the ECA module, whether
integrated into the baseline or replacing the backbone with MobileNetV2, contributed
to an increase in the model’s recognition MIoU. After replacing the backbone network,
there were significant reductions in computational and parameter counts accompanied
by a substantial improvement in recognition speed. Regarding the MIoU parameters, the
introduction of the ECA attention mechanism led to a 0.52% improvement in the model
when transitioning to a lightweight backbone.

4.4.4. Image Segmentation Results

Using the same training environment and parameters, we conducted comparative
experiments on different semantic segmentation networks. Figure 12 illustrates the pre-
diction results of various networks. From top to bottom are the results of segmenting
different types of images using FCN, HRNet18, U-Net, DeepLabv3+, and our proposed
method, with the last row showing the annotated ground truth images. We chose to com-
pare our method with FCN, HRNet18, U-Net, and DeepLabv3+, which are some of the
most outstanding methods in the field of semantic segmentation, demonstrating excellent
performance on various datasets. These methods represent different characteristics: FCN
transforms traditional convolutional networks into fully convolutional structures for seg-
mentation tasks; U-Net addresses the issue of information loss in semantic segmentation by
introducing skip connections; DeepLabv3+ enhances segmentation performance through
dilated convolutions and multi-scale feature fusion; and HRNet improves segmentation ac-
curacy by preserving high-resolution features. By comparing these representative methods,
we can gain a comprehensive understanding of the strengths and limitations of different
segmentation approaches.

Our model demonstrates superior segmentation results across the six object categories
requiring segmentation, with masks that are smoother and more complete. It is observable
that in the recognition of lawns, boundaries, and humans, the performances of these
algorithms appear quite similar. However, in the recognition of tree trunks, although the
FCN and U-Net networks can correctly identify tree trunks, their ability to recognize lawns
is significantly lacking, which is undesirable. In the recognition of obstacles, the algorithm
proposed in this paper produced results closest to the ground truth images, with other
algorithms missing some details. In recognizing shrubs, especially in the hard-to-recognize
area on the lower right side of the shrubs, our algorithm’s recognition effect is visibly better
than that of the other algorithms.

Overall, as shown in Table 6, our method achieves segmentation results that are
nearly identical to those of the computationally expensive DeepLabV3+ architecture, with
a reduction in both the number of parameters and computational cost in GFLOPs. This
lays a solid foundation for our model’s future deployment in embedded systems, making
it suitable for operation on machines with limited resources.

As observed in Table 7, the network model proposed in this study was compared
with other types of networks. Clearly, our network model far surpasses the other network
models in terms of FPS, approaching 30. The closer the FPS value is to 30, the better the
compatibility of the model with the ORB-SLAM3 algorithm. In terms of the MIoU and
MPA, which are indicators of model recognition accuracy, our proposed network forms the
best, exceeding the recognition effects of other networks.
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Table 6. Our architecture achieves similar MIoU and MPA values as the computationally expensive
DeepLabv3+.

Method MIoU/% MPA/% GFLOPs Params FPS

DeepLabv3+ 92.28 95.52 176.52 39.31 14.86
Ours 91.07 94.71 68.25 15.10 27.69

Table 7. Comparison with other networks: our network significantly outperforms others in terms of
MIoU and MPA.

Method MIoU/% MPA/% GFLOPs Params FPS

FCN 89.71 94.66 197.86 44.94 16.25
HRNet18 90.04 94.28 18.60 9.19 20.94

U-Net 90.57 94.69 203.04 27.64 21.21
Ours 91.07 94.71 68.25 15.10 27.69

Although our architecture does not appear to be lighter than HRNet18 in terms
of GFLOPs and Params, as shown in Table 7, compared to HRNet18, our method only
demonstrates decreases of 1.03% and 0.43% in the MIoU and MPA, respectively. Relatively
speaking, although HRNet18 is lighter, it has a lower degree of recognition accuracy
and cannot achieve satisfactory results. Moreover, even though it has a lower number
of parameters, its FPS improvement is not significant, showing no advantage over our
proposed architecture. Considering all indicators, our proposed architecture is the optimal
choice, and in terms of integrating a semantic segmentation module into the ORB-SLAM3
environment, our method is the most suitable.

4.5. Lawn Map Construction Experiment

This section validates the method proposed in this paper for constructing a 3D se-
mantic map of a lawn scene through experimentation. The experiment utilized an Intel
Realsense D455 depth camera with a resolution of 640 × 480. The program ran on a laptop
running Ubuntu 20.04. The depth camera was handheld and walked around the lawn that
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needed mapping. During the walking process, the camera was continuously swayed from
side to side to cover the entire lawn that needed to be captured. Figure 13 illustrates the
real-time recognition of the lawn during the walking process.
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It can be seen in the process of building a 3D semantic map that the architecture
proposed in this paper demonstrates relatively good recognition of the working lawn. In
general, it can accurately identify all six categories that need to be identified. According to
the method mentioned in Section 3.2, the results of the semantic segmentation are added
to the ORB-SLAM3 system. Through this system, a 3D semantic point cloud map can be
obtained. As shown in Table 8, compared with the original RGB point cloud map, the
semantic point cloud map occupies much less space. Since the semantic map constructed in
this paper is for the establishment of a working space service for gardening pruning robots,
only a semantic map based on the working height of the robot is needed. The crowns at the
tops of trees have no effect on the lawn mowing task of the robot, so they are all removed.
This makes the saved point cloud map more abundant, and more effective information is
saved in the same point cloud map.

Table 8. Point cloud map size comparison results.

Point Cloud File Type Size of Space/MB

RGB Point Cloud 68.5
Semantic Point Cloud 42.9

As relying solely on a point cloud map is insufficient for path navigation, the 3D
semantic point cloud map needs to be converted into an octree map and an occupancy
grid map suitable for future three-dimensional and two-dimensional path navigation.
Figure 14 illustrates the colored point cloud map, semantic point cloud map, octree map,
and occupancy grid map obtained using the MM-ED method proposed in this paper. As
the presence of moving individuals in the environment can significantly impact the 3D
semantic point cloud map, the point cloud maps established in this experiment exclusively
feature scenes without any people.
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5. Conclusions and Future Work

This paper addresses the construction of a 3D semantic map for a lawn-mower robot
operating in an unstructured lawn environment. The proposed multi-object semantic
segmentation detection network MM-ED is integrated with the ORB-SLAM3 system to
generate a 3D semantic map, facilitating a robust three-dimensional reconstruction of the
working area and providing rich environmental information for future robotic weeding
operations. To validate the effectiveness of the MM-ED network proposed in this paper, a
lawn dataset was created, and comparative experiments with other models were conducted.
The main conclusions of this study are as follows: (1) The MM-ED network proposed in
this paper utilizes the MobileNetV2 backbone and incorporates the ECA attention mech-
anism to enhance feature recognition in images. The experimental results demonstrate
that compared to other semantic segmentation models with similar MIoU accuracy values,
the MM-ED network reduces the model’s parameter count and improves its recognition
speed. (2) The experimental results indicate that the proposed method performs well in
recognizing major objects on a lawn, achieving the satisfactory identification of various
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items. (3) The method proposed in this paper is easy to deploy, allowing for convenient
integration with the ORB-SLAM3 system. In the future, it can be easily migrated to embed-
ded devices, and it effectively generates 3D semantic maps, octree maps, and occupancy
grid maps for unstructured lawn environments.

Although the 3D semantic map construction method for unstructured lawn scenes
proposed in this paper currently demonstrates effective mapping of the working area, there
are certain limitations. The current MM-ED network can recognize humans, but in the
context of lawn-mower-robot operation, humans should be treated as dynamic targets
and removed to prevent interference with map creation. Additionally, this study only
established a semantic point cloud map and obtained octree and occupancy grid maps.
Future research could focus on designing working paths for lawn-mower robots based on
the acquired maps. Therefore, in future work, we will continue to address these issues and
explore innovative solutions.
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