Content-Adaptive Light Field Contrast Enhancement Using Focal Stack and Hierarchical Network
Abstract
:1. Introduction
- (1)
- This paper proposes a novel, adaptive LF contrast enhancement method by using an MLP to train the dataset, which automatically adapts to mapping the curve parameters of the different views, adjusts the image ulteriorly, and enhances the contrast.
- (2)
- According to the global brightness, we build a new LF dataset that acquires and classifies LF images into four different categories based on an MLP network. Our own database, which is the classical Stanford Lytro Light Field Archive and JPEG Pleno Database embedding, is also applied in this work.
- (3)
- Contrast enhancement is applied to the LF FS. The comparison experimental results for the original and synthetic images show that our method is a state-of-the-art method.
2. Related Work
2.1. LF Imaging
2.2. LF Image Enhancement
2.2.1. Super-Resolution
2.2.2. Color and Low-Light Enhancement
2.2.3. Contrast Enhancement
2.3. Adaptive Image Enhancement
3. Proposed Method
3.1. FS Transforms into AIF
3.2. Statistical Feature Extraction
3.3. Hierarchical Network
3.3.1. Database Collection
3.3.2. Ground Truth Setting and Training Pair
3.3.3. The Input and Output Layers
- True positive (TP): A positive example of being correctly predicted. That is, the true value of the data is a positive example, and the predicted value is also a positive example.
- True negative (TN): Counterexamples that were correctly predicted. That is, the true value of the data is a counter example, and the predicted value is also a counter example.
- False Positive (FP): Positive example of misprediction. That is, the real value of the data is a negative example, but it is wrongly predicted as a positive example.
- False negative (FN): A counterexample of being incorrectly predicted. That is, the true value of the data is a positive example, but it is incorrectly predicted to be a negative example.
4. Experimental Results and Discussion
4.1. Subjective Assessment
4.2. Objective Assessment
4.3. Cost Effectiveness Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, C.; Jeon, B. Refocusing metric of light field image using region-adaptive multi-scale focus measure. IEEE Access 2022, 10, 101385–101398. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Guo, Y.; Xiao, C.; An, W. Selective light field refocusing for camera arrays using bokeh rendering and superresolution. IEEE Signal Process Lett. 2019, 26, 204–208. [Google Scholar] [CrossRef]
- Jayaweera, S.; Edussooriya, C.; Wijenayake, C.; Agathoklis, P.; Bruton, L. Multi-volumetric refocusing of light fields. IEEE Signal Process Lett. 2021, 28, 31–35. [Google Scholar] [CrossRef]
- Kim, C.; Zimmer, H.; Pritch, Y.; Sorkine-Hornung, A.; Gross, M.H. Scene reconstruction from high spatio-angular resolution light fields. ACM Trans. Graph. 2013, 32, 1–12. [Google Scholar] [CrossRef]
- Li, N.; Ye, J.; Ji, Y.; Ling, H.; Yu, J. Saliency detection on light field. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 1605–1616. [Google Scholar]
- Srinivasan, P.P.; Ng, R.; Ramamoorthi, R. Light field blind motion deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Schambach, M.; Heizmann, M. A multispectral light field dataset and framework for light field deep learning. IEEE Access 2020, 8, 193492–193502. [Google Scholar] [CrossRef]
- Takahashi, K.; Kobayashi, Y.; Fujii, T. From focal stack to tensor light-field display. IEEE Trans. Image Process 2018, 27, 4571–4584. [Google Scholar] [CrossRef] [PubMed]
- Michael, B.; John, F.; Ryan, O.; Daniel, E.; Peter, H.; Matthew, D.; Jason, D.; Jay, B.; Matt, W.; Paul, D. Immersive light field video with a layered mesh representation. ACM Trans. Graph. 2020, 39, 86:1–86:15. [Google Scholar]
- Spatial without the Headset. Available online: https://lookingglassfactory.com/ (accessed on 23 May 2024).
- Todor, G.; Yu, Z.; Lumsdaine, A.; Goma, S. Lytro camera technology: Theory, algorithms, performance analysis. Multimed. Content Mob. Devices 2013, 8667, 458–467. [Google Scholar]
- Celik, T.; Tjahjadi, T. Automatic image equalization and contrast enhancement using Gaussian mixture modeling. IEEE Trans. Image Process 2012, 21, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Arici, T.; Dikbas, S.; Altunbasak, Y. A histogram modification framework and its application for image contrast enhancement. IEEE Trans. Image Process 2009, 18, 1921–1935. [Google Scholar] [CrossRef] [PubMed]
- Fay, L.; Cobos, E.; Yang, B.; Gatidis, S.; Küstner, T. Avoiding shortcut-learning by mutual information minimization in deep learning-based image processing. IEEE Access 2023, 11, 64070–64086. [Google Scholar] [CrossRef]
- Jiang, C.; Han, J.-J. A multiobject detection scheme based on deep learning for infrared images. IEEE Access 2022, 10, 78939–78952. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, C.; Chen, P.; Kang, C. An efficient contrast enhancement method for remote sensing images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1715–1719. [Google Scholar] [CrossRef]
- Naseem, R.; Cheikh, F.A.; Beghdadi, A.; Elle, O.J.; Lindseth, F. Cross modality guided liver image enhancement of ct using mri. In Proceedings of the European Workshop on Visual Information Processing (EUVIP), Roma, Italy, 28–31 October 2019. [Google Scholar]
- Singh, B.; Mishra, R.S.; Gour, P. Analysis of contrast enhancement techniques for underwater image. Int. J. Comput. Technol. Electron. Eng. 2011, 1, 190–194. [Google Scholar]
- Shanmugavadivu, P.; Balasubramanian, K. Thresholded and optimized histogram equalization for contrast enhancement of images. Comput. Electr. Eng. 2014, 40, 757–768. [Google Scholar] [CrossRef]
- Dyke, R.M.; Hormann, K. Histogram equalization using a selective filter. Vis. Comput. 2023, 39, 6221–6235. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, Y. A histogram equalization model for color image contrast enhancement. Signal Image Video Process. 2024, 18, 1725–1732. [Google Scholar] [CrossRef]
- Cheng, H.D.; Shi, X.J. A simple and effective histogram equalization approach to image enhancement. Digit. Signal Process. 2004, 14, 158–170. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, C.; Cheng, Y.; Xu, M.; Yuan, Z. Adaptive light field contrast enhancement using efficient feature extraction. In Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Beijing, China, 14–16 June 2023. [Google Scholar]
- Hahne, C.; Aggoun, A. PlenoptiCam v1.0: A light-field imaging framework. IEEE Trans. Image Process 2021, 30, 6757–6771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hou, G.; Zhang, Z.; Sun, Z.; Tan, T. Efficient auto-refocusing for light field camera. Pattern Recognit. 2018, 81, 176–189. [Google Scholar] [CrossRef]
- Dayan, S.; Mendlovic, D.; Giryes, R. Deep sparse light field refocusing. arXiv 2020, arXiv:2009.02582. [Google Scholar]
- Dansereau, D.G.; Pizarro, O.; Williams, S.B. Decoding, calibration and rectification for lenselet-based plenoptic cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Vieira, A.; Duarte, H.; Perra, C.; Tavora, L.; Assuncao, P. Data formats for high efficiency coding of Lytro-Illum light fields. In Proceedings of the International Conference on Image Processing Theory, Tools and Applications (IPTA), Orleans, France, 10–13 November 2015. [Google Scholar]
- Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.; Yang, J.; Zhou, P.; Wang, Z. EnlightenGAN: Deep Light Enhancement Without Paired Supervision. IEEE Trans. Image Process. 2021, 30, 2340–2349. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Jeon, H.-G.; Yoo, D.; Lee, J.-Y.; Kweon, I.S. Learning a deep convolutional network for light-field image super-resolution. In Proceedings of the IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Liu, G.; Yue, H.; Wu, J.; Yang, J. Efficient light field angular super-resolution with sub-aperture feature learning and macro-pixel upsampling. IEEE Trans. Multimed. 2022, 25, 6588–6600. [Google Scholar] [CrossRef]
- Zhang, S.; Lam, E. Learning to restore light fields under low-light imaging. Neurocomputing 2021, 456, 76–87. [Google Scholar] [CrossRef]
- Lv, F.; Li, Y.; Lu, F. Attention guided low-light Image enhancement with a large scale low-light simulation dataset. Int. J. Comput. Vis. 2021, 129, 2175–2193. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Y.; Zhang, S. Multi-stream progressive restoration for low-light light field enhancement and denoising. IEEE Trans. Comput. Imaging 2023, 9, 70–82. [Google Scholar] [CrossRef]
- Kim, Y.-T. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 1997, 43, 1–8. [Google Scholar]
- Wang, Y.; Chen, Q.; Zhang, B. Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 1999, 45, 68–75. [Google Scholar] [CrossRef]
- Stark, J.A. Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process 2000, 9, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Lee, C.; Kim, C. Contrast enhancement based on layered difference representation of 2d histograms. IEEE Trans. Image Process 2013, 22, 5372–5384. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y. Research on feature point extraction and matching machine learning method based on light field imaging. Neural Comput. Appl. 2019, 31, 8157–8169. [Google Scholar] [CrossRef]
- Sepas-Moghaddam, A.; Correia, P.L.; Nasrollahi, K.; Moeslund, T.B.; Pereira, F. Light field based face representation. In Proceedings of the IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), Aalborg, Denmark, 17–20 September 2018. [Google Scholar]
- Řeřábek, M.; Ebrahimi, T. New light field image dataset. In Proceedings of the International Workshop on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal, 6–8 June 2016. [Google Scholar]
- Zhao, C.; Jeon, B. A practical light field representation and coding scheme with an emphasis on refocusing. IEIE Trans. Smart Process. Comput. 2022, 11, 305–315. [Google Scholar] [CrossRef]
- Zhao, C.; Jeon, B. Compact Representation of Light Field Data for Refocusing and Focal Stack Reconstruction Using Depth Adaptive Multi-CNN. IEEE Trans. 2024, 10, 170–180. [Google Scholar] [CrossRef]
- Abdullah-Al-Wadud, M.; Kabir, M.H.; Dewan, M.A.A.; Chae, O. A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 2007, 53, 593–600. [Google Scholar] [CrossRef]
- The (New) Stanford Light Field Archive. Available online: http://lightfield.stanford.edu/ (accessed on 27 January 2024).
- Rothe, P.R.; Kshirsagar, R.V. A study on the method of image pre-processing for recognition of crop diseases. In Proceedings of the IJCA Proceedings on International Conference on Benchmarks in Engineering Science and Technology (ICBEST), Kumasi, Ghana, 25–27 October 2012. [Google Scholar]
- Sahu, S.; Singh, A.K.; Ghrera, S.P.; Elhoseny, M. An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Opt. Laser Technol. 2019, 110, 87–98. [Google Scholar]
- Pizer, S.M.; Johnston, R.E.; Ericksen, J.P.; Yankaskas, B.C.; Muller, K.E. Contrast-limited adaptive histogram equalization: Speed and effectiveness. In Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, GA, USA, 22–25 May 1990. [Google Scholar]
- Khan, Z.A.; Beghdadi, A.; Cheikh, F.A.; Kaaniche, M.; Qureshi, M.A. A multi-criteria contrast enhancement evaluation measure using wavelet decomposition. In Proceedings of the IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, 21–24 September 2020. [Google Scholar]
- Agaian, S.S.; Silver, B.; Panetta, K.A. Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Trans. Image Process. 2007, 16, 741–758. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-D.; Zhang, Y. Detecting of contrast over-enhancement. In Proceedings of the IEEE International Conference on Image Processing, Orlando, FL, USA, 30 September–3 October 2012. [Google Scholar]
- Bai, C.; Reibman, A.R. Controllable image illumination enhancement with an over-enhancement measure. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018. [Google Scholar]
- Google’s Impressive 3D Video Conference—Here’s How it Works. Available online: https://www.techradar.com/news/googles-impressive-3d-video-conference-heres-how-it-works (accessed on 14 January 2024).
- Samsung Develops a Slim-Panel Holographic Video Display. Available online: https://techxplore.com/news/2020-11-samsung-slim-panel-holographic-video.html (accessed on 28 January 2024).
- Light Field Lab’s Solid Light Offers a True Holographic Video Display. Available online: https://www.techhive.com/article/579894/light-field-labs-solidlight-offers-a-true-holographic-video-display.html (accessed on 26 January 2024).
Mode | Shutter | ISO | F-Stop |
---|---|---|---|
Sunshine | 1/300–1/400 | 80–150 | f/2 |
Cloudy | 1/100–1/250 | 125–240 | f/2 |
Indoor | 1/30–1/80 | 200–400 | f/2 |
AMBE | EMEE | SMO | LOM | |
---|---|---|---|---|
CLAHE | 10.1256 | 4.4620 | 2.8811 | 143.5008 |
HE | 12.6343 | 10.5646 | 6.8140 | 511.9235 |
Imadjust | 17.0528 | 6.5435 | 1.0178 | 403.5677 |
Ours | 5.2129 | 4.3252 | 2.4648 | 197.9581 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Guo, J.; Yuan, Z.; Cheng, Y. Content-Adaptive Light Field Contrast Enhancement Using Focal Stack and Hierarchical Network. Appl. Sci. 2024, 14, 4885. https://doi.org/10.3390/app14114885
Guo X, Guo J, Yuan Z, Cheng Y. Content-Adaptive Light Field Contrast Enhancement Using Focal Stack and Hierarchical Network. Applied Sciences. 2024; 14(11):4885. https://doi.org/10.3390/app14114885
Chicago/Turabian StyleGuo, Xiangyan, Jinhao Guo, Zhongyun Yuan, and Yongqiang Cheng. 2024. "Content-Adaptive Light Field Contrast Enhancement Using Focal Stack and Hierarchical Network" Applied Sciences 14, no. 11: 4885. https://doi.org/10.3390/app14114885
APA StyleGuo, X., Guo, J., Yuan, Z., & Cheng, Y. (2024). Content-Adaptive Light Field Contrast Enhancement Using Focal Stack and Hierarchical Network. Applied Sciences, 14(11), 4885. https://doi.org/10.3390/app14114885