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Abstract: Light field (LF) cameras can capture a scene’s information from all different directions
and provide comprehensive image information. However, the resulting data processing commonly
encounters problems of low contrast and low image quality. In this article, we put forward a content-
adaptive light field contrast enhancement scheme using a focal stack (FS) and hierarchical structure.
The proposed FS set contained 300 light field images, which were captured using a Lytro-Illum
camera. In addition, we integrated the classical Stanford Lytro Light Field Archive and JPEG Pleno
Database. Specifically, according to the global brightness, the acquired LF images were classified
into four different categories. First, we transformed the original LF FS into a depth map (DMAP)
and all-in-focus (AIF) image. The image category was preliminarily determined depending on
the brightness information. Then, the adaptive parameters were acquired by the corresponding
multilayer perceptron (MLP) network training, which intrinsically enhanced the contrast and adjusted
the light field image. Finally, our method automatically produced an enhanced FS based on the
DMAP and AIF image. The experimental comparison results demonstrate that the adaptive values
predicted by our MLP had high precision and approached the ground truth. Moreover, compared to
existing contrast enhancement methods, our method provides a global contrast enhancement, which
improves, without over-enhancing, local areas. The complexity of image processing is reduced, and
real-time, adaptive LF enhancement is realized.

Keywords: light field contrast enhancement; histogram modification; multilayer perceptron

1. Introduction

A light field (LF) captures all light data from different directions for each point of
a scene [1]. The captured, four-dimensional data contain color and geometric structure
information, such as direction and distance information. The unique advantages of LF
make it useful in numerous applications, such as post-capture refocusing [2,3], 3D recon-
struction [4], saliency detection [5], and motion deblurring [6]. The research on LF [7] focus
stack (FS), depth map (DMAP), and all-in-focus (AIF) images has helped to reduce the
high cost caused by huge data volumes. Keita Takahashi et al. [8] developed an LF display
based on an FS; it can be simultaneously viewed from multiple directions without sacri-
ficing resolution in any viewing direction. Google developed an immersive LF video [9],
which can record, process, compress, and render view-dependent immersive LF videos at a
sufficiently low bandwidth for internet streaming. The hologram company Looking Glass
developed an immersive 3D hologram display using LF technology with life-like lighting
and textures [10]. In general, current research shows that the light field is a promising
medium for augmented and virtual reality.

With the rapid development of light field technology, LF cameras (Rattrix and Lytro,
etc.) have attracted extensive attention because they can conveniently capture LF images in
a single shot. Current cameras refocus by 2–6 captured views, which results in a low depth
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range (generally k = 2) and low precision of refocusing the foreground and background.
However, LF cameras [11] refocus using LF sub-aperture images (SAIs), which have a wide
depth range (generally k = 20–40) and high precision of pixel-level refocusing. Nevertheless,
an LF image acquired using an LF camera has low image quality in terms of luminance
contrast. Consequently, LF digital image enhancement has become the main research topic
for obtaining information from image structures and to better interpret images.

In recent years, image contrast has been a popular research topic [12,13]. Contrast en-
hancement [14,15] is an important preprocessing procedure for a range of applications, such
as remote sensing [16], medical imaging [17], and underwater imaging [18]. Among the
numerous enhancement algorithms, histogram equalization (HE) is diffusely used [19,20].
However, HE is usually used to enhance the global contrast without selecting the data
to process [21], which may lead to adverse effects, such as color bleeding, unnaturalness,
a halo effect, or over-enhancement [22]. In addition, the existing contrast enhancement
schemes are all for 2D images, and there is no research on LF image processing. Therefore,
a real-time and intelligent algorithm with which to heighten the contrast is required, which
will improve the LF image quality and boost information representation.

We present a content-adaptive LF contrast enhancement method to boost the infor-
mation expression, and the adaptive parameters are predicted by a hierarchical network
in this article. First, the database images are divided into four categories according to the
image feature information. Then, we take the multilayer perceptron (MLP) based on a
previous classification to obtain the adaptive parameters and enhance the image contrast
intelligently. This method realizes batch dispose and automatically operates on multiple
images, which greatly improves the image processing speed. As illustrated in Figure 1,
focal stack comparison results show the effectiveness of our scheme. The global contrast
of the enhanced FS is significantly improved. The enhanced focus stack obtained by our
method has better image quality for dark areas. The texture of the greenery is depressed
in (b) but clear in (c). The over-enhanced regions in (b) are recovered by our adjustments.
Most notably, the application of our proposed contrast algorithm to LF image enhancement
is an original and novel contribution, to the best of our knowledge. A preliminary version
of this paper was published at an international conference [23]. This paper provides an
in-depth discussion, a more complete description, and supplementary experimental results.
The main contributions of the work are as follows:

(1) This paper proposes a novel, adaptive LF contrast enhancement method by using an
MLP to train the dataset, which automatically adapts to mapping the curve parameters
of the different views, adjusts the image ulteriorly, and enhances the contrast.

(2) According to the global brightness, we build a new LF dataset that acquires and
classifies LF images into four different categories based on an MLP network. Our own
database, which is the classical Stanford Lytro Light Field Archive and JPEG Pleno
Database embedding, is also applied in this work.

(3) Contrast enhancement is applied to the LF FS. The comparison experimental results for
the original and synthetic images show that our method is a state-of-the-art method.
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Figure 1. Comparison of the effect of the contrast enhancement method. (a) Original LF focal stack; 
(b) the focal stack obtained after HE; (c) our resulting focal stack. 

2. Related Work 
2.1. LF Imaging 

As illustrated in Figure 2a, LF imaging records light [24] by adding a microlens array 
and subsequently performs digital zooming using a post-processing algorithm (Fourier 
slice theorem, LF imaging algorithm). According to the principle of LF imaging, refocused 
or sub-aperture images are realized based on the recorded light to obtain LF images for 
research. Chi Zhang et al. [25] proposed an efficient auto-refocusing (ARF) solution for LF 
cameras, where only three refocus renders are required to find the best refocus frame. 
Yingqian Wang et al. [2] presented an LF refocusing solution to improve image quality. 
This method can selectively refocus the image, super-resolve the focused region, and aes-
thetically render the bokeh. Shachar Ben Dayan et al. [26] put forward a neural network 
digital refocusing algorithm based on sparse angular information; its structure is rela-
tively small and can be quickly reconstructed with low memory consumption. 

Figure 1. Comparison of the effect of the contrast enhancement method. (a) Original LF focal stack;
(b) the focal stack obtained after HE; (c) our resulting focal stack.

2. Related Work
2.1. LF Imaging

As illustrated in Figure 2a, LF imaging records light [24] by adding a microlens array
and subsequently performs digital zooming using a post-processing algorithm (Fourier
slice theorem, LF imaging algorithm). According to the principle of LF imaging, refocused
or sub-aperture images are realized based on the recorded light to obtain LF images for
research. Chi Zhang et al. [25] proposed an efficient auto-refocusing (ARF) solution for
LF cameras, where only three refocus renders are required to find the best refocus frame.
Yingqian Wang et al. [2] presented an LF refocusing solution to improve image quality.
This method can selectively refocus the image, super-resolve the focused region, and
aesthetically render the bokeh. Shachar Ben Dayan et al. [26] put forward a neural network
digital refocusing algorithm based on sparse angular information; its structure is relatively
small and can be quickly reconstructed with low memory consumption.
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Table 1. Lytro-Illum camera parameter set, scenes, and features of LF images. 
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vidual circular areas. The reason for this is that each microlens images the circular main 
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image. However, the size limitation of the microlens results in the low resolution and low 
quality of the final imaging. 

Figure 2. (a) Light field imaging principle; (b)original image decoded by LF camera.

In our experimental study, several classes of scenes were taken using a Lytro-Illum
camera (using a tripod as an auxiliary tool) in order to establish a new dataset. The camera
parameter set, scenes, and features of the LF image (sunshine, cloudy, and indoor) are
illustrated in Table 1 below. The camera saved the gained data in files with the suffix
LFP (about 55 MB each), which contained several types of data (such as RAW images,
thumbnails in BMP format, system settings, etc.). The RAW image is 10-bit packages, with
a total resolution of 7728 × 5368 in GRBG format. The Light Field Toolbox for Matlab
v0.5 [27] was utilized to process the RAW files. The package generated our required 5D
files, as well as other additional files (such as color-corrected images, etc.), by decoding and
correcting the LF data, using the camera’s calibration information (a series of white image
files taken from the Lytro-Illum’s external memory card).

Table 1. Lytro-Illum camera parameter set, scenes, and features of LF images.

Mode Shutter ISO F-Stop

Sunshine 1/300–1/400 80–150 f/2
Cloudy 1/100–1/250 125–240 f/2
Indoor 1/30–1/80 200–400 f/2

The output of the decoding was the reconstructed LF corresponding to the square
grid of the microlens (5D file above). The square grid consisted of 625 × 434 microlenses,
and each microlens captured light information from 15 × 15 different directions. The data
were saved in the matrix LF (i, j, k, l, c) of size (15, 15, 434, 625, 4) [28]. Figure 2b shows
the reconstructed light field; the original data decoded by the LF camera comprises the
individual circular areas. The reason for this is that each microlens images the circular main
lens, and the final image produced by the LF camera is actually the sum of the pixels that
correspond to each microlens. In other words, one microlens is one pixel of the final LF
image. However, the size limitation of the microlens results in the low resolution and low
quality of the final imaging.
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2.2. LF Image Enhancement
2.2.1. Super-Resolution

Due to the characteristics of the LF camera, the original LF image obtained by decoding
has low resolution [29]. Youngjin Yoon et al. [30] presented a novel algorithm for LF super-
resolution (SR) using a deep convolutional neural architecture. The spatial and angular
SR network is concatenated to jointly improve the resolution. Gaosheng Liu et al. [31]
introduced a new idea for light field angular SR and presented an efficient LF angular SR
architecture, which is called EASR. This method achieves efficient angular super-resolution
by giving an excellent trade-off between reconstruction performance and inference time.

2.2.2. Color and Low-Light Enhancement

LF is easily affected by low illumination and noise. Light field enhancement in low
illumination is more untoward than a single image task, due to the need to address a series
of problems, such as color distortion, noise, and multiple views. Shansi Zhang et al. [32]
proposed a learning-based algorithm for LF image decomposition enhancement. Low-
light LF images with different light intensities are synthesized by simulating the imaging
process [33]. This method can effectively recover the geometric structure, spatial details,
brightness, and color of the images under multifarious illumination levels. Xianglang
Wang et al. [34] developed a novel light field algorithm for low-light enhancement and
denoising using a multi-stream progressive restoration method. This model outperforms
the state-of-the-art method on both real-world low-light LF datasets and synthetic-noise
light field datasets.

2.2.3. Contrast Enhancement

The decoded LF image also has low quality. Researchers hope to heighten the image
information expression by enhancing the image contrast. The research on the contrast of LF
images is limited, so we expanded the contrast enhancement algorithm to ordinary images.
Among the numerous contrast enhancement algorithms, HE is the basic strategy for most
enhancement techniques in image processing. On account of its effectiveness and simplicity,
histogram equalization is one of the most widely used techniques to achieve contrast
enhancement [35]. HE modifies the histogram to improve the limited dynamic range of
the image. The original image histogram can be transformed into a uniform distribution
(equilibrium) form, and the dynamic range of the gray value difference between pixels can
be increased to heighten the contrast of the image by using HE. Many attempts [12,36–38]
have been based on this method to improve the visual quality. However, HE enhances the
details excessively, which augments background interference and reduces the detailed data.
In this paper, to the best of our knowledge, we apply adaptive image enhancement for the
first time and resolve the inherent problems of the HE method for LF images.

2.3. Adaptive Image Enhancement

Image processing is a repetitive, labor-intensive, and time-consuming process. We
introduce a novel, adaptive LF contrast enhancement method using a MLP network.
Complex and repetitive work can be reduced by introducing machine learning models.
Yue Wu et al. [39] presented a nearest neighbor search and match method (NNA), which
has low computational complexity and strong robustness. Alireza Sepas-Moghaddam
et al. [40] presented the first deep convolution neural network (CNN) solution for LF-
based face recognition. This method has superior performance for face recognition and
simplifies complex algorithms. In this paper, the mapping curve is automatically adjusted
by predicting the adaptive parameters of the model to improve the image contrast. Our
adaptive enhancement algorithm is different from the contrast enhancement methods
in [13,37] in the following ways. (1) A different network structure: a machine learning
link is introduced to realize the batch processing and real-time operation of multiple
images, which greatly improves the image processing speed. (2) A different process:
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different enhancement intensities are adopted for different images according to the image
characteristics, instead of adopting a unified processing mode.

3. Proposed Method

Figure 3 illustrates the framework of the prosed enhancement process of LF FS. The
original FS set is captured by a light field Lytro-Illum camera, and the AIF image is further
generated. We obtain the adaptive parameters using a hierarchical network. The first layer
of the network classifies the FS dataset into four different categories based on the MLP
network. The second layer predicts the adaptive parameters, and the features that are
fed to the network are extracted from the brightness information of the original LF AIF
image. Next, the image enhancement is shown. The HE is adopted to acquire the initial
mapping curve. Then, the adaptive parameters are used to adjust the curve to acquire the
enhanced AIF image. Finally, the FS is restored via the AIF image. First, in this section, we
will introduce the image contrast enhancement algorithm, and then propose the machine
learning model to acquire the adaptive parameters.
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3.1. FS Transforms into AIF

For the LF camera decoding after the preliminary processing to acquire the raw FS,
the FS includes 32 images with different depths. If each image is enhanced, the steps are
identical and reduplicative. Therefore, we generate the full-focus image from the raw FS,
enhance the contrast of the AIF image, and subsequently convert it into the FS using the
DMAP and enhanced full-focus image, which can effectively extract the features of LF
images and cover the most information with less work.

A focus stack is a series of images focused on different planes. Therefore, the original
image of the light field is refocused 32 times, and this series of refocused images is called
the focus stack. The gradient of each pixel in the focus stack is calculated, and then the
gradient image of each image is filtered by the mean value. Then, the sum of the squares of
the gradient values of the three channels is calculated and the mean value is taken, and the
square root is taken, which is the gradient value of the image. The maximum gradient of
the pixel at the same position of the focus stack means that the pixel is the clearest at that
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depth; that is to say, the object at that depth surface is the clearest. The index value of the
depth is recorded, from which the depth map can be synthesized.

In most cases, DMAPs can be directly downloaded from many datasets and with
the raw LF data, e.g., [41], although some LF images do not have DMAPs. To ensure the
diversity of the application range of the proposed scheme, the DMAPs in this paper are
extracted from the LF dataset instead of being directly downloaded from the Lytro camera.
We adopt the method of Zhao, C. et al. [42,43], and use the FS to simultaneously render the
AIF image and DMAP. The AIF image refers to the set of all the best in-focus pixels in the
FS, i.e., the best in-focus pixel at every position is gathered. Suppose there are K refocused
images in the FS, where the k-th refocused image is named Ik_org(x, y), α is defined as the
relative depth, and its distance from the aperture plane is F’ = αF:

Ik_org(x, y) = Iα(x, y) (1)

We use the difference focus measure to obtain the focus map Fk_d, which is the discrep-
ancy between two focus maps, one from the FS Ik_org and the other from the guided-filtered
FS Ik_GF, designed to cancel out the discrepancy.

Fk_d = ∥Fk_org − Fk_GF∥ (2)

where Fk_org = FM
(

Ik_org

)
, Fk_GF = FM(Ik_GF). Here, Ik_GF maintains the boundaries

while smoothing the others through a guided filter G(.), and it is denoted as Ik_GF =

G
(

Ik_org, Ik_org

)
. FM(.) indicates a focus measure of choice; the ring difference filter is

chosen due to its robustness, coming from incorporating local and non-local characteristics
into the filtering window in this paper.

For one pixel at position (x, y), the best in-focus pixel value is elected from I1_org(x, y),
I2_org(x, y), . . ., IK_org(x, y) by referring to the focus map Fk(x, y), k = 1, . . . , K. In the
selection of K refocused images of the image, at position (x,y), we focus on the biggest
pixels at the best focus pixel and image index, and use kmax(x, y), which is defined as

kmax(x, y) = max
k,k=1,...,k

(Fk(x, y)) (3)

The AIF image can be formed by collecting the pixels at the best in-focus at all positions,
as described by

AIF(x, y) = Ikmax(x,y)(x, y) (4)

where Ikmax(x,y)(x, y) represents the best focus pixel at position (x,y). The DMAP is the set
of pixel indices at the maximum focus of all images in the FS, that is

D (x, y) = kmax (x, y) (5)

3.2. Statistical Feature Extraction

In this part, contrast enhancement is performed on the above AIF image. In the
contrast enhancement method based on HE [13,44], the cumulative distribution function
is used to change the histogram distribution into an approximate uniform distribution to
enhance the contrast. However, the gray level of the transformed image is reduced, which
makes some details disappear. If some images have high peaks in their histograms, the
contrast will be unnaturally over-enhanced. This paper proposes an improved method
considering these shortcomings. We adjust the local details by changing the mapping curve
obtained by HE, which not only retains the superior performance of the enhanced part, but
also reduces the amplitude of the over-enhanced part.

As shown in Figure 4, the AIF image is obtained from the original FS by using the
method in Section 3.1. We transform the original RGB image into a YUV format image,
and then form the grayscale image (b). For image (b), considering the input, its range of
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grayscale is [X0, Xn−1], which has n pixels in total. The probability density function P(rk)
of level rk is

P(rk) =
nk
n

(6)

where n is the sum of pixels in the image, and nk is the frequency of occurrence of level rk;
k = 0, 1, . . ., N − 1. The histogram is the relationship between nk and rk. On the basis of (6),
the cumulative density function is

C(rk) =
k

∑
i=0

P(ri) (7)
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HE uses the cumulative density function to map the image pixel values onto the entire
dynamic range [X0, Xn−1], as

f (X) = X0 + (Xn−1 − X0)C(X) (8)

Image (c) and the mapping curve, accordingly, are obtained using the above steps, and
we subsequently adjust the mapping curve. As shown in Figure 4, T0 is the original curve,
and T1 represents the mapped curve after histogram equalization.

Yin = Yout; the output is the original AIF image at this time. Two parameters are
adopted to adjust the mapping curve. Gain1 is used to adjust the brighter part, while gain2
is applied to adjust the darker part of the image. By comparing the curves T0 and T1 and
selecting suitable values, the adjusted curve T’ is attained

T′ = T1 ∗ gain(t) + T0 ∗ [1 − gain(t)] (9)

where t is 0 or 1, and gain (t) is 0–1 to adjust the dark and bright parts, respectively. The
optimized enhanced image (d) can be acquired by using this scheme, and subsequently
recover the RGB image (e), which is the resulting light field image. The enhanced AIF
image can be obtained by using this method. Then, the method of Zhao et al. [42] is used to
generate the FS through AIF and DMAP.

3.3. Hierarchical Network

There are top and bottom networks in our hierarchical architecture. Firstly, the top
layer of the hierarchical network function is trained as a classifier of the LF dataset into four
categories based on the global brightness (as shown in Figure 3): sunny day, cloudy day,
indoor, and other. Secondly, according to the separate training for the four image types,
the next layer function is further trained for the adaptive parameter values of the selected
gain systems. As Figure 5 shows, a key processing step for obtaining gain1 and gain2 in
our multilayer perceptron network is formed. By inputting the hybrid database of the LF
image, we extract the characteristic information and conduct a further sampling, making
use of 19 attributes of the fully connected layers. Each training pair consists of the feature
data as the input and the corresponding target values for gain1 and gain2 as the output.
The distribution of image brightness is correlated with the adaptive parameters directly
utilized for adjusting the mapping curve and subsequently enhancing the image contrast,
thereby effectively mitigating the excessive contrast between light and dark regions in the
LF image.

3.3.1. Database Collection

In the training process, as depicted in Figure 5a, the classical Stanford dataset and the
JPEG dataset [40,45], which are commonly used LF image datasets, along with the images
from our Lytro-Illum camera, are selected as the training database (DB). The “crop and
resize operation” [44] augmentation method is applied to enlarge the DB.

3.3.2. Ground Truth Setting and Training Pair

This paper modifies the mapping curve of the AIF image by setting the gain value to
enhance the contrast of the LF image, utilizing gain1 and gain2 as the ground truth. The
target of the architecture is to predict parameter values for gain1 and gain2 from the input
original AIF image. During training, the input features encompass brightness information
extracted from the original AIF images; contain 16 histogram values (L0, . . . , L15); and the
maximum, minimum, as well as the average brightness (L16, L17, L18), as illustrated in
Figure 5c.

Lk =
pk

∑15
i=0 pi

(10)

where pk denotes the k-th bin histogram value.
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3.3.3. The Input and Output Layers

The input is the above 19 groups of feature data representing image brightness, and
the adaptive values are the output. The output value y is given by

y = ak = g(hk) = g

(
M

∑
i=0

wjkxjk

)
(11)

where g( ) is the activation function; this paper chooses the widely used rectified Linear
Activation Unit (ReLU).

ReLU(x) =
{

x i f x > 0
0 i f x ≤ 0

(12)

As shown in Figure 5d, ReLU is the most commonly used activation function for train-
ing convolutional layers and deep learning models. It offers the advantages of simplicity of
computation and ease of optimization, particularly when the behavior of neural networks
is linear or near-linear. Therefore, it is well suited for performing supervised tasks on
large-scale labeled datasets. Here, x denotes the input, w is the weight, hk signifies the
total of the output weight of k neurons in the output layer, and wjk represents the current
number of neurons and the weight of neurons in the next layer. As illustrated in Figure 5b,
the value of q is 3 in our study. The loss function E adopts the sum-of-squares error function

E =
1
N

N−1

∑
k=0

(yk − t)2 (13)

We define the following metrics:

True positive (TP): A positive example of being correctly predicted. That is, the true
value of the data is a positive example, and the predicted value is also a positive example.
True negative (TN): Counterexamples that were correctly predicted. That is, the true
value of the data is a counter example, and the predicted value is also a counter example.
False Positive (FP): Positive example of misprediction. That is, the real value of the
data is a negative example, but it is wrongly predicted as a positive example.
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False negative (FN): A counterexample of being incorrectly predicted. That is, the
true value of the data is a positive example, but it is incorrectly predicted to be a
negative example.

Accuracy = TP+TN
TP+FP+TN+FN (14)

According to the above metrics, the accuracy is 0.91. It can be seen that the prediction
result of the machine learning network model is more reliable. Due to the balance of
hardware overhead and effects, the current accuracy is sufficient to meet current needs,
and we will consider further improving accuracy in the future.

Finally, utilizing 19 sets of data, using the characteristic data of the image as the
input and gain1 and gain2 as the output, the LF images are trained via the aforementioned
MLP network to establish the relationship between the input and output. According to
Figure 5e, the test error of the parameters acquired by the multilayer perceptron-trained
network is less than 0.2, which shows that reliable values can be obtained using this method.
The experiment is performed on our LF dataset, integrated with the classical LF dataset,
which comprises 300 images of four scenes, including diverse conditions, such as sunny,
cloudy, and indoor. Each image in the dataset undergoes augmentation as described above.
Subsequently, 90% of the results are allocated for training, and the remaining 10% are
used for testing. A substantial amount of training results are processed to derive the exact
adaptive parameters.

4. Experimental Results and Discussion

We trained the network on 300 images (70 from the JPEG Pleno Database [41], 86
from the classical Stanford Lytro Light Field Archive [45], and 144 taken by ourselves); the
training results were applied to 26 images (6 images from the JPEG Pleno Database [41],
5 images from the classical Stanford Lytro Light Field Archive [45], and 15 images taken
by ourselves). From the resulting obtained FS, the global contrast of the light field image
was enhanced appropriately without the over-enhancement of local regions. The image
information expression was more comprehensive, and the hidden details were recovered by
histogram stretching. Next, we will evaluate the quality of the results through a subjective
and objective assessment.

4.1. Subjective Assessment

While it would be desirable to have an objective assessment method to compare
contrast enhancement techniques, unfortunately there is no accepted objective criterion in
the literature that can provide meaningful results for each image [13]. On this basis, we
have tried to find more suitable objective evaluation criteria to evaluate image quality. In
terms of the subjective evaluation experiment, we designed a questionnaire and invited
50 people to respond to the questionnaire to evaluate the light field images obtained by the
proposed method and the HE, CLAHE, and Imadjust methods. The results show that 85%
of the people thought that the image quality obtained by our method was better, and 10%
of the people thought that the image results obtained by the CLAHE method were better.
A total of 5% considered the image quality obtained by the Imadjust method to be better.
The results show that our method is more consistent with human viewing logic and has a
better visual effect.

Figure 6 shows the original LF images and their various corresponding contrast-
enhanced images. We compared our method with HE [19], the contrast enhancement
algorithm (Imadjust) proposed by P.R. Rothe et al. [46], and the classical contrast-limited
adaptive histogram equalization (CLAHE) enhancement algorithm [47,48]. In general, the
HE of an image can best utilize the dynamic range of pixel values for maximum contrast.
However, the generated images generally have low visual quality. This finding can also
be seen in Figure 6c. The amplification of noise reduces the image quality, and undesired
artifacts become more prominent, which results in an unnatural appearance. As shown
in Figure 6b,d, steps were taken to ameliorate the situation, such as using the proposed
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CLAHE and Imadjust methods. The Imadjust method significantly improved the image
over-enhancement, but the details were also erased. For example, the details of the bricks
under cloudy conditions completely disappeared. We found that in many of the tested
images, both CLAHE and our method showed similar quality and were close to the real
sensation. However, our scheme yielded better overall contrast, whereas the CLAHE
method had a light image color and a poor contrast effect. In addition, there were some
problems, such as unnatural color transition, seen in the flowers and leaves in Figure 6b
under cloudy conditions. Figure 7 illustrates the FS for contrast enhancement. Since our
method was implemented based on HE, we compared it with the HE method. The contrast
between the two was effectively enhanced (especially HE), and hidden details (such as
stone texture) were revealed.
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However, the HE algorithm only considers the image contrast, which causes excessive
enhancement and drowns out some details of the image. On the contrary, the contrast of
the image after our processing was effectively enhanced without changing the naturalness,
such as the texture of the car tire and the details of the wall, which completely disappeared
after HE. However, our method enhanced the contrast while enhancing the information
expression and deepening the details of the original image.

4.2. Objective Assessment

An effective enhancement algorithm should improve the perceived quality without
affecting the naturalness of the image or adding any artifacts [49]. Nonetheless, relying on
a subjective judgment of image quality is not sufficiently accurate, since the judgment of
each individual varies greatly. Table 2 shows the data results, and we made the following
objective assessments of the images.

Table 2. Image quality evaluation of the proposed algorithms compared with CLAHE, HE, and Imadjust.

AMBE EMEE SMO LOM

CLAHE 10.1256 4.4620 2.8811 143.5008
HE 12.6343 10.5646 6.8140 511.9235

Imadjust 17.0528 6.5435 1.0178 403.5677
Ours 5.2129 4.3252 2.4648 197.9581

Ideally, the contrast enhancement method should not change the hole brightness.
The Absolute Mean Brightness Error (AMBE) calculates the brightness change, which is
defined as the difference between the mean intensity of the original image Io and that of
the enhanced image Ie.

AMBE = |E(Io)− E(Ie)| (15)

where E(.) is the mean intensity of the underlying image. A lower AMBE indicates better
corresponding brightness preservation. The results show that this evaluation criterion is
consistent with the subjective assessment. The HE method has poor brightness preservation,
while our method and CLAHE have better expression. The average brightness is effectively
maintained, and the enhanced image can better restore the overall brightness characteristics
of the original image, and has better adaptability to the human eye.

The most obvious metric by which to access a contrast enhancement architecture is
contrast improvement. S. S Agaian et al. [50] proposed a method to evaluate the contrast of
complex images called the Measure of Enhancement by Entropy (EMEE), and defined it for
the enhanced image Ie as

EMEE =
1

M × N

M

∑
i=1

N

∑
j=1

α

(
Imax
e (i, j)

Imin
e (i, j) + C

)α

log2
Imax
e (i, j)

Imin
e (i, j) + C

(16)

where the symbols max and min correspond to the maximum and minimum intensity
values, M and N are the width and height, C is a constant to avoid division by zero, and α
is an exponent to control for the enhancement effect [50]. Using this evaluation criterion,
HE achieves the best presentation, although it may produce unreal appearances and may
not produce visually pleasing images. This finding is understandable, because HE does
not consider whether the image is natural and real, and only aims to improve the contrast.
The results show that our method improves the image contrast and does not produce an
unnatural appearance. This result can be seen in Figure 7; although the contrast of the
LF image is greatly improved, the detailed information in the LF image is lost due to the
excessive contrast enhancement of the LF image after the HE method, and the texture of
the cars, stones, and other objects disappears.
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H. D. Cheng et al. [51] devised an objective criterion with which to detect over-
enhancement, which is called the Structure Measure Operator (SMO) and is defined as

SMO =
1

M × N

M

∑
i=1

N

∑
j=1

∣∣∣HOo
ij − HOe

ij

∣∣∣
HOo

ij
(17)

where HOij is the product of three values: the entropy, edge value, and standard deviation
around a pixel in a d × d window. The SMO is insensitive to changes in contrast, but sensi-
tive to changes in structure. Ideally, the SMO is zero if the enhancement does not change
the structure. The results show that over-enhancement occurs with the HE method, and the
other methods show a high performance, which is consistent with our subjective analysis.

To evaluate the preservation of image naturalness, C. Bai et al. [52] presented the
Lightness Order Measure (LOM) from a local inversion of the lightness order.

LOM =
1

M × N

M

∑
i=1

N

∑
j=1

∣∣∣∣(de(i, j)− do(i, j))· sign(de(i, j))− sign(do(i, j))
2

∣∣∣∣ (18)

where do(i, j) is the difference between the pixel values (i, j) of the original and its lo-
cal mean-filtered version and, similarly, de(i, j) is for the enhanced component. Here,
sign(.) is the signum function. The lower the LOM value, the better the image natural-
ness preservation. The results indicate that CLAHE and our method realize the optimal
naturalness preservation.

4.3. Cost Effectiveness Analysis

In this paper, an effective adaptive values acquisition is developed by multilayer
perceptron network training, which simplifies and lowers the time required for image
processing. The most crucial point is that HE, CLAHE, and Imadjust are not targeted
and use a single processing mode, whereas our method can perform advisable contrast
enhancement based on the specific features of each light field image. The results indicate
that the proposed method can improve the overall contrast of the image effectively. From
a cost–benefit viewpoint, our adaptive enhancement algorithm utilizes an MLP network
to predict parameter implementation in real time. The architecture is devised with a light
structure, which reduces the cost waste, and it can precisely obtain the parameters. The light
field image batch processing is realized, which greatly shortens the image processing time.

5. Conclusions

Our adaptive LF contrast enhancement method uses an efficient hierarchical training
structure based on MLP, and the hierarchical structure improves the parameter acquisition
accuracy to enhance the contrast of LF images. The experimental results show that it is
superior to existing methods for facilitating image processing and appropriately enhancing
the global contrast without losing details. Meanwhile, the MLP network achieves adaptive
LF enhancement, which is user friendly and real time. Our architecture can be used to
implement real-time enhanced portal devices with limited hardware resources.

Light field images have wide application prospects, such as Google’s development
of LF immersive video calls [53], Samsung’s development of a slim-panel holographic
video display [54], and Light Field Lab’s SolidLight that offers a true holographic video
display [55]. In the future, we would like to enhance the scalability of our approach. For
example, the FS formed by our method currently has a low resolution (624 × 432), and
we want to enhance the image contrast while increasing the resolution. Because low-light
LF images lack information expression and produce more noise due to the dark shooting
light, we hope to enhance the information expression by improving the contrast of the
low-light field image and denoising. In the future, we will implement light field composite
enhancement suitable for various scenes.
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