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Abstract: In contrast to cumbersome benchtop spectrometers, integrated on-chip spectrometers
are well-suited for portable applications in health monitoring and environmental sensing. In this
paper, we have developed an on-chip spectrometer with a programmable silicon photonic filter by
simply using parallel cascaded micro-ring resonators (MRs). By altering the transmission spectrum
of the filter, multiple and diverse sampling of the input spectrum is achieved. Then, combined
with an artificial neural network (ANN) model, the incident spectrum is reconstructed from the
sampled signals. Each MR is coupled to adjacent ones, and the phase shifts within each MR can
be independently tuned. Through dynamic programming of the phases of these MRs, sampling
functions featuring diverse characteristics are obtained based on a single programmable filter with
an adjustable number of sampling channels. This eliminates the need for a filter array, significantly
reducing the area of the on-chip reconstructive spectrometer. The simulation results demonstrate
that the proposed design can achieve the reconstruction of continuous and sparse spectra within the
wavelength range of 1450 nm to 1650 nm, with a tunable resolution ranging from 2 nm to 0.2 nm,
depending on the number of sampling states employed. This benefit arises from the programmable
nature of the device. The device holds tremendous potential for applications in wearable optical
sensing, portable spectrometry, and other related scenarios.

Keywords: computational spectral reconstruction; programmable silicon photonic filter; artificial
neural network; photonic integrated circuit

1. Introduction

Spectroscopic analysis techniques are indispensable tools in a multitude of disciplines
such as biomedical research, material science, and remote sensing [1–3]. Despite their
significance, traditional benchtop spectrometers suffer from several drawbacks; they are
generally bulky, complex, and expensive, rendering them ineffective for emerging applica-
tions such as wearable health monitoring and Lab-on-Chip systems [4,5]. The motivation
for our research stems from the urgent need for more accessible and versatile spectroscopic
tools that can cater to these innovative applications. Integrated spectrometers, which lack
mechanical moving parts, offer an appealing alternative due to their higher reliability,
compactness, and field-deployable capabilities. These advantages are particularly rele-
vant for broadening the application scope of spectral analysis. Driven by this vision, the
past few decades have seen a concerted effort by both academia and industry to develop
miniaturized spectrometers. As a result, over the past few decades, researchers have intro-
duced numerous designs for computationally reconstructed on-chip spectrometers. These

Appl. Sci. 2024, 14, 4886. https://doi.org/10.3390/app14114886 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14114886
https://doi.org/10.3390/app14114886
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9331-9114
https://orcid.org/0000-0002-9782-8749
https://doi.org/10.3390/app14114886
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14114886?type=check_update&version=2


Appl. Sci. 2024, 14, 4886 2 of 12

designs leverage advanced technologies such as silicon photonics and nano-fabrication
to integrate multiple spectral components onto a single chip, enabling high-performance
spectral analysis in a much smaller and more portable form factor.

Innovative designs have emerged, replacing traditional diffraction-based elements
with novel dispersive ones, such as disordered scattering media [6–9], metasurfaces [10,11],
photonic crystals [12,13], quantum dot arrays [14,15], multimode waveguides [16,17], or
filter arrays [18–21]. These approaches utilize these novel dispersive elements to create
a sampling array, capturing the incident spectrum across multiple channels. The recon-
struction of the spectrum is based on the speckle or intensity distribution obtained from
these samplings. However, the scalability of the sampling array can limit the resolution
and accuracy of the reconstruction. Another design approach employs dynamically tun-
able elements, such as tunable cavities [22], black phosphorus detectors [23], perovskite
detectors [24], and reconfigurable silicon photonic networks [25,26]. By applying external
control signals, the response function of the tunable sampling unit can be dynamically
adjusted to achieve variable sampling of the incident spectrum. The challenge for these
systems is to achieve accurate and high-resolution spectral reconstruction while avoiding
overly complex device architectures or numerous sampling channels.

Addressing these challenges, our work presents an on-chip spectrometer based on a
silicon photonic platform. The core of our design is a transmission-programmable silicon
photonic filter, which serves as a dynamic sampling unit. By manipulating the transmission
spectrum of the filter, we can perform diverse samplings of the input spectrum. An ANN
model is then employed to reconstruct the incident spectrum from the sampled signals. The
programmable silicon photonic filter is ingeniously designed with parallel cascaded MRs.
By adjusting the phase variations of light waves within the MRs via thermo-optic phase
shifters, the transmission spectrum of the silicon photonic filter can be altered. Our design
distinguishes itself from existing filter-based on-chip spectrometers by employing a full MR
configuration with mutually coupled cascaded MRs and intentionally designed unequal
radii. This unique approach enhances the diversity of sampling responses, resembling
random sampling with a limited number of sampling channels, which is essential for
computational spectral reconstruction. Furthermore, our chip features three output ports,
enabling higher sampling efficiency and improved reconstruction performance. Compared
to previous on-chip programmable photonic filters used as spectrometers, our parallel
cascaded MR-based design offers a significantly less complex and more compact solution,
with an estimated chip area of approximately 40 × 100 µm2. The reduced complexity and
miniaturization not only minimize the overall size of the spectral reconstruction system
but also allow for lower fabrication costs and improved scalability. Additionally, our
device provides wide-band spectral computational reconstruction within the wavelength
of 1450 nm to 1650 nm, achieving a tunable resolution ranging from 2 nm to 0.2 nm under
different numbers of sampling states. The programmable capability of the silicon photonic
filter adds flexibility, empowering users to tailor the number of sampling channels to suit
different applications, thereby adjusting the resolution, relative error, and computational
complexity as needed.

2. Principle and Design

The on-chip spectrometer we have designed is primarily composed of a programmable
silicon photonic filter. The structural schematic of the device is shown in Figure 1. By
applying control signals to the phase shifters, we can program the phase shift of each MR,
thereby altering the filter’s transmission spectrum. Each time the transmission state of
the filter is changed, three samplings of the input optical signal can be completed because
the filter has three output ports. Through the reasonable setting of control signals, we can
ensure that the transmission spectra of sampling channels have unique spectral features
with low correlation, leading to diversified sampling of the incident spectrum. The sampled
spectral signals are then converted into response vectors by photodetectors at the output
end of the filter. The process of spectrum reconstruction is illustrated in Figure 2.
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Figure 1. Schematic diagram of the on-chip computational spectrometer based on programmable
silicon photonic filters. The phase shifters are integrated within each ring resonator to individually
control the phase shift, enabling the programmability of the filter’s transmission spectrum.
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Figure 2. Spectral reconstruction procedure.

The designed programmable silicon photonic filter consists of a 6-stage parallel cas-
caded MR with different radii. Each MR is coupled to adjacent ones to increase the diversity
of the optical paths within the device. By employing different radii of the MRs, the Vernier
effect is introduced, which further enhances the diversity of the filter’s transmission spec-
trum, thereby improving the sampling efficiency of the filter.

By individually controlling the voltage across the six phase shifters, we can leverage
the thermo-optic effect to program the phase shift (∆ϕ) in each MR, thus enabling flexible
adjustment of the filter’s transmission spectrum. When the incident light, Φ(λ), enters
the silicon photonic filter from the input port, the transmission spectrum Ti(λ) of the filter
is modified by adjusting the input voltages of the six phase shifters, which completes
the sampling of the incident light spectrum. Then the output power intensity Ii of an
unknown incident spectrum Φ(λ) propagating through a broadband sampling channel can
be described as:

Ii =
∫

Ti(λ)Φ(λ)dλ (1)

Equation (1) can be rewritten in a discrete form as:

Ii =
N

∑
k=1

Ti(λk)Φ(λk) (2)

where N is the number of spectral pixels in the wavelength domain. By repeatedly chang-
ing the sampling state of the filter through external voltages, multiple samplings of the
incident light spectrum can be achieved. An intensity vector IM×1 and the corresponding
M equations are obtained through M sampling channels. These equations can be expressed
in the following matrix form: I1

...
IM

 =

 T1(λ1) · · · T1(λN)
...

. . .
...

TM(λ1) · · · TM(λN)


Φ(λ1)

...
Φ(λN)

 (3)

where the sampling matrix TM×N connects the intensity vector IM×1 with the incident light
ΦN×1 to be measured. Clearly, there are M equations and N unknowns Φ(λk) to solve for
in Equation (3). The unknown input spectrum ΦN×1 can be computed by multiplying the
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output intensity IM×1 by the inverse of the matrix TM×N. In general, since the inverse matrix
is only applicable to square matrices, the number of recoverable wavelength channels is
limited by the number of sampling channels. However, with proper design, the number of
samples M required to reconstruct the spectrum of input light can be much smaller than
the number of spectral pixels N [21]. When M is less than N, the problem described by
Equation (3) is underdetermined. Reconstruction algorithms such as compressed sensing
and convex optimization can be applied to solve this underdetermined problem and recover
a high-resolution incident light spectrum [21,27]. In our work, we designed an ANN model
based on residual blocks, referring to the algorithm in the literature [28], to complete the task
of reconstructing the incident light spectrum. Additionally, we have modified the model
architecture to reduce computational complexity and resource requirements. Specifically,
we have replaced the multiple convolutional layers with a single fully connected layer
while retaining residual connections. This modification streamlines the model architecture,
making it more efficient and less resource-intensive, without compromising its performance
in reconstructing the incident spectrum from the sampled signals. Compared to traditional
methods, the spectrum reconstruction algorithm based on deep learning does not rely on
prior knowledge of the incident spectrum and offers faster solving speed [20].

After obtaining the intensity vector IM×1 from Equation (3), we transform it by multi-

plying it with the pseudo-inverse matrix of the sampling matrix TM×N to obtain
∼
Φ ∈ RN×1.

This transformed vector is then used as the input for the ANN. Through training, the

network learns the nonlinear mapping between
∼
Φ and the true spectrum Φ, resulting in

the reconstructed spectrum Φ̂ ∈ RN×1. The ANN model we employed includes two fully
connected layers and a residual connection from the input to the output. After the fully
connected layer, a Gaussian Error Linear Unit (GeLU) is used as the activation function.
Dropout follows the layer to reduce the overfitting of the model. The output of the last fully
connected layer is added to the network’s input and then fed into the regression output
layer. The number of units in each fully connected layer is depicted in Figure 3. The output
layer consists of 2001 nodes, representing the reconstructed spectral intensity. These nodes
correspond to wavelengths ranging from 1450 nm to 1650 nm, with a uniform spacing of
0.1 nm between each wavelength point. During the training of the network, we employ the
Mean Squared Error (MSE) as the loss function.
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Figure 3. The schematic of the spectrum reconstruction algorithm.

3. Simulation Results and Analysis
3.1. Device Design and Simulation

The device is designed to be fabricated on a Silicon-on-Insulator (SOI) platform with
a top silicon layer thickness of 220 nm and a buried oxide layer thickness of 2 µm. The
waveguide is a single-mode rib waveguide with a height of 220 nm, a width of 450 nm, and
slab regions on both sides of 70 nm thickness. Referring to the technology of mainstream
silicon photonics SOI platforms, the waveguide’s transmission loss is set to 2 dB/cm. The
effective refractive index of the TE-polarized fundamental mode at a 1550 nm wavelength
obtained using the finite difference eigenmode method is 2.4769, and the group refractive
index is 4.0088. The MRs in the filter are racetrack micro-rings with straight waveguide
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sections 1.14 µm in length and with radii of 5 µm, 5.5 µm, 6 µm, 6.5 µm, 7 µm, and 7.5 µm,
respectively. The coupling gap between the micro-ring and the straight waveguide is 100
nm, as is the coupling gap between micro-rings, ensuring that the resonators are in an
over-coupled state with coupling coefficients at a 1550 nm wavelength being around 0.5.

Using the Ansys Lumerical INTERCONNECT simulation platform, we set two op-
erational states for each of the six phase shifters, introducing phase shifts ∆φ of 0 and π,
resulting in a total of 64 sampling states. By considering the 3 output ports of the filters, we
ultimately acquire 192 sampling channels from the filters, forming the sampling matrix.
Figure 4a shows the heatmap of the sampling matrix of the designed spectrometer based
on the programmable filter. Figure 4b displays the transmission spectra of the filter under
four different phase-change conditions, which are randomly selected. Each row in the
heatmap represents the transmission spectrum of a sampling channel. Autocorrelation
and cross-correlation function to characterize the filter’s transmission spectra [21,26]. The
half width at half maximum (HWHM) of the auto-correlation function, denoted as δλ, is a
crucial parameter that quantifies the spectral resolution of the reconstructive spectrometer.
It represents the minimum wavelength shift required to reduce the correlation between
individual sampling channels by 50%. In other words, δλ determines the ability of the sys-
tem to distinguish between neighboring wavelength pixels. The cross-correlation between
two distinct sampling channels is a measure of their similarity in the spectral domain. It
quantifies the extent to which the spectral responses of the two channels are correlated with
each other. In an ideal scenario, the sampling channels should be orthogonal, meaning that
they are completely independent. When this condition is satisfied, the cross-correlation
between any two distinct sampling channels should be zero at all wavelength points. By
assessing the autocorrelation and cross-correlations of the sampling matrix, we can evaluate
the effectiveness of our sampling system in providing diverse and complementary spectral
information. The calculated autocorrelation and cross-correlation are shown in Figure 5.
The narrow autocorrelation with δλ = 0.65 nm and low cross-correlation indicates a well-
designed sampling matrix contains diverse features with very little cross-correlation signal.
The incident light spectrum can be converted into a unique intensity vector after sampling
and detection, allowing the subsequent reconstruction algorithm to work effectively.
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Figure 4. (a) Heat map of simulated sampling matrix of the devices with 192 sampling channels;
(b) Transmission spectra of 4 randomly selected sampling channels.
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Figure 5. (a) The calculated spectral auto-correlation function and average cross-correlation of the
transmission spectra among the 192 sampling channels (64 sampling states). The cross-correlation
curve represents the mean value of all the pairwise cross-correlations between the transmission
spectra of the 192 channels. (b) The HWHM of the auto-correlation function is approximately
0.65 nm.

Utilizing the network architecture described in Section 2, we have constructed an
ANN-based spectral reconstruction model to achieve the transformation from intensity
vectors IM×1 to reconstructed spectra Φ̂. We synthesized 15,000 simulated spectral datasets
based on a combination of Gaussian and Lorentzian functions and used this synthesized
spectral dataset to train the model. Each simulated spectrum was composed of multiple
function components, with the number of components randomly ranging from 1 to 10.
Each function component was randomly set as either a Gaussian or Lorentzian function
with a probability of 0.5. We then randomly set the position, height, and full width at half
maximum (FWHM) for each peak. The position of each peak was randomly distributed
between 1500 and 1600 nm; the heights were determined using uniformly distributed
random numbers in the interval (0, 1); the FWHM is set by randomly selecting a value from
a specific interval to serve as the FWHM of the current spectral peak. Finally, all function
components are summed to generate the synthesized spectrum. We set three different
ranges for the FWHM: (2 nm, 100 nm), (2 nm, 10 nm), and (1 nm, 2 nm). The additional
generation of these spectra with smaller FWHMs is intended to enhance the model’s ability
to reconstruct narrow peaks (sparse spectra) in the spectrum.

Before training the model, we randomly divided the synthesized spectral data into two
parts with a ratio of 4:1, where the training set contained 12,000 samples and the validation
set contained 3000 samples. Then, following the same method, we generated an additional
150 simulated spectra to serve as an independent test dataset. During model training, we
employed the Adam optimizer with a batch size of 256 and trained for 10,000 epochs. The
training was conducted on an NVIDIA GeForce RTX 4070 graphics (NVIDIA, Santa Clara,
CA, USA) processing unit. After the training was completed, we chose to save the model
that exhibited the lowest loss value on the validation set during the training process as the
final spectral reconstruction model.

3.2. Spectral Reconstruction Simulation Results

Combining the simulation results of the designed on-chip spectrometer with the
trained ANN model, the reconstruction results for different types of synthetic spectra
selected from the test set are shown in Figure 6a,b. We employ the root mean squared error
(RMSE) and relative error ε to evaluate the spectral reconstruction results:

RMSE =

√
∑m

i=1
(
Φ − Φ̂

)2

m
(4)
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ε =

∥∥Φ − Φ̂
∥∥

2
∥Φ∥2

(5)

where m is the total number of wavelength points. Across the entire test set, the average
RMSE for spectral reconstruction is 0.0051, and the average relative error ε is 0.0484.

Appl. Sci. 2024, 14, 4886 7 of 12 
 

an additional 150 simulated spectra to serve as an independent test dataset. During model 

training, we employed the Adam optimizer with a batch size of 256 and trained for 10,000 

epochs. The training was conducted on an NVIDIA GeForce RTX 4070 graphics (NVIDIA, 

Santa Clara, CA, USA) processing unit. After the training was completed, we chose to save 

the model that exhibited the lowest loss value on the validation set during the training 

process as the final spectral reconstruction model. 

3.2. Spectral Reconstruction Simulation Results 

Combining the simulation results of the designed on-chip spectrometer with the 

trained ANN model, the reconstruction results for different types of synthetic spectra 

selected from the test set are shown in Figure 6a,b. We employ the root mean squared 

error (RMSE) and relative error ε to evaluate the spectral reconstruction results: 

𝑅𝑀𝑆𝐸 = √∑ (𝛷 − �̂�)
2𝑚

𝑖=1

𝑚
 (4) 

𝜀 =
‖𝛷 − �̂�‖

2

‖𝛷‖2
 (5) 

where m is the total number of wavelength points. Across the entire test set, the average 

RMSE for spectral reconstruction is 0.0051, and the average relative error ε is 0.0484. 

  

(a) (b) 

  

(c) (d) 

Figure 6. Simulated reconstruction results of different types of spectra. (a–c) Randomly selected 

synthetic spectrum with three different FHWM; (d) ASE light source spectra. 

Figure 6a,b illustrates the reconstruction of a spectrum with relatively wide peaks, 

where the FWHM of each peak is randomly selected from the interval (2 nm, 100 nm) and 

1450 1500 1550 1600 1650
0.2

0.4

0.6

0.8

1.0

1.2
In

te
n

s
it
y

Wavelength (nm)

 Reference

 Reconstruction

RMSE = 0.0009

ε = 0.0011

1450 1500 1550 1600 1650

0.0

0.5

1.0

In
te

n
s
it
y

Wavelength (nm)

 Reference

 Reconstruction

RMSE = 0.0053

ε = 0.0175

1450 1500 1550 1600 1650

0.0

0.2

0.4

0.6

0.8

1.0

In
te

n
s
it
y

Wavelength (nm)

 Reference

 Reconstruction

RMSE = 0.0106

ε = 0.0837

1450 1500 1550 1600 1650

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
te

n
s
it
y

Wavelength (nm)

 Reference

 Reconstruction

RMSE = 0.0065

ε = 0.0095

Figure 6. Simulated reconstruction results of different types of spectra. (a–c) Randomly selected
synthetic spectrum with three different FHWM; (d) ASE light source spectra.

Figure 6a,b illustrates the reconstruction of a spectrum with relatively wide peaks,
where the FWHM of each peak is randomly selected from the interval (2 nm, 100 nm) and
(2 nm, 10 nm). The reconstructed spectrum closely matches the true spectrum, with an
RMSE of 0.0009 and 0.0053 and ε of 0.0011 and 0.0175, respectively. In Figure 6c, we
demonstrate the reconstruction of a sparse spectrum with several narrow peaks, where
the FWHM of each peak is randomly chosen from the interval (1 nm, 2 nm). Despite the
presence of sharp and closely spaced peaks, the reconstructed spectrum still accurately
captures the key features of the true spectrum, achieving an RMSE of 0.0106 and a relative
error ε of 0.0837. From the figures, it is evident that the peaks in the synthesized spectra are
precisely reconstructed. We also performed reconstruction on the measured spectra of an
amplified spontaneous emission (ASE) light source, with the results shown in Figure 6d.
The spectral range of the ASE light source is inherently 1500 nm to 1600 nm, originally
containing 1001 data points. To facilitate the verification of our chip’s ability to reconstruct
measured spectra, we expanded it to 2001 data points through interpolation, assuming
a wavelength range of 1450 nm to 1650 nm. The RMSE and the relative errors ε are
0.0065 and 0.0095, respectively. These results demonstrate that our designed on-chip
spectrometer is capable of accurately reconstructing real-world spectra. The low RMSE and
relative error values for both the synthesized and measured spectra indicate the robustness
and effectiveness of our on-chip spectrometer design and the associated ANN-based
reconstruction model. The model’s ability to handle diverse spectral features, including
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narrow and closely spaced peaks, highlights its potential for practical applications in
various fields where accurate spectral reconstruction is crucial.

The ability to resolve closely spaced narrow peaks is crucial for many spectroscopic
applications, such as gas sensing, environmental monitoring, and chemical analysis. In
these fields, the spectral features of interest often lie in a narrow wavelength range, and
the ability to distinguish between adjacent peaks is essential for the accurate identification
and quantification of the target analytes. To further demonstrate the spectral resolution
of the proposed spectral chip, we simulated the reconstruction of a dual-peak spectrum,
where the peaks are separated by 2 nm, and each peak has an FWHM of approximately
1 nm. The reconstruction results are shown in Figure 7, with an RMSE of 0.0169 and a
relative error ε of 0.1918, providing strong evidence for the high spectral resolution of
our proposed on-chip spectrometer. The two narrow peaks spaced at 2 nm are clearly
distinguishable in the reconstructed spectrum, indicating that the spectral reconstruction
resolution of our designed spectrometer chip can reach 2 nm under a limited number of
sampling channels. The clear resolution of the two peaks demonstrates the capability of
our design to resolve fine spectral features, which is a key performance metric for advanced
spectroscopic devices.
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Figure 7. Simulated reconstruction results of a narrow double-peak spectrum separated by 2 nm.

Increasing the number of sampling states of the photonic filter can further reduce the
spectral reconstruction error and increase the resolution. We investigate the impact of the
filter sampling states on the spectral reconstruction performance by increasing the number
of phase shift states of the phase shifters in the programmable silicon photonic filter. We
sequentially increase the number of phase shift states of the phase shifters from 2 (0 and
π) to 3 (0, π/3, and 2π/3), obtaining sampling matrices with M = 3 × 96, 3 × 144, 3 × 216,
3 × 324, 3 × 486, and 3 × 729 sampling channels, respectively. Increasing the number of
phase shift states of the phase shifters essentially increases the programmable degrees of
freedom of the filter, resulting in more diverse sampling channels. When the number of
states of the phase shifters increases from 2 to 3, each phase shifter can provide 3 different
phase shifts, allowing the transmission spectrum of the filter to exhibit more variations.
These variations enable the filter to perform richer and more diverse sampling of the
incident spectrum, obtaining more spectral information. This helps to improve the accuracy
and resolution of the spectral reconstruction.

As shown in Figure 8a, the average relative error ε of the reconstructed spectra in the
test set steadily decreases as the number of sampling states increases from 64 to 729. Across
the entire test set, with 729 sampling states, the average RMSE for spectral reconstruction is
8.912 × 10−6, and the average relative error ε is 2.2991 × 10−5. The significant reduction
in RMSE and ε can be attributed to the fact that when the number of sampling states
is 729, the number of sampling channels reaches 3 × 729, which exceeds the number
of spectral pixels N = 2001. Consequently, the redundant information captured by the
sampling channels helps to reduce the difficulty of spectral reconstruction significantly.
Simultaneously, as the number of sampling states increases to 729, the resolution of the on-
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chip spectrometer for dual-peak spectra improves to 0.1 nm, limited by the resolution of the
spectral pixels set in the simulation. This improvement is demonstrated by the dual-peak
spectrum reconstruction results in Figure 8b. Figure 8c,d shows the reconstruction results
of the proposed on-chip spectrometer for the previously selected narrow spectrum and the
measured ASE spectrum, respectively, when the number of sampling states is set to 729. The
reconstruction errors (RMSE) are 1.457 × 10−6 and 1.5333 × 10−5, and the relative errors ε
are 1.1512 × 10−5 and 2.2297 × 10−5, respectively. The steady decrease in the relative error
ε as the number of sampling states increases highlights the direct relationship between
sampling diversity and reconstruction performance. With more distinct sampling channels,
the filter captures more features in the spectrum, enabling the reconstruction algorithm to
better approximate the original spectrum. Furthermore, the increase in sampling states also
positively impacts the resolution of the on-chip spectrometer. As the number of sampling
states increases, the spectrometer can better capture the subtle differences between the
peaks, allowing for clearer separation and resolution of the individual spectral features.
The programmable nature of the silicon photonic filter is a key strength of our design,
providing users with the flexibility to optimize the performance of the spectral chip based
on their specific needs. By adjusting the number of sampling states, users can prioritize
either detection speed or reconstruction accuracy, depending on the requirements of their
application. This adaptability makes our on-chip spectrometer design adaptable to a wide
range of spectroscopic applications, from rapid screening to high-precision measurements.

Appl. Sci. 2024, 14, 4886 10 of 13 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 8. (a) The calculated average relative error ε on test set and the resolution of reconstructed 
spectrum using the spectrometer designs with different sampling state numbers. Simulated 
reconstruction results with 729 sampling states for (b) narrow double-peak spectra separated by 0.1 
nm and 0.2 nm, (c) previously selected narrow spectrum, and (d) the measured ASE spectrum. 

3.3. Discussion 
The performance of the proposed computational reconstruction spectrometers was 

compared with other filter-based integrated computational reconstruction spectrometers 
as shown in Table 1. The proposed on-chip spectrometer has a more compact footprint 
and faster computing time compared with the others with similar bandwidth. 

Table 1. Performance comparison of reported filter-based computational spectrometers. 

Ref. Footprint 
[μm2] 

Res 
[nm] 

Bandwidth 
[nm] 

Number of Sampling 
Channels 

Computing Time 
[s] 

[19] 520 × 220 0.02 12 (2 spectral lines) 64 - 
[21] 35 × 260 0.45 180 32 0.65 
[22] 60 × 60 0.04 100 2501 - 
[25] 2000 × 7600 0.03 125 256 9 
[26] 1900 × 3700 0.01 200 729 360 

Our work 40 × 100 (estimated) 0.1~2 200 192~2187 0.033~1.93 

As shown in Table 1, the resolution of our on-chip spectrometer is indeed lower 
compared to some previous works, which is primarily determined by the spectral 
reconstruction algorithm we employed. The choice of different types of spectral 

0 100 200 300 400 500 600 700 800

10-5

10-4

10-3

10-2

10-1
 Relative error ε
 Resolution

Number of sampling state

R
el

at
iv

e 
er

ro
r ε

0.0

0.5

1.0

1.5

2.0

 R
es

ol
ut

io
n 

(n
m

)

1554 1556 1558 1560 1562

0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

Wavelength (nm)

Reference
Reconstruction

Δλ1 = 0.2nm Δλ2 = 0.1nm

RMSE = 3.5894×10-7

ε = 8.8500×10-6

1450 1500 1550 1600 1650

0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

Wavelength (nm)

 Reference
 Reconstruction

RMSE = 1.457×10-6

e = 1.1512×10-5

1450 1500 1550 1600 1650

0.0

0.2

0.4

0.6

0.8

1.0

RMSE = 1.5333×10-5

e = 2.2297×10-5

In
te

ns
ity

Wavelength (nm)

 Reference
 Reconstruction

Figure 8. (a) The calculated average relative error ε on test set and the resolution of reconstructed
spectrum using the spectrometer designs with different sampling state numbers. Simulated recon-
struction results with 729 sampling states for (b) narrow double-peak spectra separated by 0.1 nm
and 0.2 nm, (c) previously selected narrow spectrum, and (d) the measured ASE spectrum.
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3.3. Discussion

The performance of the proposed computational reconstruction spectrometers was
compared with other filter-based integrated computational reconstruction spectrometers as
shown in Table 1. The proposed on-chip spectrometer has a more compact footprint and
faster computing time compared with the others with similar bandwidth.

Table 1. Performance comparison of reported filter-based computational spectrometers.

Ref. Footprint
[µm2]

Res
[nm]

Bandwidth
[nm]

Number of Sampling
Channels

Computing Time
[s]

[19] 520 × 220 0.02 12 (2 spectral lines) 64 -
[21] 35 × 260 0.45 180 32 0.65
[22] 60 × 60 0.04 100 2501 -
[25] 2000 × 7600 0.03 125 256 9
[26] 1900 × 3700 0.01 200 729 360

Our work 40 × 100 (estimated) 0.1~2 200 192~2187 0.033~1.93

As shown in Table 1, the resolution of our on-chip spectrometer is indeed lower
compared to some previous works, which is primarily determined by the spectral recon-
struction algorithm we employed. The choice of different types of spectral reconstruction
algorithms can affect the reconstruction error, resolution, reconstruction time, and noise
tolerance. In our work, we adopted the ANN algorithm to perform computational spectral
reconstruction. ANN models are capable of effectively fitting nonlinear relationships, and
the output nodes of the model correspond to the wavelength points of the reconstructed
spectrum. Theoretically, a higher number of output nodes could lead to a higher spectral
resolution achievable by the reconstruction algorithm. However, it is important to note
that the number of parameters in the ANN model grows approximately quadratically with
the increase in the number of wavelength points. When the number of wavelength points
reaches 20,001 (corresponding to a resolution of 0.01 nm in the 1450–1650 nm range), the
model would contain 800 million parameters, posing significant computational challenges.
Due to hardware limitations (NVIDIA GeForce RTX 4070), we were unable to train a model
with such a vast number of parameters.

Although the resolution of our on-chip spectrometer is limited by the employed
spectral reconstruction algorithm, our design still possesses unique advantages. Firstly,
using an ANN model as the spectral reconstruction algorithm enables faster computation
of the incident spectrum from the obtained intensity vector. The CVX algorithm used in
Refs. [25,26] to solve the regularized regression model achieves a resolution in the order of
10 pm, but it requires a relatively longer computational reconstruction time. In contrast,
using an ANN model to perform spectral reconstruction with 2187 sampling channels
(729 sampling states) takes approximately 1.93 s (including the time for computing the
pseudo-inverse of the sampling matrix, based on i5-1135G7 CPU, Intel, Santa Clara, CA,
USA). It is evident that the proposed ANN-based on-chip spectrometer can reconstruct
the spectrum more rapidly, demonstrating a clear advantage in real-time performance
compared to the CVX algorithm. Moreover, based on the discussion in Ref. [29], ANN-
based spectral reconstruction algorithms exhibit stronger noise tolerance, which is another
important factor to consider in spectral computational reconstruction.

4. Conclusions

In this paper, we propose an on-chip spectrometer based on a programmable silicon
photonic filter. By changing the transmission spectrum of the filter through control signals,
multiple and different samplings of the input spectrum can be achieved. Combined with the
ANN algorithm, the incident spectrum can be reconstructed from the sampled signals. This
design realizes diverse sampling of the incident spectrum based on a single programmable
filter with an adjustable number of sampling channels. This approach can significantly
reduce the footprint of the device and offer clear advantages in terms of integration and
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hardware costs. The simulation results show that the proposed device can accurately
reconstruct spectra with different characteristics in the wavelength range of 1450 nm to
1650 nm. Regarding the test set consisting of synthesized spectra, the proposed on-chip
spectrometer achieves an average reconstruction error RMSE of 0.0051 and an average
relative error ε of 0.0484 using only a limited number of sampling states (64). When the
number of sampling states is increased to 729, the RMSE and relative errors ε are reduced
to 8.912 × 10−6 and 2.2991 × 10−5, respectively. The resolution for dual narrow-peak
spectra can reach 0.2 nm, which is limited by the resolution of the spectral pixels we
set. Benefiting from the programmable nature of the silicon photonic filter, the chip can
flexibly change the number of sampling channels, allowing users to configure the chip
according to the application scenario. Our proposed integrated reconstructive spectrometer
based on the programmable silicon photonic filter provides a new solution for chip-level
spectrometers and has broad application prospects in fields such as miniature spectrometers
and Lab-on-Chip.
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