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Abstract: The optimization of measurements in a geodetic network (second-order design) has been
investigated in the past; however, the practical usability of the outcomes of most of such studies is
doubtful. Hence, we have proposed a new automated optimization algorithm, taking into account
the practical aspects of total station measurements. The algorithm consists of four parallel partial
algorithms, of which one is subsequently automatically selected—the one meeting the geodetic
network accuracy requirements with the lowest number of necessary measurements. We tested
the algorithm (and individual partial algorithms) on four geodetic networks designed to resemble
real-world networks with 50–500 modifications to each of those networks in individual tests. The
results indicate that (i) the results achieved by the combined algorithm are close to the optimal
results and (ii) none of the four partial algorithms universally performs the best, implying that the
combination of the four partial algorithms is necessary for achieving the best possible results of
geodetic network optimization.

Keywords: optimization; geodetic measurements; measurement accuracy planning; second-order
design; geodetic network

1. Introduction

The optimization of geodetic networks is an important component of geodetic practice.
Although methods such as laser scanning or photogrammetry gradually take over in the
collection of spatial data over larger extents, measurement using total station remains
crucial where local measurements for construction purposes are concerned. This method
also remains indispensable in the measurement of deformations of, e.g., human-built
objects [1,2] or natural scenes [3].

The sufficient and known accuracy of survey results [4,5] is a fundamental prerequisite
for the successful construction process, and the aim of geodetic network optimization is
to minimize the costs of constructing and maintaining the network while maintaining the
required accuracy and reliability. Many methods have been proposed for this purpose;
however, not all of them are suitable for the relatively complex mathematical problem of
geodetic networks.

The geodetic optimization method should be applied wherever the required accuracy
of the measurement result is not easily met by the simple use of geodetic instruments,
and where the quality of the subsequent construction process or the safety of the building
operation depends on the accuracy achieved. These are, e.g., surveying activities in bridge
construction [6], the determination of coordinates of staking out geodetic network [7], and
the monitoring or measuring of structures above ground [8,9] or below ground [10–12].

The basics of optimization in the field of geodetic networks have been laid down
in the 1950s to 1970s. The general objective function for geodetic network optimization
was introduced by Schaffrin [13]. Recently, Bagerbandi followed up on his work [14],
comparing the suitability of single-criterion or multi-criterion optimization approaches.
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Scalar objective functions describing the accuracy and the properties of these functions
were investigated in detail by Grafarend [15]. Together with Schaffrin [16], they defined
a matrix objective function using the Taylor–Karman structure of the covariance matrix.
Baarda then laid down the principles of objective functions for reliability [17].

Grafarend classified the optimization of geodetic networks into four types, depending
on the optimized parameters [15]. Namely, these are termed zero-order design (ZOD) to
third-order design (TOD). The ZOD, the basics of which are described by Teunnissen [18],
focuses on the coordinate system definition; it has, however, not gained much popularity.
The first-order design (FOD) deals with the optimization of the network configuration, i.e.,
the locations of the network points. It was investigated in detail, in particular by Koch [19],
who optimized the position of the points through very small coordinate changes using
the Taylor–Karman structure as the objective function. Berne and Baselga [20] presented
a different approach to the FOD, using a heuristic method of simulated annealing for the
optimization of the covariance matrix determinant [21]. They demonstrated this approach
using two examples; however, in the more complicated of these examples, the optimization
led to the convergence of the optimized points towards the center of gravity, leading to their
final position on the borders predefined to limit their further convergence to the center of
gravity. This indicates that even though the optimization of the network shape to maximize
the accuracy might have seemed an interesting concept, it is not practically applicable as
the mathematical solution necessarily always ends up on predefined borders designating
the smallest allowed network (as seen, e.g., in [20] or [22]). The cause is simple: the
errors generally grow with distance, and the simplest mathematical solution for improving
accuracy, therefore, reduces the distances. Without setting the borders and continuing in
optimization according to the FOD, the entire network would eventually converge into a
single point.

The second-order design (SOD) optimizes the weight matrix (determining measure-
ments to be taken and the number of repetitions of these measurements) and the third-order
design attempts to optimize the network through its densification (i.e., the addition of new
point(s) or observation(s)) [23]. From the perspective of practical use, SOD (determining
what measurements need to be taken and how many times) is the most important of these
designs. However, the available literature [20,22,24–28] mostly deals with determining
weights of individual metrics (typically slope distance, zenith angle, and horizontal direc-
tion) separately. It should be strongly emphasized that in terms of the operation of geodetic
instruments, when performing terrain measurements, the total station provides all these
values at the same time and, in effect, recording only one or two of these values would
not make much sense. Also, many of these studies work with measurement weights in the
optimization procedure, which is also suboptimal as the weights must be eventually con-
verted to the actual number of measurements. This usually does not yield integers and the
numbers must be rounded up, which negatively affects the optimality of the solution (the
number of measurements actually taken may then be higher than what could be sufficient).
The same issues can be found in many other papers as well [29–33].

In this paper, we aim to propose a method of second-order design optimization that
would be applicable in everyday geodetic practice. The requirement of practicability
disqualifies all previously discussed methods as it implies the following: (i) the numbers of
measurements are integers; (ii) total station always simultaneously measures three values
(slope distance, zenith angle, and horizontal direction), which must be considered as a
group (it would make no sense to discard one or two measurements from the same position
if they are taken anyway); (iii) all points measured from the same position of the total
station are measured with the same number of repetitions (which is the way the software in
total stations work); and (iv) an optimized network is defined as a network, whose points
are determined with an accuracy parameter equal or better than a set (required) value and
which is obtained using the minimum effort (i.e., number of measurements). For ease of
use, it would also be optimal if the accuracy characteristic could be chosen from a pool
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of metrics (such as standard deviation of the coordinate, of the position, or the longest
semiaxis of the error ellipsoid (hereinafter abbreviated as LSEE)).

2. Materials and Methods

The requirements on practical use detailed above have been previously applied by our
group on the SOD of a geodetic network determined by geometric leveling [34]. However,
that method is not usable for measurements using the total station. For this reason, we
can use the method proposed for geometrical leveling as a basis of the new algorithm and
amend it to make it compatible with total station measurement specifics.

2.1. The Model of Geodetic Network Accuracy

The method proposed in this paper is based on the “greedy algorithm” [35]. Con-
sidering the principle of this algorithm (i.e., maximizing immediate gain; in our case, the
accuracy increment), its use could lead to the identification of a local rather than global
optimum. Several strategies to overcome this problem (or minimize its effects) have been
proposed and will be tested in this paper on four generated 3D geodetic networks.

The inputs for the proposed method of optimization include (a) the approximate
coordinates of the points that will form the geodetic network, (b) the information on what
measurements can be made, and (c) the accuracy characteristics of the device (total station)
that will be used for measurements. The algorithm itself then consists, in principle, of
four steps:

1. The measurement (or, rather, a group of measurements) is added into the network if
it causes the greatest improvement in the used accuracy characteristic of the (at the
time) least accurate point in the network.

2. This is repeated until the required accuracy is achieved for all points.
3. Subsequently, the backward analysis follows, in which a group of measurements is

removed from the network if its deletion has the least negative effect on the respective
accuracy characteristic of all possible measurement deletions.

4. This is repeated until the removal of the next group of measurements would worsen
the accuracy of any point in the network below the required limit.

This approach uses the geodetic network adjustment by the least squares method.
The accuracy of the network is characterized by a covariance matrix Mx. In the case of a
geodetic network with two or more fixed points, the covariance matrix can be calculated as

Mx = c (ATPA)
−1

, (1)

where c is an arbitrary constant, which has to be identical for all elements in the matrix,
A is the Jacobi’s matrix, i.e., a matrix of partial derivations of the observation equations by
network point coordinates (see, e.g., [36] for more details, dimensions are m × u, where
m is number of measurement in the network and u is the number of unknowns), and P is
the weight matrix (dimensions m × m). Covariance matrix dimension is u × u.

To be able to use integers as the numbers of measurement repetitions instead of
measurement weights, we have modified the definition of the weight matrix that takes
them into account as follows:

P = N·P0 =

n1 · · · 0
...

. . .
...

0 · · · nk

·

p1 · · · 0
...

. . .
...

0 · · · pk

, (2)

where N is a diagonal matrix containing the numbers of measurement repetitions, and
P0 is a weight matrix with weights for a single repetition of each measurement, both with
dimension (m × m). Each pi (i = 1 to k) is then defined as

pi =
c

σ2
i

, (3)
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where pi is the weight of the ith measurement and σi is the standard deviation of the
ith measurement.

However, if the network is solved as a free network (without a sufficient number
of fixed points) additional conditions must be added into the calculation. In this work,
conditions for Helmert transformation to all points of the network (B, with dimensions
4 × 3l, where l is number of points in the network) were added to transform the network
so that the sum of squares of displacements (for all points) is minimized as follows:

B =


Y1,0

1
0
0

X1,0
0
1
0

0
0
0
1

Y1,0
1
0
0

· · ·
· · ·
· · ·
· · ·

Yl,0
1
0
0

Xl,0
0
1
0

, (4)

where Yj,0 and Xj,0 are the approximate coordinates of the j-th point of the network with
l points in total. The covariance matrix describing the accuracy of the geodetic network is
then defined as

Mx = submatrix1..u,1..u

(
c
(

ATN P0A B
BT 0

)−1
)

(5)

This covariance matrix serves as a source for all accuracy characteristics of the network
and any such characteristic that can be calculated from it can be used as the criterion for
subsequent optimization (e.g., the standard deviation of the coordinate, of the position,
or the longest semiaxis of the error ellipsoid). As various characteristics can be used, the
symbol K will be used for simplicity to describe any accuracy characteristic and KT the
target accuracy.

2.2. The Optimization Method

The optimization algorithm looks for the result with the lowest effort (i.e., with the
minimum sum of the diagonal elements in the N matrix, indicating the minimum number
of measurements) that yields the accuracy characteristic K equal or better than KT for all
points of the network.

The optimization is performed in several steps. The first step, which may or may
not be used (see below) lies in creating the initial configuration of the measurements.
Subsequently, the aforementioned maximum accuracy increment method followed by the
minimum accuracy decrease method are applied. In this paper, we tested four algorithms
combining these steps as shown in the flowchart in Figure 1. All four algorithms are
employed in parallel to each geodetic network undergoing optimization and, finally, the
result requiring the least effort is automatically selected as the optimal one. Components of
the algorithm are described in the following paragraphs, the full algorithm in pseudocode
is given in the Appendix B.

2.2.1. Initial Network Configuration

In some cases, starting the optimization from a (near-)zero number of all repetitions
reduces the likelihood of finding the optimal solution as it could lead rather to the identifica-
tion of a local optimum instead of a global one. This is caused by the fact that the algorithm
would prefer adding further measurements from the same standpoint from which the
first measurement was performed to adding measurements from new standpoints—just
because the second (or any subsequent) measurement from the same standpoint always
contains one piece of additional information (namely, the horizontal angle between the
previous measurement and the new one). In effect, the algorithm could keep adding mea-
surements from the same standpoint only. One of the possible solutions to this issue lies in
determining the initial measurement configuration of the network.

This initial measurement configuration is determined by declaring the measured
horizontal directions to be bearings in the first step. This will allow the algorithm to move
to another point in the network without the penalization stemming from the necessity to
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measure the first horizontal direction on the new standpoint. Subsequently, the above-
described maximum accuracy increment method is applied to the network formed by
the points, zenith angles, distances, and bearings. This will yield a preliminary (virtual)
optimization of the network, which will provide us with measurements that need to be
taken (i.e., measurements for which this preliminary optimization yielded the number
of repetitions ≥ 1). This information is then adopted to determine measurements for
the actual network containing horizontal directions instead of bearings, i.e., the initial
measurement configuration (with the initial number of repetitions for each of these adopted
measurements set to 1).
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2.2.2. The Maximum Accuracy Increment Method

In this step, the algorithm adds the most suitable group of measurements to the
arbitrary starting configuration of the network that does not meet the target accuracy
KT in all points. The most suitable group of measurements is defined as the group of
measurements that most improves the K of the point with the lowest K. This is repeated
until the KT is achieved for all points of the network.

The number of repetitions for all possible measurements in the matrix can be, in the
beginning, set to virtual 0 or, to be more exact, to ε= 10−12, which is sufficiently low to serve
as a “practical zero“ and, at the same time, meets the requirements of matrix regularity in
Equations (1) and (5). The initial matrix N is then defined as

diag(N) =
(
n1 · · · nm

)
=
(
ε · · · ε

)
, (6)

2.2.3. The Minimum Accuracy Decrease Method

This method starts from a network configuration that meets the KT criterion, i.e., fol-
lows after the previous part of the algorithm had produced a network with sufficient
accuracy. In this step, the decrease in the accuracy characteristic K after the removal of each
group of measurement is evaluated and the group the removal of which leads to the lowest
decrease in accuracy is removed.
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2.3. Testing of Optimization Results

The quality of the results of our optimization method was tested on four spatial
geodetic networks, with random variations in the coordinates of the points within the
network, total station accuracies, and requirements for the resulting point accuracies. The
longest semiaxis of the error ellipsoid (LSEE) was employed as the accuracy characteristic
K in our testing.

Hereinafter, the five employed algorithms will be designated (in line with Figure 1)
as follows:

- A1—The numbers of measurement repetitions are increased standpoint by standpoint;
initial network configuration is used.

- A2—The number of measurement repetitions is increased for the entire network
simultaneously; initial network configuration is used.

- A3—The numbers of measurement repetitions are increased standpoint by standpoint
without initial network configuration.

- A4—The number of measurement repetitions is increased for the entire network
simultaneously without initial network configuration.

- AOPT—The final optimal result selected as the best-performing result from all
four algorithms.

2.3.1. Geodetic Networks Used for Testing

Four testing geodetic networks were designed, simulating practical types of geodetic
networks that can be employed in practice:

- The first network was designed as a simple regular square-like network, with observa-
tions possible from all four points of the network, using the forced centering for both
instrument and target.

- The second network is triangular and also allows observations from all points of
the network. It simulates a network for staking out a line construction, also using
forced centering.

- The third network (“bridge”) simulates an accurate network for staking out, e.g., a
highway bridge. In the vicinity of the construction, there are four points with forced
centering, while at greater distances, there are additional reference points from where
no observations are possible.

- The last network (“building”) represents a network for staking out a building. Refer-
ence points are stabilized on the perimeter of the construction site and determined
from free standpoints.

The coordinates of all networks are detailed in Table A1. Figure 2 provides visualiza-
tion of all four networks and Table 1 shows the basic parameters of the networks.

Table 1. Basic characteristics of individual geodetic networks used for testing.

Network Points to Be
Determined

Points Eligible
to Serve as

Standpoints

Max Distance
between Points

[m]

Number of
Possible

Measurements

Square-like 4 4 158.7 36
Bridge 8 4 175.3 60

Triangular 8 8 595.5 78
Building 13 3 220.2 78



Appl. Sci. 2024, 14, 4890 7 of 20

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 23 
 

Table 1. Basic characteristics of individual geodetic networks used for testing. 

Network 
Points to Be 
Determined 

Points Eligible to 
Serve as Standpoints 

Max Distance  
between Points 

[m] 

Number of Possible 
Measurements 

Square-like 4 4 158.7 36 
Bridge 8 4 175.3 60 

Triangular 8 8 595.5 78 
Building 13 3 220.2 78 

 
Figure 2. Testing networks: (a) square-like network; (b) triangular network; (c) bridge network; (d) 
building network; the coordinates of the points can be found in the Table A1 according to the point 
numbers. 

2.3.2. Optimization Testing 
Most available studies on geodetic network optimization use only one or two 

sites/networks. This can, however, yield falsely favorable and optimistic results. Such a 
situation could arise even when using four networks as originally proposed in this paper. 
For this reason, we performed 500 modifications of each of the basic networks (hereinafter 
referred to as network variants), which differ in the position of individual points. As 
shown in the example in Figure 3 (square-like network), these positions were generated 
pseudo-randomly within a certain range around the original points (detailed in Table A1). 

Figure 2. Testing networks: (a) square-like network; (b) triangular network; (c) bridge network;
(d) building network; the coordinates of the points can be found in the Table A1 according to the
point numbers.

2.3.2. Optimization Testing

Most available studies on geodetic network optimization use only one or two sites/
networks. This can, however, yield falsely favorable and optimistic results. Such a situation
could arise even when using four networks as originally proposed in this paper. For
this reason, we performed 500 modifications of each of the basic networks (hereinafter
referred to as network variants), which differ in the position of individual points. As
shown in the example in Figure 3 (square-like network), these positions were generated
pseudo-randomly within a certain range around the original points (detailed in Table A1).

For each of the network variants, a calculation using all four algorithms (described in
detail in Section 2.2) was performed. In the first test, the optimal number of measurements
was determined by brute force, i.e., by scanning all possible combinations and selecting the
one that contains the fewest number of measurements (groups of measurements) and meets
the desired precision. In subsequent tests, the optimal number of measurements given the
computational complexity of the brute force solution was determined as the smallest one
found by our algorithm. To be able to compare the efficiency of individual algorithms, the
results need to be normalized. In our study, this normalization was calculated as the ratio
of the number of measurements acquired using the respective algorithm divided by the
optimal number of measurements (if known) or by the best result of all four algorithms,
expressed as the percentage. In other words, the optimal solution is 100%, and suboptimal
solutions are characterized by numbers >100%.

Statistical evaluation was then performed for all algorithms using the results from all
500 network variants for each network and the results are presented as the mean normalized
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performance (MNP) of the algorithm for the particular network and the percentual success
in optimal result detection (ORD). We chose 500 variants as an essentially extreme number
in order to make the statistical uncertainty of the results practically negligible. In addition,
the best result achieved by the combination of all four algorithms was also evaluated.
Multiple tests were performed for each of the networks as will be described below.
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(1) Brute force evaluation

To be able to objectively evaluate the success of the optimization method, we need
to know the absolute optimal solution, which can only be achieved using brute force
calculation, i.e., by calculating all possible solutions and selecting the one that provides the
required accuracy with a minimum effort (absolute optimum). This approach is, however,
computationally demanding and, as a consequence, it is applicable only for the square-like
network (the computational demands grow exponentially with the number of possible
measurements in the network), and even this was performed only for 50 network variants.
In all, four tests with different required accuracies and measurement accuracies were
performed (see Table 2).

Table 2. Parameters and accuracy requirements for the brute force test.

Test Test Specifics σψ, σz
[mgon]

σd
[mm]

LSEE Requirement
[mm]

1.1 High accuracy requirement 1 2 + 2 ppm 0.6
1.2 Low accuracy requirement 1 2 + 2 ppm 1.1
1.3 Accuracy of angle measurements predominates 0.3 3 + 2 ppm 0.6
1.4 Accuracy of distance measurements predominates 1.5 0.5 + 1 ppm 0.8

(2) Large-scale comparison of optimization algorithms on all networks

The brute force comparison (A1–A4) was, due to the computational demands, only
possible for the simplest (square-like) network and a limited number of network vari-
ants (50). Hence, a mutual comparison of all algorithms for all networks with a large
number of network variants (500) against the absolute objective optimum was not possi-
ble. Instead, the result achieved by the algorithm showed the best performance for the
network variant and a combination of the parameters served as the reference (100%) for
the particular combination of parameters.

The reader can note that accuracy requirements differ among networks. This was
estimated in view of the network size (maximum distance between points)—with growing
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network size, the absolute maximum accuracy is obviously decreasing (considering the
same number of measurements) and to improve it further, the number of repetitions would
have to grow. However, if the number of repetitions is increased to above a limit value, its
further increase would cease to add sufficient information. For this reason, we proposed
the required accuracies to ensure that no more than three measurements of the same
parameter are needed, considering the likely practical requirements on geodetic accuracy
for respective networks. The total station accuracies (σψ, σz, σd) and required resulting
accuracies of the network are shown in Table 3.

Table 3. Expected total station accuracies (σψ, σz, σd) and required resulting accuracies (LSEE—
longest semiaxis of the error ellipsoid) for the tests of individual networks.

Test Tested Network σψ, σz
[mgon]

σd
[mm]

LSEE Requirement
[mm]

2.1 Square-like network 1 2 + 2 ppm 0.75
2.2 Bridge network 1 2 + 2 ppm 1.0
2.3 Triangular network 0.6 2 + 2 ppm 1.0
2.4 Building network 0.6 1.5 + 2 ppm 1.0

(3) Comparison of optimization strategies when changing the required accuracies for
individual networks

In this test, the results of individual optimization strategies when changing the re-
quired accuracy are evaluated (LSEE, changes in 20 steps for 50 network variants for each
network; see Table 4).

Table 4. Parameters for testing of changes in required accuracies of individual networks.

Test Tested Network σψ, σz
[mgon]

σd
[mm]

LSEE Requirement
[mm]

3.1 Square-like network 1 2 + 2 ppm 0.5 to 1. 5
3.2 Bridge network 1 2 + 2 ppm 0.5 to 1.5
3.3 Triangular network 1 2 + 2 ppm 1.0 to 2.0
3.4 Building network 1 2 + 2 ppm 1.0 to 2.0

(4) Comparison of the performance of optimization strategies with changes in total station
parameters

In this test, the results of individual optimization strategies with the changes in the
accuracy of the total station (or, rather, the combination of direction/angle and distance
measurement accuracies) are evaluated. The horizontal direction and zenith angle measure-
ment accuracies gradually decrease while the accuracy of distance measurement increases,
thus gradually reducing the contribution of the angles and increasing the contribution of
distance measurements. The accuracy of all three parameters is always changed simultane-
ously, and the accuracy of both angle measurements is always changed by the same step
(20 steps in all). The test parameters are detailed in Table 5.

Table 5. Network parameters and accuracy requirements for testing of changing angle and distance
measurement accuracies.

Test Tested Network σψ, σz
[mgon]

σd
[mm] LSEE Requirement [mm]

4.1 Square-like network 0.1 to 1.1 2.5 + 2.5 ppm to 0.5 + 0.5 ppm 0.6
4.2 Bridge network 0.1 to 1.1 2.5 + 2.5 ppm to 0.5 + 0.5 ppm 0.8
4.3 Triangular network 0.3 to 1.8 2.5 + 2.5 ppm to 0.5 + 0.5 ppm 1
4.4 Building network 0.3 to 1.8 2.5 + 2.5 ppm to 0.5 + 0.5 ppm 1
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3. Results
3.1. Comparison of the Algorithms with Brute force Optimization

Table 6 shows the results of the absolute performance of the individual algorithms
compared to the results of the brute force solution (i.e., compared to the absolute optimum)
for the square-like network.

Table 6. Comparison of the results of optimization algorithms and brute-force-acquired absolute
optimum for the square-like network [%].

Test Criterion A1 A2 A3 A4 AOPT

1.1—High accuracy required
MNP 104 110 102 108 101
ORD 64 24 78 26 96

1.2—Low accuracy required
MNP 119 107 106 104 100
ORD 28 72 56 72 100

1.3—Direction/angles more accurate
than distances

MNP 107 110 102 106 101
ORD 48 32 74 40 94

1.4—Distances more accurate than
directions/angles

MNP 105 109 105 107 102
ORD 52 26 42 32 82

Average results
MNP 109 109 104 106 101
ORD 48 39 63 43 93

MNP—Mean normalized (to the brute-force-acquired optimum) performance of the algorithm; ORD—percentage
of successful detection of the optimal result.

When higher accuracy was required (Test 1.1), the optimal result was detected by the
combined algorithm AOPT in 96% of network variants, with the A3 algorithm performing
the best in both evaluated parameters (MNP and ORD). When reducing the accuracy
requirement, the combined AOPT detected the optimal solution in all network variants,
albeit none of the individual algorithms turned out to be superior to the rest. Very similar
results were found for the remaining two tests that evaluated the influence of the better
or worse accuracy of direction/angle and distance measurement. It is important to note
that although the optimum result was achieved by the AOPT algorithm in “only” 94% and
82% of network variants, respectively, the difference between the result determined by the
combined algorithm and the true optimum was negligible.

The overall average result further underlines the benefits of our approach combining
all four algorithms for the optimization—while none of the algorithms was capable of
detecting the optimum result in more than 63% of network variants, their combination
was able to do so in 93% of variants, with on average only 1% of measurements above the
optimal solution required. More detailed results are given in Table A2 (Appendix C).

3.2. Comparison of the Performance of the Algorithm between Networks

In this set of tests, we did not use brute force to find the absolute optimum as, con-
sidering the numbers of points and variants, it would have been too computationally
demanding. Hence, in this and the following tests, the individual algorithms will only be
mutually compared relative to the results of the combined AOPT (which, principally, has
to always provide the best results) for the individual test and network variant. Thus, the
results shown in Table 7 indicate which of the individual algorithms (A1–A4) performed
the best and the worst.

Table 7 confirms the conclusion implied by the testing of the square-like network using
brute force—the performance of none of the individual algorithms could be considered satis-
factory as none of them (perhaps with the exception of the two simplest networks—square-
like and triangular, where the A4 algorithm performed very well) consistently provided the
best results. More detailed results are given in Table A3 (Appendix C).
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Table 7. Comparison of optimization algorithms on individual networks (in [%]).

Test Criterion A1 A2 A3 A4 AOPT

2.1—Square-like network
MNP 114 122 108 101 100
ORD 33 33 47 92 100

2.2—Bridge network
MNP 105 122 115 119 100
ORD 67 5 38 10 100

2.3—Triangular network
MNP 117 113 112 101 100
ORD 10 24 12 87 100

2.4—Building network
MNP 103 138 112 134 100
ORD 73 0 30 0 100

Average results
MNP 110 124 112 114 100
ORD 46 16 31 47 100

3.3. Comparison of the Algorithms when Testing Changes in Required Resulting Accuracies (LSEE)
of Individual Networks

The mean performances of each algorithm over all 20 steps of required accuracy are
shown in Table 8. At first sight, it appears that the simplest algorithm (A4) generally
performs the best, and if using only a single strategy, it would probably be the strategy of
choice. However, the fact that the mean values are over 100% indicates that there are quite
a few occasions where one of the other algorithms performs better.

Table 8. The mean performance of individual algorithms over the entire range of required accuracies
(showing MNP%).

Network A1 A2 A3 A4

3.1—Square-like network 125 118 111 106
3.2—Bridge network 124 132 119 106

3.3—Triangular network 120 126 124 102
3.4—Building network 123 138 107 108

Mean MNP 123 129 115 105

To be able to investigate this issue further, the results are also presented in the form
of graphs (Figure 4). The horizontal axis shows the accuracy requirement (LSEE) for the
particular network, while the vertical axis shows the MNP.

As revealed in the previous tests, none of the proposed algorithms was capable of
consistently producing the best results across networks and accuracies. Generally, we can
observe that the algorithms with initial network configuration perform better at higher
accuracy requirements; the opposite is typically true when relatively lower accuracies
of 1.5 mm and more are required. The only exception can be observed in the triangular
network for the A4 algorithm, which performed best across the entire accuracy range
(although there were occasions where other algorithms performed better as obvious from
the fact that the line does not copy the horizontal axis). More detailed results are given in
Table A3 (Appendix C).

3.4. Comparison of Individual Methods When Changing Total Station Accuraccy Parameters

In this batch of tests, the combination of direction/angle and distance measurement ac-
curacies changing in opposite directions (i.e., the accuracy of direction/angle measurements
decreasing along with an increasing accuracy of distance measurement) were tested.

Similar to the previous batch of tests, we can see in Table 9 that even here, the A4 algo-
rithm generally performs the best across networks and measurement accuracies. However,
just like in the previous section, the depiction of the results in Figure 5 reveals the differences
among algorithms at various combinations of the total station accuracies for individual
networks. As in the previous test, A4 would be the algorithm of choice if only one strat-
egy was allowed; however, the entire battery is bound to yield overall superior results
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(note that the outcome of the entire battery of algorithms, i.e., of the AOPT, serves as the
reference, i.e., always yields 100%). It is also worth noting that the vertical axes are scaled
differently—noting this for the bridge network, we can see that the algorithms differed by
more than 200% in the necessary numbers of measurements for some combinations of total
station parameters. More detailed results are given in Table A3 (Appendix C).
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Table 9. The mean performance of individual algorithms over the entire range of the combinations of
total station accuracies (showing MNP%).

Network A1 A2 A3 A4

4.1—Square-like network 115 117 111 102
4.2—Bridge network 143 185 116 108

4.3—Triangular network 112 112 112 103
4.4—Building network 109 121 110 114

Mean MNP 120 134 112 107
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4. Discussion

As we have mentioned in the Introduction, most studies published on the topic of
geodetic network optimization, although mathematically often correct, do not provide re-
sults that could be directly applied in the geodetic practice as they do not take into account
the aforementioned basic principles of geodetic practice. Kuang studied the designs of
both the first and second orders [15]. He simultaneously optimized the position of both
points and weights of the measurements, combining the accuracy and reliability criteria.
In addition to this, he introduced a new criterion—sensitivity—describing the ability to
detect the displacements occurring between stages of measurement. However, the results
of the presented simulated examples were not applicable in practice; similarly to Berne
and Baselga [11], the network points converged to predefined borders or were often in
impossible locations (e.g., high above the ground or below the terrain). When applying
these theoretical findings to the monitoring of an existing dam (employing SOD), the
optimization led to a significant reduction in the measurement weights (representing repeti-
tions) while maintaining the required accuracy. Unfortunately, the use of continuous values
for weights is suboptimal as when calculating the required numbers of measurements, the
calculation returns non-integer numbers. Despite these shortcomings, Abdallah and Wang
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followed up on this work [13], using FOD for the optimization of a geodetic network of a
mine. Again, however, the optimized numbers ended up on the predefined borders.

Amiri-Seemkooei worked on SOD in several papers. In [16], he and his team optimized
the weights in the geodetic network with an objective function for reliability. In their
follow-up work [17], they optimized the network in a way ensuring that all measurements
contributed equally to the network accuracy. Both studies work with the measurement
weights, which are not directly applicable to real-world measurements. Yetkin et al. [18]
used a heuristic method of particle swarm optimization (see [19] for details) for the second-
order optimization of network measurements using global navigation satellite systems
(GNSSs). In that study, the work with weights may make more sense than when the total
station is used for measurement as the weights of measurement change almost continuously
with the observation duration.

In this paper, we have proposed and tested a practically applicable automated method
for SOD geodetic network optimization. The proposed method consists of a battery of
algorithms that are applied in parallel and, subsequently, the best one is automatically
selected. The only inputs for this method comprise the approximate coordinates of the
points of the geodetic network, the information about what measurements can be taken in
reality, the accuracy of the total station, and the required resulting accuracy of the geodetic
network. In this context, we define the optimal network as one with all points measured
with an accuracy parameter equal to or better than a set value obtained using the minimum
effort (i.e., number of measurements). The ease of practical applicability is especially given
by the use of integer numbers of measurements and by considering the measurements
taken at the same moment using the total station as a single group of measurements (which
exactly corresponds to the practical terrain measurements) and by having all measurements
from a single standpoint taken for an equal number of times. We have based this algorithm
on the maximum accuracy increment method, previously proposed by our group for the
optimization of geometric leveling [34] or GNSS measurements [37].

The comparison of the results of our optimization with the absolute optima determined
using a brute force approach in a simple (square-like) network revealed that the proposed
method combining the four algorithms and by always selecting the best performing one
yielded almost perfect results, i.e., detected the optimal solution in a vast majority of cases
(93%). Although this means that in 7% of the network variants, the combined algorithm
did not select the optimal solution, the mean difference in the number of measurements
from the optimum was negligible—as low as 1%.

For the other networks and analyzed parameters, we were unable to calculate the
absolute optima using the brute force method due to computational demands, which can
be considered a limitation of the study. However, considering the excellent agreement
between the results of the brute force solution and the AOPT algorithm (i.e., selection of the
best result from all four algorithms for each network variant) in the square-like network, we
can reasonably assume that the combined algorithm will perform close to the optimum for
the other networks as well. Importantly, we do not claim that we have achieved the optimal
results in each network/calculation variant in Sections 3.2–3.4. Rather, we demonstrate
that none of the four partial algorithms A1–A4 universally performs the best and can be
reasonably used for network optimization on its own. On the other hand, the additional
step of selecting the best-performing algorithm out of all four in each calculation variant
appears to provide results that are sufficiently close to the real-life optimum to be applicable
in practice. The ease of use and low computational demand of this method are additional
major benefits of our approach.

5. Conclusions

In this paper, we have proposed and tested an automated method for geodetic network
optimization that is fully applicable in geodetic practice. This method is based on combining
four distinct optimization algorithms calculated in parallel, the best of which (i.e., the one
meeting accuracy requirements for all points of the geodetic network with the minimum
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number of necessary measurements) is automatically selected. The testing of this algorithm
on four networks with 50–500 network variants confirmed excellent optimization results of
the combined algorithm, while none of the partial algorithms was superior to a degree that
could justify its use as the only algorithm. The ease of practical applicability is especially
given by the use of integer numbers of measurements and by considering the measurements
taken at the same moment using the total station as a single group of measurements (which
exactly corresponds to the practice of terrain measurements).
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Appendix A. The Principal Coordinates of the Tested Geodetic Networks

Table A1. The principal coordinates of the tested geodetic networks (in local coordinate system).

Network Point No. Y [m] X [m] Z [m]

Square-like network 1 100.2 150.1 100.0
2 200.1 100.5 110.2
3 250.7 200.2 105.3
4 150.3 250.8 115.8

Bridge network 1 1080.0 5200.0 365.0
2 1042.0 5192.0 341.0
3 1078.0 5168.0 342.0
4 1040.0 5150.0 368.0
5 1133.0 5194.0 355.0
6 1037.0 5275.0 375.0
7 1065.0 5102.0 371.0
8 1001.0 5164.0 338.0

Triangular network 1 1444.0 5395.0 371.0
2 1397.0 5320.0 368.0
3 1321.0 5339.0 367.1
4 1290.0 5202.0 361.0
5 1199.0 5255.0 355.0
6 1161.0 5104.0 348.0
7 1050.0 5133.0 341.0
8 1000.0 5000.0 333.0

Building network 1 1190.0 5010.0 227.5
2 1020.0 5150.0 226.0
3 1070.0 5150.0 225.0
4 1130.0 5150.0 229.0
5 1180.0 5150.0 233.0
6 1180.0 5110.0 245.0
7 1189.0 5060.0 231.0
8 1130.0 5020.0 230.0
9 1070.0 5020.0 222.0

10 1010.0 5020.0 226.5
11 1131.0 5050.0 218.0
12 1132.0 5120.0 219.0
13 1040.0 5080.0 220.0



Appl. Sci. 2024, 14, 4890 16 of 20

Appendix B. Basic Algorithm in Pseudocode

Appendix B.1. Variable Definition
A Jacobi matrix (design matrix) of optimized network
P Weight matrix of measurement
B Matrix of additional conditions for free network solution
N Matrix contains number of repetitions of measurement (starting on number

close to zero)
target_precision Threshold for optimization, often LSEE
measurement_group Vector defining group of measurements with same number of repetition

(whole station measurement)

Appendix B.2. Initialization of Number of Repetitions
Calculation of weight matrix for exact number of repetitions
PP = N*P
Solution of least square method
Normal_equation = [A’*PP*A, B; B’, zeros(4,4)]
Calculation of covariance matrix
EX_0 = inv(Normal_equation);
Calculation accuracy characteristic K (LSEE) for each point
LSEE_0 = function evaluation (EX_0)

Appendix B.3. Greedy Algorithm

Algorithm A1 Greedy algorithm

1: while max(LSEE_0) > target precision

2:
Finding which group of measurement would result in the most benefit for the point with the lowest

LSEE
3: N2 = N;
4: Calculation of LSM and LSEE from covariance matrix
5: PP = N2*P;
6: Normal_equation = [A’*PP*A, B; B’, zeros(4,4)];
7: EX_0 = inv(Normal_equation);
8: LSEE_0 = evaluation (Ex)

9:
In the cycle, the number of repetitions of every group of measurement is increased by 1 and LSEE is

calculated
10: for k = 1:number of groups in measurement_group
11: indexing k-th group of measurement in matrixes N, A,. . .
12: index(k);
13: calculation of LSM and LSEE from covariance matrix
14: N2(index) = N2(index)+1;
15: PP = N2*P
16: Normal_equation = [A’*PP*A, B; B’, zeros(4,4)]
17: EX = inv(Normal_equation);
18: LSEE = evaluation (Ex)
19: vector of differences of LSEE for each point
20: LSEE_difference=LSEE − LSEE_0
21: differences for each group of measurement increasing
22: LSEE_difference_group(k,:)=LSEE_difference
23: end for
24: Evaluation of which group of measurement had the biggest benefit for point with worse LSEE
25: finding the worst point with index i
26: i = max_K_point_index (LSEE_0);
27: finding group of measurement with maximal benefit for worst point i, index-ing this group by i
28: i2 = max_benefit_index (LSEE_difference_group(:,i));
29: Increasing the number of repetitions with the biggest benefit
30: N(i2) = N(i2)+1;
31: end while
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Appendix B.4. Elimination of Unnecessary Measurement Groups

Algorithm A2 Elimination algorithm

1:
In this case, groups_of_measurement values are all observation parameters (slope distance, zenith
angle and horizontal angle from one point to another)

2:
Number of repetitions in N starting with the values from previous algorithm calculation of LSM and
LSEE from covariance matrix

3: PP = N * P;
4: Normal_equation = [A’*PP*A, B; B’, zeros(4,4)];
5: EX_0 = inv(Normal_equation);
6: LSEE_0 = evaluation (Ex);
7: eliminating redundant groups of measurement until the target precision (LSEE) is fulfilled
8: do
9: N2 = N;
10: Searching which group of measurement has the smallest influence on the worse LSEE in the network
11: for k = 1:number of groups in measurement_group
12: indexing k-th group of measurement in matrixes N, A,. . .
13: index(k);
14: decreasing the number of repetitions of k-th group to zero
15: N2(index)=zeros;
16: calculation of LSM and LSEE from covariance matrix
17: PP = N2*P;
18: Normal_equation = [A’*PP*A, B; B’, zeros(4,4)]
19: EX = inv(Normal_equation);
20: LSEE = evaluation (Ex);
21: N2=N;
22: Finding the point with the worse LSEE for each eliminated group of measurement
23: Worse_LSEE(k) = max(LSEE);
24: end for
25: finding which group of measurement has the smallest influence on the worse LSEE in the network
26: best_worse_LSEE = min(Worse_LSEE)
27: decision whether the determine group of measurement can be eliminated
28: if best_worse_LSEE ≤ target_precision
29: eliminate the group of measurement with smallest influence on LSEE
30: N(group of measurement with smallest influence on LSEE) = zeros
31: else
32: calculation of LSM and LSEE from covariance matrix
33: PP = N2*P;
34: Normal_equation = [A’*PP*A, B; B’, zeros(4,4)];
35: EX = inv(Normal_equation);
36: LSEE = evaluation (EX)
37: end if
39: end do
40: end algorithm

Appendix C. Detailed Test 1 and Test 2 Results

Table A2. Comparison of the results of optimization algorithms and brute-force-acquired absolute
optimum for the square-like network [%]—Test 1.

Test Criterion A1 A2 A3 A4 AOPT

1.1—High accuracy required

MNP 104 110 102 108 101
MIN 100 100 100 100 100
MAX 133 131 113 125 107
STD 8 8 4 6 1
ORD 64 24 78 26 96

1.2—Low accuracy required

MNP 119 107 106 104 100
MIN 100 100 100 100 100
MAX 163 188 125 114 100
STD 17 16 7 6 0
ORD 28 72 56 72 100
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Table A2. Cont.

Test Criterion A1 A2 A3 A4 AOPT

1.3—Direction/angles more
accurate than distances

MNP 107 110 102 106 101
MIN 100 100 100 100 100
MAX 133 156 113 129 107
STD 9 11 4 6 2
ORD 48 32 74 40 94

1.4—Distances more accurate than
directions/angles

MNP 105 109 105 107 102
MIN 100 100 100 100 100
MAX 128 120 125 120 117
STD 6 7 6 6 4
ORD 52 26 42 32 82

Average results

MNP 109 109 104 106 101
MIN 100 100 100 100 100
MAX 139 149 119 122 108
STD 11 11 5 6 2
ORD 48 39 63 43 93

MNP—Mean normalized (to the brute-force-acquired optimum) performance of the algorithm; ORD—percentage
of successful detection of the optimal result; MIN—the most optimal result achieved; MAX—the least optimal
result achieved; STD—standard deviation of the results.

Table A3. Comparison of optimization algorithms on individual networks (in [%])—Test 2.

Test Criterion A1 A2 A3 A4 AOPT

2.1—Square-like network

MNP 114 122 108 101 100
MIN 100 100 100 100 100
MAX 170 160 133 133 100
STD 14 19 9 6 0

2.2—Bridge network

MNP 105 122 115 119 100
MIN 100 100 100 100 100
MAX 188 194 167 150 100
STD 8 9 18 9 0

2.3—Triangular network

MNP 117 113 112 101 100
MIN 100 100 100 100 100
MAX 174 181 138 111 100
STD 13 12 7 2 0

2.4—Building network

MNP 103 138 112 134 100
MIN 100 105 100 100 100
MAX 168 180 135 167 100
STD 6 10 9 13 0

Average results

MNP 110 124 112 114 100
MIN 100 101 100 100 100
MAX 175 179 143 140 100
STD 11 13 12 9 0

MNP—Mean normalized (to the brute-force-acquired optimum) performance of the algorithm; MIN—the most
optimal result achieved; MAX—the least optimal result achieved; STD—standard deviation of the results.

Table A4. Comparison of optimization algorithms on individual networks (in [%])—Test 3.

Test Criterion A1 A2 A3 A4

3.1—Square-like network

MNP 125 118 111 106
MIN 100 100 100 100
MAX 450 500 150 160
STD 32 35 8 6

3.2—Bridge network

MNP 124 132 119 106
MIN 100 100 100 100
MAX 414 491 167 147
STD 25 40 18 7
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Table A4. Cont.

Test Criterion A1 A2 A3 A4

3.3—Triangular network

MNP 120 126 124 102
MIN 100 100 100 100
MAX 193 236 193 133
STD 17 24 20 5

3.4—Building network

MNP 123 138 107 108
MIN 100 100 100 100
MAX 360 350 135 142
STD 24 25 6 5

Average results

MNP 123 129 115 106
MIN 100 100 100 100
MAX 354 394 161 146
STD 25 32 14 6

MNP—Mean normalized (to the brute-force-acquired optimum) performance of the algorithm; MIN—the most
optimal result achieved; MAX—the least optimal result achieved; STD—standard deviation of the results.

Table A5. Comparison of optimization algorithms on individual networks (in [%])—Test 4.

Test Criterion A1 A2 A3 A4

4.1—Square-like network

MNP 115 117 111 102
MIN 100 100 100 100
MAX 463 650 150 133
STD 20 27 11 5

4.2—Bridge network

MNP 143 185 116 108
MIN 100 100 100 100
MAX 407 771 200 157
STD 42 87 18 11

4.3—Triangular network

MNP 112 112 112 103
MIN 100 100 100 100
MAX 161 169 158 143
STD 10 13 9 6

4.4—Building network

MNP 109 121 110 114
MIN 100 100 100 100
MAX 300 475 158 155
STD 23 34 11 8

Average results

MNP 120 134 112 107
MIN 100 100 100 100
MAX 333 516 167 147
STD 26 49 13 8

MNP—Mean normalized (to the brute-force-acquired optimum) performance of the algorithm; MIN—the most
optimal result achieved; MAX—the least optimal result achieved; STD—standard deviation of the results.
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