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Abstract: Before the construction of a bridge begins, workers arrange the necessary parts and then
cut and process them. The quality of the cutting layout directly affects the material utilization rate
and the efficiency of the subsequent processes. During bridge construction, an intelligent part layout
can improve work efficiency, save time, and reduce the labor intensity and production costs for the
company. In this study, we studied a layout optimization algorithm, focusing on rectangular parts
in the material preparation process. A mathematical model for the rectangular layout problem was
constructed, and a hybrid genetic whale optimization algorithm is proposed that is a combination of
the whale optimization algorithm and the genetic algorithm. Based on the “one size fits all” layout
strategy, the materials are divided into strips, which are further divided into stacks, serving as the
positioning strategy to determine the positional relationships of the parts. Test cases and actual
engineering data were used to compare the layouts generated using different algorithms. The results
show that the genetic whale algorithm proposed in this paper results in a high utilization rate and is
highly effective.

Keywords: preparation of steel bridge materials; rectangular parts; one-size-fits-all layout problems

1. Introduction

When determining the layout of steel bridge components, the goal is to achieve max-
imum material utilization by adjusting the positions of the parts while considering the
processing techniques. The primary objectives are to optimize the use of steel, reduce
material waste, and lower production costs. The layout problem falls under the category
of NP-complete (nondeterministic polynomial complete) problems, which are complex
combinatorial optimization problems. Solutions to these problems typically cannot be
obtained directly through calculations but are instead derived through indirect “guess-
work,” hence the term nondeterministic. There is no known polynomial-time algorithm
that can solve all forms of layout problems. Instead, heuristic algorithms, approximation
algorithms, or other optimization techniques are usually employed to find approximate
solutions. These algorithms include linear programming methods, genetic algorithms, tabu
search algorithms, local search algorithms, and ant colony algorithms [1].

Research on two-dimensional layout problems is mainly split into two areas. On the
one hand, there are sequencing algorithms, which determine the order in which parts are
placed. Common sequencing algorithms include genetic algorithms, ant colony algorithms,
simulated annealing algorithms, and particle swarm algorithms. Each of these algorithms
has its own strengths and weaknesses when solving sequencing problems. Nowadays,
when addressing sequencing problems, researchers often combine two types of algorithms,
such as the genetic simulated annealing algorithm or the hybrid genetic-variable neigh-
borhood search algorithm, to develop a more efficient and effective algorithm. On the
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other hand, there is the positioning strategy. Positioning is a method of establishing the
position on the motherboard of parts that have been determined in order. Commonly
used positioning strategies include the bottom-left algorithm, the lowest horizontal line
algorithm, and the critical polygon algorithm [2]. Research on layout problems mainly
involves sheet metal cutting, which has important significance in theory and in practice.

The layout problem can be traced back to 1939, but it did not significantly gain attention
until the 1960s. Gilmore and Gomory [3–6] conducted research on one-dimensional cutting
stock problems and two-dimensional rectangular cutting problems, proposing the use of
linear programming methods to solve these layout issues. In 1988, to better study layout
problems, scholars founded the Europe Special Interest Group on Cutting and Packing
(ESICUP) at an international conference in Paris. This organization focuses specifically
on researching and discussing layout problems. Over the years, ESICUP has collected a
significant amount of research findings from scholars and research institutions, providing
crucial support for subsequent studies. Furthermore, with the rapid development of
computer technology, scholars have begun using intelligent algorithms to optimize the
layout of parts.

In layout problems, positioning strategies and sequencing algorithms are crucial. In
terms of the positioning strategy, Art [7] first proposed a method called “left-side docking”,
which involves moving the laid-out parts to the left as much as possible. Thus, the parts
are concentrated as much as possible to reduce the blank area. Later, Dowsland [8] and
others improved the left-side docking method. Based on the left-side docking method, if
there is a cavity in the part, the part is placed into the cavity to improve resource utilization.
Baker [9] and others proposed the BL algorithm. Simply put, its aim is to position the parts
as far left and down as possible. This algorithm is easy to implement, has low time costs,
and is widely used in rectangular layout design.

In terms of sequencing algorithms, since different layout sequences can significantly impact
the layout results, many scholars have conducted research on these algorithms. Delchambre [10]
applied the genetic algorithm to tackle the layout problem, while Błazewicz [11] utilized
the tabu search algorithm. Leung [12] and others introduced the local search algorithm to
address layout challenges; Solimanpur [13] employed the ant colony algorithm to solve
the layout problem with dynamic constraints. These algorithms were applied to the two-
dimensional layout problem and achieved good results.

The two-dimensional layout problem is a combinatorial optimization problem. Cur-
rently, there is no known algorithm that can find the solution to the problem in polynomial
time. The solution process is relatively complex and has significant research importance.
The methods for solving combinatorial optimization problems include exact solutions
and heuristic algorithms. Although exact solutions often yield better results, the time-
consuming nature of their use escalates exponentially with the complexity of the problem.
This drawback undermines their practical applicability in production scenarios.

The layout problem studied in this study is based on the layout problem of preparing
material for steel bridges. During the production process, a substantial number of parts
need to be laid out; when preparing steel bridge parts, not just one, but many components
are required to produce each part. Since the motherboard for the layout is a steel plate, it
takes a long time to cut the parts. Therefore, when choosing a layout, we should arrange the
parts as neatly as possible while maintaining a high overall utilization rate to facilitate part
cutting. Thus, based on actual production needs, in this study, a heuristic algorithm was
used to study the two-dimensional layout problem. By adopting a “one size fits all” layout
strategy and utilizing a genetic whale algorithm, we aimed to find the optimal solution to
this problem.

2. Mathematical Model of Rectangular Layout Problem

The layout problem can be divided into two categories according to the motherboard
type. The first is the boxing layout, in which the layout is determined after determining the
shape and size of the motherboard. If the parts exceed the boundary of the motherboard,
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they are placed on the next one. Another type of layout problem is the band layout, where
the width of the motherboard is predetermined but its height is unlimited. The final height
(after all the parts are arranged) is the height of the motherboard. In the following, we
use the band layout as an example to establish a mathematical model for the rectangular
layout problem.

The two-dimensional rectangular layout can be described as follows: n rectangles of
different sizes, denoted as {π1, π2, · · · , πn}, are placed onto a rectangular sheet S without
overlapping, where π represents the parts. The width of the sheet is W, and the height
is unlimited. Under the constraint conditions, the height H of the sheet that is used is
minimized to maximize the utilization rate of the sheet.

The following constraints must be met during the placement of rectangular parts onto
the motherboard:

(1) Different rectangular parts πi and πj must not overlap each other;
(2) The rectangular piece πi must be inside the motherboard S;
(3) The rectangular piece πi can be rotated 90°.

This can be explained more in depth as follows: Assume that the width of the rect-
angular mother plate S is the x-axis, the height is the y-axis, and the plate’s lower left
corner is the origin of the x, y coordinate system. Suppose that {π1, π2, · · · , πn} is a set
of n rectangular pieces, and πi = {xi, yi, wi, hi, θi}, i ∈ {1, 2, · · · , n}, where xi represents
the horizontal coordinate of the bottom left corner of the part, yi represents the vertical
coordinate of the bottom left corner of the part, wi represents the width of the part, and
hi represents the height of the part. θi denotes the rotation angle of the part, and πi is
the rotation angle. To minimize gaps and overlaps between parts and maximize material
utilization, rotation angles of 0° and 90° were selected, and θi = {0, 2/π}. Therefore, the
mathematical model of the two-dimensional rectangular layout problem can be established
as follows:

f = max
∑n

i=1 (wi × hi)

W × H
(1)

xi + wi ⩽ W, i = 1, 2, · · · , n (2)

s.t.


xi ⩾ 0, yi ⩾ 0
xi + wi ⩽ xj or xj + wj ⩽ xi

yi + hi ⩽ yj or yj + hj ⩽ yi

i ̸= j, and i, j = 1, 2, · · · , n

(3)

θi = {0, π/2}, i = 1, 2, · · · , n (4)

Equation (1) represents the optimization objective function for a rectangular layout,
which is the ratio of the area occupied by the parts on the master plate after placement.
Equation (2) indicates that the parts should not exceed the boundary range of the master
plate when placed. Equation (3) represents that there should be no overlapping between
the placed parts. Equation (4) indicates that the parts can be rotated by 90°.

3. Layout Strategy

Since the parts for bridge materials are cut from steel plates, the layout needs to
facilitate the subsequent cutting processes. Therefore, in this study, the “one size fits all”
layout strategy was applied. The basic idea of this algorithm is to cut through the entire
plate along the layout path from one end of the plate to the other during each cutting
process. This method is called “one size fits all” because it uses the same direction at each
cutting stage to ensure that the entire plate is cut while meeting the process requirements.
We call cutting in the same direction a stage.
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In the actual production process, in order to improve the efficiency, the cutting process
is usually divided into three or four stages. To achieve this, the three-stage precise nesting
and the three-stage non-precise nesting methods are commonly used as cutting strategies.
Figures 1 and 2 illustrate these two nesting methods. In these diagrams, rectangles with
numbers represent parts, where the same number indicates parts of the same size. The ver-
tical lines outside the rectangles represent cuts, with different numbers denoting different
cutting stages. The arrows of different colors represent different stages. During cutting, we
refer to cuts in the same direction as one stage. In the three-stage precise layout method,
square pieces can be cut to an accurate size within three stages. This method ensures a high
production efficiency while meeting specification requirements as closely as possible. In
the non-precise method, an additional fourth stage of cutting may be required for some
square pieces to meet the specification requirements.

Figure 1. Three-stage non-precise layout.

Figure 2. Three-stage precise layout.

The “one size fits all” layout strategy not only considers the process requirements and
production efficiency but also focuses on meeting product specifications. When preparing
materials for steel bridges, manufacturing companies choose an appropriate cutting stage
and layout method according to specific requirements to achieve the best production results.
This integrated approach to process and specification provides greater flexibility in the
production process to accommodate different types of products and their requirements.

Due to the difference in the number of stages, different authors use different names
for each stage. Figure 3 shows specific details of the key stage modules. During the actual
cutting process, the initial cut can be made along either the long or short side. Figure 3
illustrates an example perpendicular to one of the sides.
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Figure 3. Definitions of different cutting stages.

In taking the three stages of the cutting process as an example (see Figure 3), the first
stage involves horizontal cutting to generate modules that we call stripes. The steel plate
is divided into Stripe1 and Stripe2 along the red lines. The second stage involves vertical
cutting to generate modules called stacks. For example, Stripe1 is further cut along the
blue lines to form Stack1, Stack2, and Stack3. The third stage involves horizontal cutting to
generate modules we call items. For instance, Stack1 is further cut along the black lines
to form Item1, Item2, and Item3. The cutting process in these three stages facilitates the
subsequent cutting of parts for preparing material for steel bridges.

The layout used in this study was a three-stage non-precision layout, which can
be described as follows: n rectangular parts {Item1, Item2, · · · , Itemn} of different sizes,
with a quantity {m1, m2, · · · · · · , mn}, are placed without overlapping onto a rectangular
motherboard S with width W and an unlimited height. Under the condition that the “one
size fits all” constraint is met, the height H of the board is minimized, thereby maximizing
the utilization rate of the motherboard.

The following constraints must be met during the placement of rectangular parts onto
the motherboard:

(1) Different rectangular parts Itemi and Itemj must not overlap each other;
(2) The rectangular piece Itemi must be inside the motherboard S;
(3) The highest point of the rectangular part Itemi cannot exceed the height of the stripe

where it is located;
(4) The width of the rectangular piece Itemi cannot exceed the width of the stack;
(5) Parts of the same type in the same stripe must have the same rotation angle.

Assume that the width direction of the rectangular motherboard S is the x-axis, the height
direction is the y-axis, the lower left corner of the board is the origin of the x, y coordinate
system, and the motherboard S is divided into multiple stripes. {Item1, Item2, · · · , Itemn}
indicates n rectangular parts, where their arrangement has been optimized; they only need
to be arranged in sequence. Itemi = {xi, yi, wi, hi, θi, mi}, i ∈ {1, 2, · · · , n}, where (xi, yi)
represents the coordinates of the lower left corner of Itemi; (wi, hi) represents the width
and height of Itemi; θi is the rotation angle of Itemi, θi = {0, π/2}; and mi is the number of
Itemi. The specific process is as follows:

(1) Place the first Item1 in the bottom left corner of Stripe1; the width of the first stack,
Stack1, in Stripe1 is the same as the width of Item1, and the height of Stack1 is equal
to the height of Stripe1. Then, the remaining m1 − 1 parts, denoted as Item1, are
sequentially placed into Stack1. As shown in Figure 4, during the queuing process,
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when the remaining height of Stack1 cannot accommodate Item1, then Item1 will be
queued into the next stack Stack2, and the width of Stack2 is the width of Item1.

Figure 4. Item1 cannot be queued into Stack1.

(2) As shown in Figure 5, if all parts of Item1 are arranged without exceeding the height
of Stack1, Item2 will be placed there. First, it is determined whether the width of Item2
is greater than the width of Stack1. If the width of Item2 is not greater than the width
of Stack1, then Item2 will be placed in Stack1. Similarly, when the remaining height of
Stack1 cannot accommodate Item2, then Item2 will be placed in the next stack, Stack2,
and the width of Stack2 is the width of Item2. If the width of Item2 is greater than the
width of Stack1, then Item2 is arranged in Stack2, and the width of Stack2 is the width
of Item2.

Figure 5. Parts are arranged into Stack1.



Appl. Sci. 2024, 14, 4891 7 of 13

(3) As shown in Figure 6, parts are arranged in sequence according to the above two steps.
When the remaining width of Stripe1 cannot accommodate more parts, the parts are
arranged into Stripe2, and the height of Stripe1 is updated. The height of Stripe1 is the
highest point in Stripe1. All the parts are arranged according to the above steps.

Figure 6. Stripe1 parts are filled.

4. Hybrid Genetic Algorithm

(1) Basic principles of the genetic whale algorithm
The genetic whale algorithm proposed in this article combines the genetic algorithm

with the whale optimization algorithm. Its fundamental principle is utilizing the genetic
algorithm (GA) as the outer loop and integrating the whale optimization algorithm (WOA)
into the GA. This design aims to make full use of the global search capability of the GA and
the local search capability of the WOA to avoid falling into the local optimal solution during
the search process. This enables the genetic whale algorithm to more effectively uncover
the optimal solution on a global scale and to fully exploit the global search capabilities
of the GA. During the entire algorithm operation, the GA not only dominates the outer
loop but also incorporates the WOA, so the two work together to significantly improve
the efficiency of the final solution. Therefore, the genetic whale algorithm is initiated from
a randomly generated or a customized initial population. In each cycle, the individuals
of the population are selected and crossed, the whale hunting process is then added, and
finally, the mutation process is performed; the above is then repeated. A fixed number
of iterations is used while monitoring the convergence of the objective function and the
diversity of the population. The loop is terminated when any condition is met to obtain the
optimal solution. The basic steps of the genetic whale algorithm are shown in Figure 7.

(2) Initialize the population
In this algorithm, the quality of the initial population directly affects its search per-

formance. The initial population should have a certain diversity and should also meet the
constraints of the problem. On the basis of conventional layout constraints, as shown in
Figure 8, this study introduced “stripe” as a height-limiting factor, employing a random
generation method. In the population initialization stage, the stripe height is randomly
generated after the part sequence is randomly generated. The stripe height is determined
using a random generation range based on the size of the parts and the width of the plate
in the actual problem. The sequence of parts and the height of the stripe together form an
individual. The number of stripes should be slightly larger to ensure that all parts can be
arranged. As shown in Figure 8, the numerical values in the sequence of previously placed
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parts represent the part numbers. A positive value indicates that the part’s rotation angle
is 0°, while a negative value indicates that the part’s rotation angle is 90°. The numerical
values in the sequence of stripe heights represent the heights of each stripe.

Figure 7. Genetic algorithm flow chart.

Figure 8. Stripe height generation.

The initialized stripe height cannot be the final stripe height. Just as the parts are
arranged in the sequence, the height of the stripe needs to be optimized through the
crossover and mutation of the algorithm.

(3) Fitness function calculation
In the layout problem studied in this study, the fitness was the final utilization rate of

the motherboard. The design of the fitness function is as follows:

f itness =
AreaSum

W × L
(5)

Here, AreaSum represents the sum of the areas of all discharged parts, W is the width
of the motherboard, and L is the final length after all parts are arranged on the motherboard.
The larger the f itness, the higher the utilization rate and the better the layout effect. Since
the width W of the motherboard is a fixed value, we can also regard L as the adaptation
value. The smaller the L, the higher the adaptation value.

(4) Select operation
This study used the roulette selection method to select individuals. In this process, the

cumulative fitness value of all individuals is first calculated (the cumulative fitness value
of the ith individual is Fi = ∑i

n=1 fi), and then a random number rand is generated. When
Fi−1 < rand ⩽ Fi, the ith individual is selected, and the probability of each individual being
selected is pi.

pi =
fi

∑n
n=1 fi

(0 < i ⩽ n) (6)

(5) Crossover operation
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The two-point crossover method was selected here. Two crossover points are selected
based on the crossover probability. The crossover points of the two parent chromosomes
are the same, and the genes at the two crossover points of the two parent chromosomes are
swapped. When the number of parts is N and the crossover probability is P (0 < P < 1),
an integer a is randomly generated as the first intersection point 0 < a < N − P ∗ N, and
the other intersection point b is b = a + P ∗ N. Since the nodes of the chromosomes in this
article represent the order in which the parts are arranged, the sequence numbers of the two
nodes cannot be the same, so during the crossover process, each sequence number needs to
be exchanged according to the corresponding position of the other chromosome. Only the
stripe heights at the intersection points need to be exchanged in the individual during the
crossover stage. This process is illustrated in Figure 9, where parts in the input sequence
are swapped according to the blue arrows, exchanging the positions of part numbers. The
heights in the stripe height sequence are swapped at the crossover positions.

Figure 9. Schematic of the crossover operation.

(6) Mutation operation
As shown in Figure 10, in the problem studied in this study, since the encoding values

in the part input sequence represent the part numbers, each part needs to be placed onto
the master plate. Therefore, the gene values cannot be repeated. We chose to randomly
exchange two gene positions to perform the mutation operation. In the stripe height
sequence, a random gene value is altered.

Figure 10. Schematic of the mutation operation.

(7) Whale hunting
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In the whale hunting stage, some ordinary individuals need to be moved closer to the
optimal individuals, and some positions of ordinary individuals need to be changed into
the corresponding positions of the optimal individuals, as shown in Figure 11.

Figure 11. Optimization of the whale hunting process.

5. Experiment

To further validate the proposed algorithm’s effectiveness in solving real-world layout
problems and to enhance the algorithm’s performance, we used the test case from refer-
ence [14] as Experiment 1. This case includes eight types of parts, totaling 131 pieces, and
the width of the master plate was 2000 cm. The part information is shown in Table 1.

Table 1. Case data set.

Part Types Length (cm) Width (cm) Quantity

1 120 90 30

2 150 100 30

3 280 120 28

4 250 150 20

5 60 50 10

6 150 50 5

7 220 180 4

8 55 80 4

In reference [14], three different algorithms were tested and compared using this case
study. These three algorithms are the maximal rectangle algorithm, greedy algorithm, and
simulated annealing algorithm. To evaluate the results of this experiment, the test results of
our algorithm were compared with those of the algorithms in reference [14]. Table 2 shows
the test results of each algorithm.

Table 2. Results of experiment for each algorithm.

Layout Results of
Different Algorithms

Maximal Rectangle
Algorithm

Simulated Annealing
Algorithm Greedy Algorithm Simulated Annealing

Algorithm

Utilization Rate (%) 93.39 83.17 94.36 98.12

Time (S) 0.398 43.860 0.378 17.259
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As shown in Table 2, the layout generation time of the algorithm in this study is longer
than those of the maximal rectangle algorithm and the greedy algorithm in reference [14],
but shorter than that of the simulated annealing algorithm. However, the layout utilization
rate is 98.12%, which is higher than those of the other three algorithms.

To further validate the effectiveness of the algorithm in solving real-world layout
problems during the preparation of material for steel bridges, we conducted Experiment
2 using a set of real preparation data from an enterprise. There are 14 types of parts,
comprising 266 pieces in total. The detailed data are shown in Table 3.

Table 3. Actual engineering data set.

Part Name Width (mm) Long (mm) Quantity

E58-T5 1900 450 2

E56-T1 650 300 28

E98-P1 650 360 24

THL1-N8a 384 640 4

A55-T2 350 450 20

A58-T1 300 650 18

TPL1-T1 280 330 16

TPL2-P4 280 240 4

TPL1-8-T1 280 160 16

A55-T1 250 650 22

THL1-N8 150 640 8

A55-P7 80 270 34

A55-N10 750 590 40

THL12B-N8a 750 640 30

To evaluate the performance of the genetic whale algorithm, experiments were con-
ducted using this algorithm, and the results were compared with the results from using the
whale optimization algorithm (WOA) and genetic algorithm (GA). Each experiment was
repeated 10 times, and the experimental data are shown in Table 4.

Table 4. Results of experiments for each algorithm.

Number of Experiments
Utilization Rate (%)

Genetic Whale Algorithm WOA GA

1 97.84 94.48 93.76

2 96.37 95.34 94.56

3 97.41 94.86 95.62

4 97.65 93.57 92.39

5 96.22 93.98 94.24

6 96.86 95.43 92.79

7 99.18 92.98 93.18

8 97.15 96.48 95.75

9 98.55 94.68 94.33

10 97.46 95.49 94.93

Aaverage value 97.45 95.12 94.16
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From Table 4, it can be observed that the average utilization rate of the genetic whale
algorithm is 97.45%, which is 2.33% and 3.29% higher than the average utilization rate
of the whale optimization algorithm (WOA) and genetic algorithm (GA), respectively.
Moreover, in the 10 experiments, the highest utilization rate for the genetic whale algorithm
was 99.18%, which is sufficient to prove its effectiveness. Figure 12 shows the optimal
layout results.

Figure 12. Sample arrangement results of Experiment 2.

6. Conclusions

In this study, we delved into the fundamental theory of the two-dimensional layout
problem, developed a mathematical model for the rectangular layout problem, explored
a strategy to solve the layout problem, and considered the impact of the height limit. We
integrated the genetic algorithm with the whale optimization algorithm to address layout
problems, generating the genetic whale algorithm, and introduced a coding method to
optimize part sequencing on the motherboard. According to the experimental data, the
average utilization rate of the genetic whale algorithm is 97.45%, which is 2.33% and 3.29%
higher than the average utilization rate of the WOA and GA, respectively. Compared with
the other two algorithms, it can obtain better results. Our algorithm’s highest utilization
rate is 99.18%, demonstrating that it can effectively solve the layout problem under the
studied constraints. The genetic whale algorithm generates better quality solutions than
the genetic and whale algorithms.

In employing advanced layout algorithms and fully automated, intelligent equipment,
the production efficiency and precision of steel cutting and material preparation can be
enhanced, significantly reducing steel wastage, lowering material costs, and improving
project efficiency. Through comparative experiments, the effectiveness and practicality of
the algorithm proposed in this paper were demonstrated, providing valuable insights for
future implementations of thhe automated preparation of materials for steel bridges.
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