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Abstract: The vibrations of plate structures placed in a supersonic flow was considered. The undis-
turbed fluid flow was parallel to the plate. This type of problem is especially important in the
aerospace industry, where it is named panel flutter. It has been noticed for a long time that panel
flutter may be problematic at high speeds. In this article, two specific problems were treated: in the
first one, the plate was in the form of an infinite strip and the flow was in the direction of its finite
length. Rigid walls indefinitely extended from the sides of the plate. In the second problem, the plate
was a finite rectangle and the flow was parallel to one of its sides. The rest of the plane of the rectangle
was again rigid. The first problem was a limiting case of the second problem. The flow was modeled
by piston theory, which assumes that the fluid pressure on the plate is proportional to its local slope.
This approximation is widely used at high speeds (supersonic speeds in the range of M > 1), and
reduces the interaction between the fluid flow and the vibrations of the plate to an additional term
in the vibration equation. The resulting problem can be solved by assumed mode methods. In this
study, the solution was also found by using the collocation method. The contribution of this study is
the correlation between the flutter velocity and the other parameters of the plate. The main result is
the flutter velocity of the free fluid flow under which the plate vibrations become unstable. Finally,
simple expressions are proposed between the various non-dimensional parameters that allows for
the quick estimation of the flutter velocity. These simple expressions were deduced by least squares
fits to the computed flutter velocities.

Keywords: flutter velocity; flow-induced plate vibration; piston theory; collocation method; shooting
method

1. Introduction

Fluid–elastic structure interactions are ubiquitous in many engineering disciplines.
There are historically famous examples that demonstrate that the interaction between fluid
flow and the vibrations of the structure can cause catastrophic failure. It is observed that the
character of vibrations typically depend on a characteristic flow velocity that, if it exceeds a
certain value (the flutter velocity), will cause instability. The main thrust of fluid–elastic

Appl. Sci. 2024, 14, 4892. https://doi.org/10.3390/app14114892 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14114892
https://doi.org/10.3390/app14114892
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8196-5407
https://orcid.org/0000-0002-7468-392X
https://orcid.org/0000-0002-0575-3904
https://orcid.org/0000-0002-6388-4638
https://orcid.org/0000-0002-9599-8875
https://orcid.org/0000-0003-4951-7089
https://orcid.org/0000-0003-0008-1376
https://doi.org/10.3390/app14114892
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14114892?type=check_update&version=1


Appl. Sci. 2024, 14, 4892 2 of 15

structure interaction research is the determination of the flutter velocity. This study’s
innovation lies in the correlation between the flutter velocity and other model properties.
The literature defines supersonic speeds as M > 1.2, and thus, the speed range pertains to
Mach numbers greater than 1.2.

The type of problem considered in this study is especially important in aerospace
structures and is usually given the name panel flutter. Panel flutter has been an active area
of research, starting with the development of high-speed projectiles and rockets around
the 1950s. A well-known publication that summarizes the theory and the general methods
of solution is [1]. A more recent text is [2]. The AGARD (Advisory Group for Aerospace
Research and Development—NATO) publication is an engineering manual dealing with the
detection and alleviation of aeroelasticity problems, including experimental methods and
various collected tables and graphs [3]. The literature on panel and plate flutter is immense;
some of the recent work relevant to the problems considered in this study is summarized
here: Uzal et al. dealt with incompressible and irrotational flow in a cylindrical channel
to analytically find the flutter velocity [4]. Epureanu et al. investigated vibration-based
damage with their chances in material and/or stiffness properties of structures. Kapkin et
al. investigated the membrane vibrations located at the stagnation point of the flow and
they give the flutter velocity for the system [5]. Vedeneev considered panel flutter at low
supersonic speeds by using piston theory [6]. E. H. Dowell gave flutter velocity graphs
for an infinite plate lying in the same direction as the fluid motion by using the potential
theory for different Mach numbers [7]. Durak B. investigated plate vibrations by using
potential flow theory in his PhD thesis [8]. Kapkin et al. tried to find a similar equation
to predict the flutter velocity for a membrane with a stagnation flow [9]. Uzal et al. give
an analytical solution for a plate placed in a rigid channel that fluid flows in [10]. Also,
some of the researchers are also trying to avoid this flutter point by applying a force or
moving one boundary to control the motion of the plate. Uzal and Korbahti controlled
the resonance frequencies of a rectangular plate’s vibrations by applying a discrete force
by measuring the displacement of the plate at a point [11]. Sezgin et al. give a boundary
backstepping control method to stabilize the flow-induced vibrations for a membrane [12].
Tubaldi et al. investigated a periodically supported flexible plate under flowing fluid axial
flow that is in a channel bounded by a rigid wall [13]. Lin et al. investigated how to control
the oscillations of a two-dimensional ribbed plate with free boundary conditions by using a
point-wise control method [14]. Li used the Rayleigh–Ritz method to determine the modal
characteristics of a rectangular plate with elastic boundary supports [15]. The effects of the
system parameters on the stability of the plate are discussed.

In this study, we considered the vibrations of infinite strip plates and rectangular finite
plates under the effect of a high-speed flow parallel to the plate. The plate vibrations were
modeled by the well-known linear (infinite strip) and two-dimensional (finite rectangle)
plate vibration equations. The infinite strip was infinite in the direction perpendicular to
the flow and the infinite sides were assumed to be simply supported. The finite rectangular
plate was simply supported at all its sides. In both cases, the plates were made up of
homogeneous, isotropic, linear material. The flow was taken to be in the high supersonic
regime, and was modeled by employing piston theory, according to which, the local
pressure was proportional to the local slope of the plate. This allowed for including the
coupling between the plate vibrations and the fluid flow simply as an additional term in
the plate vibration equation. The bare vibration equations were fourth order in space and
second order in time; therefore, their solutions were in the form of undamped vibrations,
neither growing nor decreasing in time. In contrast, the vibration equations including the
piston theory terms contained first-order derivatives in time and space. This allowed for
the solutions to decrease or blow-up in time. We were interested in the boundary between
these two regimes, which gives the stability boundary, and the flutter velocity, which was
the main quantity of interest.

This paper is organized as follows: In Section 2, we present general formulations
for the fluid–structure systems under consideration. And a useful approximate theory of
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aerodynamics, the piston theory approach, is given in Section 3. In Section 4, the governing
equations for the infinite strip case are given and non-dimensionalized in a suitable fashion,
and the solution using the point collocation method is presented. In Section 5, the case
of the finite rectangular plate is also similarly described. Both cases can also be solved
analytically; these are presented in Section 6. Thus, analytical and approximate methods
of solution (in the present case, the collocation method) could be compared. Section 7
presents the analytical and numerical results (the non-dimensional flutter velocity against
a non-dimensional mass ratio) for both problems; also, the convergence of the collocation
results to the analytical solution is demonstrated. Finally, inspired by the structure of the
flutter curves, simple equations relating the non-dimensional flutter velocity to the mass
ratio are developed for both the strip and rectangle cases. The rectangle case also includes
another non-dimensional parameter: the ratio of the sides of the rectangle.

2. General Formulation

Many fluid–solid coupled vibration problems have the general form shown in Figure 1.

Figure 1. General form for fluid–solid coupled vibration problems.

The fluid flows (in the undisturbed case) parallel to a rigid plane (which is taken as
the xy-plane), with an elastic plate occupying the region bounded by a closed curve B. The
flow direction is taken as the x-axis. The flow causes vibrations on the plate, which, in turn,
slightly modifies (disturbs) the flow. Under certain conditions, more mechanical energy is
transferred from the fluid to the plate, causing the magnitude of the vibrations of the plate
to increase, usually exponentially. In the actual nonlinear case, the growing vibrations may
be bounded by nonlinear interactions (or they may lead to structural failure), but this is
still an unwanted situation from an engineering standpoint. Therefore, investigating the
linearized fluid–elastic body coupling phenomena is of great engineering and scientific
interest. The most general case may be formulated as follows: The flow is modeled by the
compressible potential equation:

∇2ϕ =
1
a2

[
∂2ϕ

∂t2 +
∂

∂t
(
∇ϕ∇̇ϕ

)
+∇ϕ · (∇ϕ · ∇∇ϕ)

]
(1)

where ϕ is the velocity potential
V = ∇ϕ (2)

The local speed of sound a is given by

a2 =

(
∂p
∂ρ

)
S

(3)
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This is because the predominant force that causes the plate to vibrate is the fluid pressure;
viscous stresses would normally have little effect since they are mainly in the flow direction.
Therefore, unless there are large-scale flow separations, which is not the case here, the
viscous effects and other sources of vorticity can be ignored and the flow can be assumed to
be potential. The differentiation of the pressure with respect to density is done at constant
entropy (isentropic). In the potential equation, the speed of sound is to be eliminated by
using the compressible Bernoulli equation:

∂ϕ

∂t
+

1
2
∇ϕ · ∇ϕ +

∫
a2 dp

ρ
= constant (4)

The plate vibrations, in the case of an elastic, linear, and isotropic plate material, are
governed by

∂2w
∂t2 +

D
ρp

∇4w = 0 (5)

where w(x, y, t) denotes the plate displacement, D is the plate bending rigidity, and ρp is
the density of the plate (kg/m2). P is the fluid pressure on the plate surface.

p(x, y, z) = P(x, y, z, t) |z=w(x,y,t) (6)

We assumed that the plate boundaries are simply supported by the rigid extensions, which
means that the plate displacement and the bending moment are zero at the boundaries.
Finally, at the plate surface, the normal components of the plate and fluid velocities must
be the same:

w(x, y, t)ez.n = V(x, y, z, t).n for z = w(x, y, t) (7)

Here, ez is the unit vector in the z-direction, n is the vector normal to the plate surface
(while it is vibrating), and V is the fluid velocity. Note that the conditions between the fluid
and the solid (pressure expression and the velocity condition) makes the problem nonlinear,
in addition to the velocity potential equation. To arrive at a tractable (i.e., linear) but still
physical model, we assumed that the plate vibration amplitude was small enough so that
the potential equation could be linearized around the uniform flow in the x-direction:(

1 − U2

a2
∞

)
∂2ϕ

∂x2 +
∂2ϕ

∂y2 +
∂2ϕ

∂z2 = 0 (8)

where a∞ is the sound velocity in free stream conditions. As a natural extension of this
assumption, the pressure on the plate was assumed to be the pressure at z = 0:

p(x, y, t) = P(x, y, z, t) |z=0 (9)

and the velocity condition on the plate and fluid was also linearized:

∂ϕ

∂y

∣∣∣∣
y=0

=

{
∂w
∂t + U ∂w

∂x on the plate
0 off the plate

(10)

The problem expressed by these equations can be attacked by first expressing the velocity
potential in terms of the plate displacement by means of a two-dimensional Fourier trans-
form in x and y, computing the pressure from Bernoulli’s equation, and then substituting
its value at z = 0 into the plate vibration equation. Since the expression for the velocity
potential involves double integrals, including the plate displacement, the final form of the
plate vibration equation is a partial integro-differential eigenvalue problem.
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3. Piston Theory Approximation

The integro-differential equation mentioned in the last section is more or less the most
general formulation of the plate flutter problem. But it is quite a difficult mathematical
problem. This type of plate vibration problem is usually termed as panel flutter in the
aerospace industry, and it is well known that panel flutter is important at high supersonic
speeds [16]. A useful approximate aerodynamic theory exists in this regime known as
piston theory [17]. Developed in 1956, piston theory asserts that at high supersonic speeds,
the local pressure is proportional to the slope of the boundary ((13) below). With the piston
theory approximation, the potential flow equation is discarded and the vibrations are
governed by a modified form of the plate vibration equation ((14) below). Note that the
usual plate vibration equation contains only second-order derivatives; therefore, it can only
exhibit steady time-harmonic vibrations. The modified equation above also has first-order
derivatives, and it can, in principle, model attenuated or amplified vibrations; the latter
case corresponds to panel flutter.

4. Infinite Strip Plate

Figure 2 shows a schematic of the first problem. The flow occupies the region z > 0
and is in the x-direction with uniform velocity U. The region in the xy-plane with −b/2 <
x < b/2 and −∞ < y < ∞ is an elastic plate (infinite strip) of width b; the rest of the
xy-plane is rigid. The vibrations of the plate cause small perturbations in the flow velocity.
Some different equations can be found in the literature to define the vibrations of the
plates [18–24]. The vibrations of the plate are governed by [18–20]

D
∂4w
∂x4 + ρphp

∂2w
∂t2 + p|z=0 = 0 (11)

where w = w(x, t) is the displacement, hp is the thickness, ρp is the density of the plate, and

D =
Eh3

p

12(1 − ν2)
(12)

is the flexural rigidity, where E is Young’s modulus and ν is Poisson’s ratio. The last term
in (11) denotes the fluid pressure on the plate. Although the plate is moving, the fluid
pressure can be assumed to have its value at z = 0 within the linear theory. The fluid
flow is assumed to be inviscid since viscous effects are negligible due to the lack of flow
separation. In general, the linearized form of the compressible potential equation can be
used, but here a simpler approximation called piston theory is adopted. Piston theory is
widely used and basically states that the local pressure is proportional to the local slope of
the plate [16,25,26].

p|z=0 =
ρ f U
M

(
∂w
∂t

+ U
∂w
∂x

)
(13)

Thus, the coupled fluid–plate vibrations obey

D
∂4w
∂x4 + ρphp

∂2w
∂t2 +

ρ f U
M

(
∂w
∂t

+ U
∂w
∂x

)
= 0 (14)

where ρ f is the density of the fluid, U is the velocity of the fluid, and M is the Mach number
M = U

c . The boundary conditions on the plate were taken as

w(−b/2) = w(b/2) = 0

∂2w
∂x2 (−b/2) =

∂2w
∂x2 (b/2) = 0 (15)
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which state that the ends of the plate are simply supported. The problem was non-
dimensionalized as follows:

x∗ =
x
b

, w∗ =
w
b

, z∗ =
z
b

, t∗ =
t

b2
√

ρphp
D

, p∗ =
p
D
b3

, u =
U

1
b

√
D

ρphp

, c∗s =
u
M

(16)

Starred quantities are non-dimensional. Substituting in (14) and (15) and simplifying, the
result is, after getting rid of the stars since dimensional quantities will not be needed,

∂4w
∂x4 +

∂2w
∂t2 + µ

(
∂w
∂t

+ u
∂w
∂x

)
= 0 (17)

and the boundary conditions are

w(−1/2) = w(1/2) =
∂2w
∂x2 (−1/2) =

∂2w
∂x2 (1/2) = 0 (18)

where

µ =
ρ f b

ρphp
cs (19)

is a non-dimensional number, usually called the mass ratio, and

cs =
c

1
b

√
D

ρphp

(20)

is the dimensionless sound velocity. To investigate the stability, the plate displacement was
assumed to be

w(x, t) = v(x)eiωt (21)

Then, (17) and (18) become
∂4v
∂x4 + µu

∂v
∂x

+ K1v = 0 (22)

v(−1/2) = v(1/2) =
∂2v
∂x2 (−1/2) =

∂2v
∂x2 (1/2) = 0 (23)

where

K1 = −ω2 + iωµ (24)

u =
U

1
b

√
D

ρphp

(25)

Equations (22) and (23) give an eigenvalue problem for ω. The vibrations of the plate do
not grow as long as the imaginary part of ω is positive; the stability boundary is Im(ω) = 0.
Since ω depends on u (as well as µ), the condition Im(ω) = 0 gives the non-dimensional
flutter velocity. The problem defined by (22) and (23) were solved using the collocation
method. For this purpose, the approximate solution was expressed as

v(x) =
N

∑
1

Cnϕn(x) (26)
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where ϕn are suitably chosen base functions and Cn are constants to be determined. Base
functions were chosen so as to satisfy the boundary conditions (22). Here, a family of
polynomials was chosen:

ϕn(x) = xn+3 − 2n + 1
4n − 2

xn+1 +
2n + 3

16(2n − 1)
xn−1 (27)

ϕn(x) satisfies all the boundary conditions (23). Substituting the approximate solution (26)
into the governing (22) will not satisfy it, but will result in a “residual”:

R = R(C1, C2, . . ., CN , x) =
N

∑
n=1

Qn(x, ω, µ, u)Cn (28)

where, for brevity, we define

Qn(x, ω, µ, u) =
N

∑
n=1

Cn(n + 3)(n + 2)(n + 1)nxn−1 −
N

∑
n=1

Cn(n + 1)(n − 2)(n − 1)nAnxn−1

+
N

∑
n=1

(n − 4)(n − 3)(n − 2)(n − 1)Bnxn−5 + K1

N

∑
n=1

Cn(xn+3 − Anxn+1 + Bnxn−1)

+ µu
N

∑
n=1

Cn((n + 3)xn+2 − (n + 1)Anxn + (n − 1) + Bnxn−2) (29)

where

An =
2n + 1
4n − 2

(30)

Bn =
2n + 3

16(2n − 1)
(31)

In the collocation method, the free parameters Cn are determined by equating the residual
R to zero at N collocation points x1, x2, x3, . . .xN , which gives a linear homogeneous system
of algebraic equations:

N

∑
n=1

Qn(x, ω, µ, u) = 0 (32)

For a non-trivial solution, the determinant of the coefficients should be zero:
Q1(x1, ω, µ, u) Q1(x2, ω, µ, u) · · · QN(xN , ω, µ, u)
Q2(x1, ω, µ, u) Q2(x2, ω, µ, u) · · · QN(xN , ω, µ, u)

...
...

. . .
...

Q2(x1, ω, µ, u) Q2(x2, ω, µ, u) . . . QN(xN , ω, µ, u)

 = 0 (33)

The eigenvalue ω is determined from this equation in the form

ω = ω(µ, u) (34)

and the flutter velocity is found as a function of the mass ratio µ from

Im[ω(µ, u)] = 0. (35)
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Figure 2. Fluid and strip plate coupled system.

5. Rectangular Plate

Figure 3 shows a schematic of the second problem considered. Now, the plate also
has a finite width 2d; the d = ∞ limit of this problem gives the first problem. Again using
piston theory, the vibration equation takes the form

D
(

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4

)
+ ρphp

∂2w
∂t2 +

ρ f U
M

(
∂w
∂t

+ U
∂w
∂x

)
= 0 (36)

The plate was assumed to be simply supported at all sides, and thus, the boundary
conditions are

w(−b/2, y, t) = w(b/2, y, t) = w(x,−d, t) = w(x, d, t) = 0, (37)

∂2w
∂x2 (−b/2, y, t) =

∂2w
∂x2 (b/2, y, t) =

∂2w
∂x2 (x,−d, t) =

∂2w
∂x2 (x, d, t) = 0 (38)

Non-dimensionalization is similarly defined:

x∗ =
x
b

, y∗ =
y
b

, w∗ =
w
b

, z∗ =
z
b

, t∗ =
t

b/U
, d∗ =

d
b

, (39)

and again, getting rid of stars, the non-dimensional problem is

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4 +

∂2w
∂t2 + µ

(
∂w
∂t

+ u
∂w
∂x

)
= 0, (40)

w(−1/2, y, t) = w(1/2, y, t) = w(x,−1, t) = w(x, 1, t) = 0, (41)

∂2w
∂x2 (−1/2, y, t) =

∂2w
∂x2 (1/2, y, t) =

∂2w
∂x2 (x,−1, t) =

∂2w
∂x2 (x, 1, t) = 0 (42)

with the same µ and u as before. In this case, the solution was assumed to be in the
following form:

w(x, y, t) = v(x) sin
πy
d

.eiωt (43)
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This is the first term of a Fourier expansion in y
d , but the common wisdom is that the higher

terms do not affect the results [7,11]. The reason for this can be explained as follows: Like
any other linear vibration problem, the flutter of a flat plate or strip will have mode shapes
that depend on the mode numbers (basically, the numbering of the eigenvalues starting
from the simplest mode). In the simplest case, the plate will vibrate like a single sinus
wave, without changing the sign between its boundaries. The higher modes will have sign
changes and nodes within the rectangular region. These higher modes will also have higher
vibration frequencies. From a physical point of view, it is reasonable to expect that the
plate will more easily vibrate in the shape of a simple sinus wave rather than a complicated
shape with nodes and sign changes. Therefore, the leading sinus wave will exhibit unstable
vibrations before any of the higher modes. Therefore, using (43), (40)–(42) become

∂4v
∂x4 − 2

(π

d

)2 d2v
dx2 + µu

dv
dx

+ K2v = 0, (44)

v(−1/2) = v(1/2) =
d2v
dx2 (−1/2) =

d2v
dx2 (1/2) = 0, (45)

K2 =
(π

d

)4
− ω2 + iωµ (46)

The solution of (44) and (45) is carried out exactly as before, where only the expression
Qn changes.

Figure 3. Fluid and rectangular coupled system.

6. Analytical Solution

The solutions of both problems were found by the collocation method above. These
problems can also be solved analytically, but the problem with the analytical solution is that
the solution procedure involves finding the roots of a quartic equation and the resulting
determinant involves transcendent functions and searching for their zeroes is difficult. The
collocation method is simpler to apply and is similar to the analytical solution in terms of
performance. The solutions of both (22) and (44) were sought in the form

v = Cerx. (47)

Substituting (47) and (22) gives

r4 + µur + K1 = 0, (48)
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and (44) gives

r4 − 2
(π

d

)2
r2 + µur + K2 = 0. (49)

Denoting the roots of these equations as r1, r2, r3, and r4, the solutions can be written as

v = C1er1x + C2er2x + C3er3x + C4er4x. (50)

Applying the boundary conditions (23) and (45) both give
e

1
2 r1 e

1
2 r2 e

1
2 r3 e

1
2 r4

e−
1
2 r1 e−

1
2 r2 e−

1
2 r3 e−

1
2 r4

r2
1e

1
2 r1 r2

2e
1
2 r2 r2

3e
1
2 r3 r2

4e
1
2 r4

r2
1e−

1
2 r1 r2

2e−
1
2 r2 r2

3e−
1
2 r3 r2

4e−
1
2 r4




C1
C2
C3
C4

 = 0 (51)

The difference between the two solutions is due to the fourth-degree algebraic Equations (48)
and (49). For a non-trivial solution, the determinant of the coefficients in (51) should be zero.

∣∣∣∣∣∣∣∣∣
e

1
2 r1 e

1
2 r2 e

1
2 r3 e

1
2 r4

e−
1
2 r1 e−

1
2 r2 e−

1
2 r3 e−

1
2 r4

r2
1e

1
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∣∣∣∣∣∣∣∣∣ = 0 (52)

This gives ω as a function of the other parameters in the problem. Although this is
the analytical solution, the evaluation of the flutter velocity using this is quite difficult
compared with the numerical collocation method. First, the evaluation of determinants is
known to be numerically problematic, needing higher-precision computations. The second
difficulty is the evaluation of the roots of the quartic equation. Although there is an exact
formula for quartic equations, using numerical methods is advantageous here also.

7. Results and Discussion

Collocation solutions were found for N = 10, 12, and 14 and sufficient convergence
was observed for N = 10. Table 1 shows the convergence of the results for the flutter
velocity u f while increasing the number of collocation points. The collocation points were
chosen to be equally spaced for x = −1/2, ...,+1/2 in all cases.

Table 1. The convergence of the results while increasing the number of collocation points.

Number of Collocation Points u f (Non-Dimensional Flutter Velocity)

8 90.9697280425894
10 91.1667370035824
12 91.1563146276537
14 91.1564970192325

The solution of (48) (analytical solution) was found by an iterative shooting method [27–29].
Table 2 shows the comparisons between the collocation and analytical solutions.
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Table 2. Numerical results for a randomly chosen d = 3 value of the two methods.

Collocation Method Analytical Results

µ Before Flutter After Flutter Before Flutter After Flutter

1.006255 358.920571 359.571969 359.467520 359.571969
1.242290 291.097486 291.372886 291.315280 291.372886
1.572273 230.265262 230.461233 230.377137 230.461233
2.053581 176.682416 176.762617 176.671744 176.762617
2.795152 130.248788 130.299136 130.23840 130.299136
4.025020 90.6746705 91.1957893 91.156960 91.195789
6.289093 59.2604927 59.6428185 59.604512 59.642818
11.18061 36.0023423 36.1616447 36.111424 36.161644

The collocation solution agreed with the analytical solution. To derive the solutions
analytically, we used another method, the shooting method [27,29], which agreed with
the collocation method solutions, as shown in Table 3. As mentioned, the collocation
method gives results quickly; the analytical solution here is meant to check the correctness
of the collocation solution. Another validation of the results is presented here by way of
comparison with Dowell 1966, which shows similar results, bearing in mind that in the
mentioned work, full potential theory was used, and the solution was carried out for an
infinite plate in the direction of flow. The results obtained in this study for small d agreed
with Dowell [7,25]. Although this is a theoretical study of flutter, a simple comparison
with experiment was carried out. The type of experiment for the solution attempted here
seems to be rare. The NACA Technical Note 3914 (1957) ([30]) lists some comparable
measurements on thin panels. In that experimental study, some of the boundary conditions
were also different. Furthermore, it was extremely difficult to experimentally imitate the
plate boundary conditions. But, the magnitude of the numbers should give some idea
about the validity of the theoretical solution. The notation and the system of units used
were also different. But, after an adjustment, the following values for the experiment and
the present computations were obtained.

Table 3. Comparison of some results with NACA report ([30]).

Material Experimental Result Theory

Steel 254.7695 (panels with tension, clamped front and rear) 263.5333
Steel 254.7695 (buckled panels, clamped front and rear) 263.5333
Brass No flutter (panels with tension, clamped front and rear) 919.6203

Aluminum No flutter (buckled panels, clamped on four edges) 397.2558

Considering the differences in the setup and the difficulty in experimentally realizing
the boundary conditions, it can be safely stated that the computations were in agreement
with the experiment. For the cases of brass and aluminum, the computed flutter velocities
were beyond the capabilities of the experiment. Therefore, it is natural that no flutter was
observed.

7.1. Infinite Strip

Figure 4 shows the non-dimensional flutter velocity as a function of the mass ratio.
As expected, the flutter velocity decreased with increasing mass ratio. Since the curve in
Figure 4 seems to have a simple structure, a mathematical expression between u f and µ
could be developed by using curve fitting. This was done by using Matlab 2023b and the
result was

u f =
333.7 + 3.249µ + 0.1461µ2

µ − 0.02
(53)

This equation gives the same points as in Figure 4 within an error of 1 percent.
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Figure 4. Relationship between the non-dimensional mass ratio µ =
ρ f b

ρphp
cs and the dimensionless

flutter velocity for the strip plate given in Figure 1.

7.2. Rectangular Plate

For a rectangular plate, there are two parameters that the flutter velocity depends on:
the mass ratio and plate width ratio. Figure 5 shows the flutter velocity as a function of
the plate width ratio for various values of the mass ratio for d > 1. The results for d < 1
are shown in a separate Figure 5. It was observed that the flutter velocity decreased and
asymptotically converged to the value for the infinite strip as the plate width increased.

Figure 5. Relation between u and d in different situations for the case d < 1.

To generalize (53) to a rectangular plate, it was found to be useful to look at the graph
of d2u f (Figure 6). We assumed the relationship between the flutter velocities for finite and
infinite width plates to be

u f = u∞ +
α

d2 . (54)
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Here, u∞ is the expression (53), and by curve fitting, α was found to be

α = 1.125 +
159.4

µ
+

12.02
µ2 . (55)

Equation (54) gives the flutter velocity in Figure 6 within 1 percent for d > 1 and µ < 25.
To give an example, for aluminum (with a density ρ = 2720 kg/m3, elasticity modulus
E = 70 GPa, Poisson’s ratio ν = 0.3) plate of thickness 5 mm for b = 1 m and d = 3 m,
(54) gave the non-dimensional flutter velocity as 91.7847 (91.166737 with the collocation
method) and the actual flutter velocity was 704.5209 m/s (699.7770 m/s with the collocation
method). With the use of (54), design engineers can easily and rapidly predict the flutter
velocity. This is the main novelty of this paper, i.e., to predict the flutter velocity of a plate
in different situations.

Figure 6. Relationship between d2u f and d in different situations for the case d > 1.

8. Conclusions

To summarize, the flutter velocity of a plate structure under very varied geometric
conditions can be estimated with the simple algebraic expressions given in this study. These
expressions were derived by curve fitting to data obtained by the collocation method. To
validate the collocation results, the analytical solution was also found and seen to give the
same results. The novelty of the solution is the correlation between the flutter velocity and
the other model parameters. In practice, these correlation equations should be very useful
for design engineers in order to predict the flutter velocity. The range of the expressions
given cover a very wide range of mass ratios (from 1 to 100) and a corresponding range of
non-dimensional flutter velocities (from very low velocities up to about 6500).
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Abbreviations

Symbol Definition
E Young’s modulus
hp Thickness of plate
b Length of plate
d Width of plate
ρp Density of plate
w Displacement of plate
ν Poisson’s ratio
U Velocity of the fluid
ρ f Density of the fluid
M Mach number
µ Mass ratio
cs Dimensionless sound velocity
ϕ Base function
R Residual
N Number of collocation points
u f Dimensionless flutter velocity
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