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Abstract: The environmental changes in the Caatinga biome have already resulted in it reaching
levels of approximately 50% of its original vegetation, making it the third most degraded biome
in Brazil, due to inadequate grazing practices that are driven by the difficulty of monitoring and
estimating the yield parameters of forage plants, especially in agroforestry systems (AFS) in this
biome. This study aimed to compare the predictive ability of different indexes with regard to the
biomass and leaf area index of forage crops (bushveld signal grass and buffel grass) in AFS in the
Caatinga biome and to evaluate the influence of removing system components on model performance.
The normalized green red difference index (NGRDI) and the visible atmospherically resistant index
(VARI) showed higher correlations (p < 0.05) with the variables. In addition, removing trees from
the orthomosaics was the approach that most favored the correlation values. The models based on
classification and regression trees (CARTs) showed lower RMSE values, presenting values of 3020.86,
1201.75, and 0.20 for FB, DB, and LAI, respectively, as well as higher CCC values (0.94). Using NGRDI
and VARI, removing trees from the images, and using CART are recommended in estimating biomass
and leaf area index in agroforestry systems in the Caatinga biome.

Keywords: buffel grass; bushveld signal grass; machine learning; remote sensing; semiarid; yield

1. Introduction

Changes in the Caatinga biome have already resulted in it reaching approximately 50%
of its original vegetation, making it the third most degraded biome in Brazil, behind only
the Atlantic forest and Cerrado [1,2]. Although cattle raising is one of the main activities in
the region, it is among the main sources of interference in the Caatinga due to the extensive
practice of grazing, non-adjustment of grazing pressure, and grazing at inappropriate times,
which are driven by the difficulty of monitoring and estimating yield parameters of forage
plants [3–5].

Agroforestry systems (AFSs) are quite relevant in reconciling economic and environ-
mental biases, contributing to several points, such as integrated land use, recovery of
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areas, conservation and promotion of biodiversity, reduction in erosion, and emission of
greenhouse gases [6,7]. Denoting the importance of studies focused on the use of AFS in
the Caatinga biome and the development of models that help in the process of monitor-
ing and decision making of the producer, especially considering all the complexity and
management needs that AFSs involve, it is essential to improve remote sensing techniques,
which is a relevant tool in the process of monitoring and decision making in the agricultural
environment [8,9]. Since it allows for information to be obtained remotely and reduces the
need for slow, destructive field analysis, it can be used for, among its many applications,
the estimation of crop yields.

Using unmanned aerial vehicles (UAVs) in monitoring productive areas has shown
high growth over the years, mainly due to advances in altitude, camera quality, ease of
flight, and image processing [10]. According to the literature consulted, several studies use
this technology, relying mainly on the use of vegetation indexes [11–14], thus enabling the
identification of yield traits of vegetation. These indexes relate different electromagnetic
spectrum bands, starting from the interactions that the bands have with plant contact
surface characteristics, which are influenced mainly by water content, chlorophyll content,
and carotenoid species [15].

Several studies have applied vegetation indexes in conventional agricultural and
agroforestry systems [12,16–18]. However, there is still a scarce number of studies that
consider, in the modeling process, ways to circumvent the inherent complexity of the com-
positions of the systems, mainly those inserted in the Caatinga biome. Agroforestry systems
in the Caatinga biome present a unique challenge due to their diverse combinations of
species with varying morphological and physiological structures. These variations signifi-
cantly influence the relationships between vegetation indices and vegetative characteristics,
particularly within AFS in the Caatinga biome.

Different modeling techniques are constantly used in the literature [19–24], among
these, machine learning methods stand out as an important tool in the process of generating
predictive models, relying on algorithms that are capable of learning during model defini-
tion and therefore making the most of information as they quickly characterize complex
patterns in the input data. Thus, it is possible to improve the models obtained in the process
of automating tools for decision support [25–28]. Therefore, it is essential to compare this
method with other models, especially classical and widespread models [29].

Given the above, it was hypothesized that the vegetation indexes are viable alternatives
for estimating the yield parameters of forage crops in agroforestry systems in the Caatinga
biome. Consequently, the present study aimed to compare the predictive ability of different
vegetation indexes on the biomass and leaf area index of forage crops (bushveld signal
grass and buffel grass) in agroforestry systems in the Caatinga biome and evaluate the
influence of removing system components on model performance.

2. Materials and Methods
2.1. Location and Characterization of the Experimental Area

The study was carried out at the Federal Rural University of Pernambuco/Academic
Unit of Serra Talhada (UFRPE/UAST) in Serra Talhada, Pernambuco, Brazil (Figure 1a).
We evaluated, during two periods from 26 February 2021 to 17 June 2021 and 25 March
2022 to 29 June 2022, the development of areas of thinned, lowered, and enriched Caatinga
with Urochloa mosambicensis (Hack.) Dandy (signal grass) and Cenchrus ciliaris L. (buffel
grass) (7◦57′2′′ S, 38◦17′53′′ W and average altitude of 512 m).

The experimental area was 7200 m2 (80 m × 90 m), divided into three blocks containing
four 584 m2 (29.20 m × 20 m) plots, comprising four agroforestry systems in each block
of the area (Figure 1b). The agroforestry systems relied on an integration between the
vegetation of the Caatinga biome (Table 1), forage plants, and crops. Bushveld signal grass
(Urochloa mosambicensis (Hack.) Dandy) and buffel grass (Cenchrus ciliaris L.) were used,
and the crops were as follows: corn (Zea mays L.) cv. Batité, cowpea (Vigna unguiculata (L.)
Walp.) cv. CCE-115 and cotton (Gossypium hirsutum L.) cv. BRS Aroeira. The treatments
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consisted of four agroforestry systems in the Caatinga biome, characterized as follows:
(1) bushveld signal–buffel grass + cowpea + Caatinga; (2) bushveld signal–buffel grass +
cotton + Caatinga; (3) bushveld signal–buffel grass + corn + Caatinga; and (4) bushveld
signal–buffel grass + Caatinga (Figure 1b).
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Figure 1. (a) Location of the experiment, and (b) experimental design.

In preparing the area, the Caatinga vegetation was thinned and lowered to make the
environment more favorable for the development of other crops. The bushveld signal
grass and buffel grass were already established in the area before the beginning of the
experiment, and a uniform cut was made at a height of 10 cm from the ground with the aid
of a backpack brush cutter (Stihl FS160). For planting the crops, 1 m wide and 26 m long
planting strips were opened between the grasses, resulting in a gap of 0.5 m between the
crops and the grass. The spacing was 0.5 m between plants and 2 m between rows.

The region is characterized by climate BSwh-type (semiarid climate with dry winters
and rainy summers) according to Köppen climate classification [30]. During the experimen-
tal period, air temperatures of 24.75 and 25.41 ◦C, relative humidity of 66.64 and 77.27%,
accumulated precipitation of 419.80 and 180.3 mm, accumulated reference evapotranspira-
tion of 483.76 and 292.77 mm, and global solar radiation of 19.02 and 17.01 MJ m−2 were
recorded in 2021 and 2022, respectively, obtained from the meteorological station of the
National Institute of Meteorology (INMET), located 548 m from the experimental area
(Figure 2).
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Table 1. Species found in the experimental area.

Common Name Scientific Name

Mororó Bauhinia cheilantha (Bong.) Steud.
Marmeleiro Croton sonderianus Müll. Arg.
Feijão bravo Capparis flexuosa (L.)

Jurema branca Mimosa sp.
Cipó unha-de-gato Uncaria sp.

Catingueira Cenostigma pyramidalis (Tul.)
Maniçoba Manihot glaziovii Müll. Arg.
Juazeiro Ziziphus joazeiro Mart.
Angico Anadenanthera macrocarpa (Benth.) Brenan
Tingui Magonia sp.

Capim meloso Melinis sp.
Picão preto Bidens pilosa L.

Pau-piranha Guapira sp.
Capa bode Melochia tomentosa L.

Aroeira mansa Myracrodruon urundeuva Allemão
Mandacaru Cereus jamacaru DC.

Incó Neocalyptrocalyx sp.
Jurema preta Mimosa tenuiflora Benth.

Jitirana Merremia aegyptia (L.) Urb.
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2.2. Unmanned Aerial Vehicle Flight Pattern

An advanced DJI Phantom 3 UAV (DJI, Shenzhen, China), equipped with a 1/2.3′′

CMOS sensor and 12.76 megapixels (12.4 effective megapixels), was used to capture the
images (Figure 3a,b). The flight plan was executed according to the boustrophedon pat-
tern [32] (Figure 3) using the free version of the DroneDeploy software (version 5.31.0). The
flight height was maintained at 100 m above the ground, with an 85% overlap at the front
and sides. The flight speed was three m s−1, and the total flight time was approximately
6 min. The image overlap pattern, an essential aspect of the image capture process, was
set to at least 80% frontal and 70% lateral, following specific recommendations [33]. This
meticulous planning minimized information loss. The image coordinates were obtained
using the GPS/Glonass global positioning system integrated into the UAV. The images were
collected weekly between 10 a.m. and 2 p.m., ensuring consistent illumination and avoiding
the presence of clouds. This precaution was taken to prevent interference from shading in
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the capture area, thus ensuring the quality of the images. No image correction was applied
to obtain the reflectance, and the digital image response was used for processing.
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Figure 3. (a) UAV’s trajectory performed during the flight. (b) UAV platform (DJI Phantom 3) and
sensor (CMOS camera, Tokyo Electron Ltd., Tokyo, Japan) used in this study.

2.3. Orthomosaics and Vegetation Indices

The images collected in flight were processed into orthomosaic forms, which consist of
building a single image from the composition of overlapping photos [32]. The orthomosaics
were processed using WebODM (version 1.9.15) [34], an open-source drone mapping soft-
ware. After the generation of the orthomosaics, georeferencing corrections were performed
using QGIS (version 3.20.10) [35] via the LF Tools plugin. This tool performs georeferencing
adjustment through control points on the ground, which were manually determined in
the image by selecting known points that remained stationary during the collections, such
as roofs and water tanks. Additionally, an affine polynomial function of degree one was
adopted for the correction, and the nearest neighbor method was used for interpolation.
Thus, after georeferencing adjustment, our orthomosaics were manipulated in R software
(version 4.1.3) [36] with the aid of the raster [37] and FIELDimageR [38] packages. The or-
thomosaics underwent four approaches, Agrofor-Complete; Soil-Removed; Tree-Removed,
and Tree + Soil-Removed, as described in Table 2.

Table 2. Description of the files generated from each orthomosaic.

File Type Description

Agrofor-Complete Original file containing all components of the study area (soil,
crops, trees)

Soil-Removed File with solo component removed
Tree-Removed File with tree component removed

Tree + Soil-Removed File with soil and tree components removed

The removal of the components, soil, and tree was intended to improve the influence
of each component on the correlation between the generated vegetation indexes and
the parameters to be estimated. No crop removal occurred due to greater difficulty in
differentiating the grasses. For soil removal, threshold values of the VARI vegetation index
were used, using a cutoff value of −0.16. For the removal of the trees, a cut mask was
manually created. Due to the easier identification, the orthomosaic from the beginning
of the experiment (Figure 3) was used as a reference, when the crops had not yet been
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implemented. Subsequently, 11 RGB (Red, Green, Blue)-based vegetation indexes (Table 3)
were calculated for each of the generated files (Table 2) on all collection dates.

Table 3. Descriptive analysis of biomass and leaf area index of buffel grass and bushveld signal grass
for each treatment.

Index Abbr. Equation Authors

Brightness Index BI ((R2 + G2 + B2)/3)0.5 [39]

Blue Green Pigment Index BGI B/G [40]

Green Leaf Index GLI (2 × G − R − B)/(2 × G + R + B) [41]

Primary Colors Hue Index HI (2 × G – R − B)/(G − B) [42]

Overall Hue Index * HUE cotg(2 × (B – G − R)/30.5 × (G − R)) [42]

Normalized Green Red Difference Index NGRDI (G − R)/(G + R) [43]

Modified Green Red Vegetation Index MGRVI (G2 − R2)/(G2 + R2) [44]

Red Green Blue Vegetation Index RGBVI (G2 − B × R2)/(G2 + B × R2) [45]

Soil Color Index SCI (R − G)/(R + G) [46]

Spectral Slope Saturation Index SI (R − B)/(R + B) [42]

Visible Atmospherically Resistant Index VARI (G − R)/(G + R − B) [47]

Abbr.: Abbreviations, R: Red, G: Green, B: Blue, and cotg: cotangent. * HUE modified by [38].

2.4. Forage Mass and Leaf Area Index (LAI)

The forage mass and leaf area index of the grasses was determined on days coincident
with the collection of images. Forage mass was cut at ground level with a 0.25 m2 frame in
three representative points per plot for each grass. Subsequently, the samples were weighed
to define the fresh biomass (FB), placed in paper bags, properly identified, and dried in an
air-forced circulation oven at 55 ◦C for 72 h to determine the dry biomass (DB).

Leaf area index (LAI) was obtained using a portable AccuPAR ceptometer sensor
(LP-80, Decagon Devices, Pullman, WA, USA) [48], taking five measurements at represen-
tative locations per plot, considering the same time interval and light conditions of the
image collections.

2.5. Correlation Analysis

The Spearman’s correlation coefficients (ρ) were used to evaluate the correlations
between the vegetation indexes and the considered crop parameters (fresh mass, dry mass,
and LAI). This method was chosen because of its better ability to assess the degree of associ-
ation in a scenario of more dispersed data and with the presence of outliers [49,50]. The cor-
relation coefficient values were categorized as very strong (ρ ≥ 0.8), strong (0.6 ≤ ρ < 0.8),
moderate (0.4 ≤ ρ < 0.6), weak (0.2 ≤ ρ < 0.4), and very weak (ρ < 0.2). Statistical analysis
was performed using R software (version 4.1.3) [36].

2.6. Machine Learning Models

For the machine learning models, the following methods were used: linear regression,
which is a statistical method used to determine relationships between a dependent variable
(value to be predicted) and one or more independent variables (predictors), assuming a
linear relationship between the variables [51]; neural networks (ANNs), which consist of a
simplified process inspired by biological neural networks, enabling pattern recognition in
complex datasets through learning [52,53]; support vector machines (SVMs), with learning
that involves pattern recognition by defining a hyperplane that partitions the data into
homogeneous areas, to assist in the prediction processes [25,54]; cubist (Cub), a model tree
method characterized by the use of trees for further regression analysis, where regression
is applied on the subset of data that are formed after the data partitioning performed
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by the trees [55]; boosted regression trees (BRTs), notable for their high predictive power
when considering the concept of recursive binary splitting in conjunction with a learning
(boosting) technique [56]; and classification and regression trees (CARTs), based on rules
that allow trees to be created from recursive partitioning, dividing data into subsets based
on independent factors [57].

2.7. Model Evaluation

The predictive performance of the models was evaluated using k-fold cross validation,
repeated ten times, which consists of dividing the data into subsets, using one of the subsets
as a test and the others to estimate the model, increasing reliability and unbiasedness during
estimation [58]. The following were used to evaluate the cross-validation results: the root
mean square error (RMSE), the mean absolute error (MAE), Lin’s concordance correlation
coefficient (CCC), and the coefficient of determination (R2).

The modeling process was performed with R software version 4.1.3 [36], with the
aid of the packages neuralnet [59], kernlab [60], Cubist [61], gbm [62], and rpart [63] for
the ANNs, SVM, Cub, BRTs, and CART models, respectively. The packages caret [64] and
DescTools [65] were used for evaluation.

3. Results
3.1. Correlating and Determining the Orthomosaic Treatment Approach

As in the results, there was no difference between the treatments performed; all images
and the yield variables (FB, DB, and LAI) were evaluated together, that is, independent
of the agroforestry systems. The average, maximum, minimum, median, and standard
deviation data are described (Table 4).

Table 4. Descriptive analysis of biomass and leaf area index of buffel grass and bushveld signal grass
for each treatment.

Variable Treatment Mean Maximum Minimum Median Standard Deviation

Fresh biomass
(kg ha−1)

Cotton 16,185.38 32,650.67 1068.67 18,324.13 2327.29
Caatinga 14,537.66 33,775.73 988.53 15,451.33 2214.05
Cowpea 14,569.63 31,284.93 1527.87 15,461.83 1671.66

Corn 16,260.14 38,802.67 1556.27 13,969.97 3393.82

Dry biomass
(kg ha−1)

Cotton 5050.21 12,007.62 193.60 4968.13 1057.59
Caatinga 4675.15 12,568.19 130.21 5024.50 1065.31
Cowpea 5116.42 19,795.12 239.20 4065.86 2077.48

Corn 5241.47 14,414.41 275.34 4318.56 982.65

Leaf area index
(m2 m−2)

Cotton 1.23 2.55 0.29 1.25 0.28
Caatinga 1.24 2.25 0.33 1.26 0.15
Cowpea 1.32 2.88 0.31 1.31 0.26

Corn 1.27 3.56 0.35 1.33 0.38

The NGRDI, MGRVI, and VARI indexes showed the highest positive and significant
(p < 0.05) correlations for fresh mass (0.8 for NGRDI, 0.8 for MGRVI, and 0.8 for VARI),
dry mass (0.7 for NGRDI, 0.7 for MGRVI, and 0.7 for VARI), and LAI (0.7 for NGRDI 0.7
for MGRDI, and 0.7 for VARI), respectively. The SCI, SI, and * HUE indexes showed the
highest negative and significant (p < 0.05) correlations for fresh biomass (0.8 for SCI, 0.7 for
SI, and 0.7 for * HUE), dry mass (0.7 for SCI, 0.7 for SI, and 0.7 for * HUE), and LAI (0.7
for SCI, 0.6 for SI, and 0.5 for * HUE), respectively, while BGI, GLI, RGB, and BI showed
non-significant occurrences (p > 0.05) (Figure 4). The indexes SCI and MGRVI showed
significant behavior (p < 0.05) identical to NGRDI with correlations of 0.8, 0.7, and 0.7 for
FB, DB, and LAI, respectively, with SCI values in modulo equal to the values of NGRDI. It
was decided to remove both in the estimation process, keeping only the NGRDI (Figure 4).



Appl. Sci. 2024, 14, 4896 8 of 14

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 15 
 

for MGRDI, and 0.7 for VARI), respectively. The SCI, SI, and * HUE indexes showed the 

highest negative and significant (p < 0.05) correlations for fresh biomass (0.8 for SCI, 0.7 

for SI, and 0.7 for * HUE), dry mass (0.7 for SCI, 0.7 for SI, and 0.7 for * HUE), and LAI (0.7 

for SCI, 0.6 for SI, and 0.5 for * HUE), respectively, while BGI, GLI, RGB, and BI showed 

non-significant occurrences (p > 0.05) (Figure 4). The indexes SCI and MGRVI showed 

significant behavior (p < 0.05) identical to NGRDI with correlations of 0.8, 0.7, and 0.7 for 

FB, DB, and LAI, respectively, with SCI values in modulo equal to the values of NGRDI. 

It was decided to remove both in the estimation process, keeping only the NGRDI (Figure 

4). 

The approach to treating the orthomosaics by removing components (tree and soil) 

that contributed the most to improving correlation values was the removal of trees (Figure 

4) and was used in generating the predictive models. 

 

Figure 4. Spearman’s correlation coefficients of the relationship between the considered features 

and the vegetation indexes for each approach on orthomosaics. The asterisk (*) represents a 

statistically significant difference (p < 0.05). (a) Original file containing all components of the study 

area (soil, crops, trees). (b) File with soil and tree components removed. (c) File with tree component 

removed. (d) File with solo component removed. 

3.2. Analysis of Prediction Models 

Regarding the linear regression models, the NGRDI showed a better fit for FB (RMSE 

= 4002.04, MAE = 3551.13, CCC = 0.83, R2 = 0.75) and DB (RMSE = 1743.56, MAE = 1514.18, 

CCC = 0.71, R2 = 0.69), and the VARI for LAI (RMSE = 0.31, MAE = 0.26, CCC = 0.77, R2 = 

0.71), in which it showed a less obvious difference between the indexes than for FB and 

DB (Table 5). 

Table 5. Results of the cross-validation process for the simple linear regression models. 

Index Response RMSE MAE CCC R2 Model 

NGRDI Fresh biomass  

(kg ha−1) 

4002.04 3551.13 0.83 0.75 y = 22,022 + 152,776x 

VARI 4164.82 3656.81 0.82 0.73 y = 22,610 + 98,632x 

NGRDI Dry biomass  

(kg ha−1) 

1743.56 1514.18 0.71 0.69 y = 7258 + 52,400x 

VARI 1805.94 1623.18 0.70 0.66 y = 7446 + 33,669x 

NGRDI Leaf area index  

(m2 m−2) 

0.31 0.26 0.76 0.68 y = 1.678 + 9.232x 

VARI 0.31 0.26 0.77 0.71 y = 1.727 + 6.133x 

RMSE: root mean square error, MAE: mean absolute error, CCC: Lin’s concordance correlation 

coefficient and R2: determination coefficient. 

For the machine learning methods, the best models were found for the partitioned 

regression tree method (Table 6), even compared to linear regression (Table 5), presenting 

Figure 4. Spearman’s correlation coefficients of the relationship between the considered features and
the vegetation indexes for each approach on orthomosaics. The asterisk (*) represents a statistically
significant difference (p < 0.05). (a) Original file containing all components of the study area (soil,
crops, trees). (b) File with soil and tree components removed. (c) File with tree component removed.
(d) File with solo component removed.

The approach to treating the orthomosaics by removing components (tree and soil) that
contributed the most to improving correlation values was the removal of trees (Figure 4)
and was used in generating the predictive models.

3.2. Analysis of Prediction Models

Regarding the linear regression models, the NGRDI showed a better fit for FB (RMSE =
4002.04, MAE = 3551.13, CCC = 0.83, R2 = 0.75) and DB (RMSE = 1743.56, MAE = 1514.18,
CCC = 0.71, R2 = 0.69), and the VARI for LAI (RMSE = 0.31, MAE = 0.26, CCC = 0.77,
R2 = 0.71), in which it showed a less obvious difference between the indexes than for FB
and DB (Table 5).

Table 5. Results of the cross-validation process for the simple linear regression models.

Index Response RMSE MAE CCC R2 Model

NGRDI Fresh biomass
(kg ha−1)

4002.04 3551.13 0.83 0.75 y = 22,022 + 152,776x
VARI 4164.82 3656.81 0.82 0.73 y = 22,610 + 98,632x

NGRDI Dry biomass
(kg ha−1)

1743.56 1514.18 0.71 0.69 y = 7258 + 52,400x
VARI 1805.94 1623.18 0.70 0.66 y = 7446 + 33,669x

NGRDI Leaf area index
(m2 m−2)

0.31 0.26 0.76 0.68 y = 1.678 + 9.232x
VARI 0.31 0.26 0.77 0.71 y = 1.727 + 6.133x

RMSE: root mean square error, MAE: mean absolute error, CCC: Lin’s concordance correlation coefficient and R2:
determination coefficient.

For the machine learning methods, the best models were found for the partitioned
regression tree method (Table 6), even compared to linear regression (Table 5), presenting
a lower RMSE, that is, with values of 3020.86, 1201.75, and 0.20 for FB, DB, and LAI,
respectively, as well as higher precision and accuracy for the predicted values (CCC),
presenting values of 0.94 for FB, DB, and LAI.

Analyzing the influences of the variables in the CART prominence model, one notices
that NGRDI and VARI are prominent, as well as in the linear correlation indexes (Figure 5),
followed by the * HUE index.
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Table 6. Results of the cross-validation process for the machine learning methods.

Response Model RMSE MAE CCC R2

Fresh biomass
(kg ha−1)

RN 4898.54 3911.63 0.81 0.73
SVM 5488.14 4309.95 0.78 0.68

CART 3020.86 2339.19 0.94 0.89
Cub 5275.10 4046.60 0.80 0.68
BRT 3414.95 2599.76 0.91 0.88

Dry biomass
(kg ha−1)

RN 2185.85 1661.84 0.76 0.66
SVM 2358.47 1853.77 0.72 0.59

CART 1201.75 935.84 0.94 0.89
Cub 2353.00 1567.60 0.72 0.59
BRT 1787.54 1295.92 0.83 0.78

Leaf area index
(m2 m−2)

RN 0.34 0.25 0.81 0.72
SVM 0.42 0.33 0.70 0.56

CART 0.20 0.15 0.94 0.89
Cub 0.36 0.24 0.78 0.67
BRT 0.27 0.19 0.87 0.81

RN: neural networks, SVM: support vector machines, CART: classification and regression trees, Cub: Cubist,
BRT: boosted regression trees, RMSE: mean squared error, MAE: mean absolute error, CCC: Lin’s concordance
correlation coefficient and R2: coefficient of determination.
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4. Discussion

Removing the trees from the orthomosaics for the estimation process proved impor-
tant in predicting the production variables of bushveld signal grass and buffel grass in
agroforestry systems in the Caatinga biome, similar to that found by [66] in their analysis of
aboveground tree biomass in an agroforestry system, where only the trees were extracted
for model generation. The removal of the trees in this study was superior even when
compared to the removal of the trees together with the ground surface. This is possibly
because the ground surface acts as a balance to the high values that occur due to saturation
problems of the indexes, occasioned in denser canopy conditions [67], as the ground values
are represented by values near or below zero by most indexes. Therefore, removing the soil
from the orthomosaics would potentiate the saturation problem of the RGB sensor prod-
ucts, compromising the estimation of the yield parameters, reinforced by the considerable
influence of the * HUE soil index on the best-performing CART model (Figure 5).

The MGRVI, developed by [44] from the NGRDI, with the premise that the squared
elevation of the reflectances used in generating the indexes contributes to amplifying the
difference between them, showed identical behavior to that visualized for the NGRDI. That
demonstrates that in this experiment, no influence of squared elevation was observed in
the association with the analyzed elements, characterizing this process as irrelevant in the
prediction models, different from [68], where NGRDI was better in the process of extracting
the vegetation of Haloxylon ammodendron compared to MGRVI. As for the SCI, developed
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based on the variation in the soil tone [46], it is exactly the inverse of the NGRDI and
contributes solely to visual aspects that could be obtained by inverting the final NGRDI
values or even the color scale used.

The generally superior predictive performance of NGRDI (FB and DB) followed by
VARI (LAI) (see Table 5 and Figure 5) corresponds to the various studies in the literature that
relate it to biomass, such as [69], who described NGRDI as efficient in identifying biomass
and yield and capturing small differences in chlorophyll content of the corn crop. Ref. [70]
found an optimal correlation of NGRDI with alfalfa biomass. Ref. [71] also found excellent
contributions of the VARI in their models, highlighting the predictive ability even in shadier
conditions, thus denoting the capability of these indexes even in the most adverse situations
inherent to remote sensing data collection. Unlike the relationships presented by [72]
evaluating the severity of diseases on leaves under controlled conditions in image taking,
few indexes showed a strong relationship with the adjusted parameters, demonstrating
the influence of environmental and physical conditions imposed during image taking,
either by meteorological issues, the inclination of the sun, or even by the complexity of the
production field. In any case, the satisfactory ratio shown by NGRDI and VARI may be
related to the greater focus, of their respective formulas, on the red and green bands, as
they have a higher quantum yield and a higher reflection rate, respectively [73–75].

The linear regression models, with a model that is easier to reproduce, and the other
models generated, although they showed a worse performance than CART, can still be
used. According to [76], even under conditions where precision and accuracy are not
obtained, the methods can still be recommended due to the cost, the time-consuming
and destructive measurements, and the producer’s experience in their area. The models
developed presented satisfactory predictive performance with considerably high accuracy
and precision, given the various factors that influence the estimation process, such as
environmental conditions, the complexity of vegetation, equipment, and the quality of the
data survey [77]. The better performance of the CART method, as per the calculated values
of CCC (0.94) and R2 (0.89), is due to factors such as the ability to leverage information
through learning, being robust to the outlier, non-parametric, and, most importantly, being
less sensitive to learning data [78]. It is important to highlight that unfavorable weather
conditions have resulted in insufficient yields of cowpea, corn, and cotton crops, limiting
the consideration of their impact on the system during the modeling process. Therefore, it
is important to conduct research that takes these factors into account to make significant
advances in estimative methods in AFS. Furthermore, the process of removing components
from orthomosaics through threshold values or cutting masks is still performed manually,
which can lead to a prolonged process in large-scale applications, particularly in the
removal of trees involving variable structures. Therefore, it is crucial to develop automated
algorithms for such tasks, considering precision and process optimization.

5. Conclusions

In this study, different vegetation indices and algorithms were used for modeling the
biomass and leaf area index of forage crops (common grass and buffel grass) in agroforestry
systems in the Caatinga biome. Additionally, the removal of system components (trees
and soils) was performed to improve the accuracy of the models. Based on the presented
results, we suggest employing regression tree-based models (CART) as a viable option
when constructing predictive models for biomass and leaf area index of common grass and
buffel grass in agroforestry systems within the Caatinga biome.

The robustness of these models, evidenced by their ability to handle outliers and
their relative insensitivity to training data, makes them suitable for the complexity of the
conditions found in this environment. Furthermore, the simplicity and ease of replication
of linear regression-based models, particularly when using indices like NGRDI and VARI,
make them a viable option for estimating productive indices in these conditions. It is also
worth emphasizing the importance of tree removal from orthomosaics as a significant
procedure in predicting both evaluated modeling methods.
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