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Abstract: Permissioned blockchains are widely used in scenarios such as digital assets, supply
chains, government services, and Web 3.0, but their development is hindered by low throughput and
scalability. Blockchain sharding addresses these issues by dividing the ledger into disjoint shards that
can be processed concurrently. However, since cross-shard transactions require the collaboration of
multiple shards, blockchain sharding needs a commit protocol to ensure the atomicity of executing
these transactions, significantly impacting system performance. To this end, by exploiting the
characteristics of deterministic ordering, we propose a cross-shard transaction processing protocol
called cross-reserve, which eliminates this costly cross-shard coordination while providing the same
consistency and atomicity guarantee. Based on the ordering-free execute–validate (EV) architecture,
we implemented a blockchain prototype called NeuChain+, which further reduces the cross-shard
transaction processing overhead using the pipelined read sets transmission. Experimental results
show that NeuChain+ is scalable and outperforms state-of-the-art blockchain systems with 1.7–75.3×
throughput under the SmallBank workload.

Keywords: permissioned blockchain; sharding; scalability; deterministic concurrency control;
cross-shard transaction

1. Introduction

The applications of permissioned blockchain in scenarios like digital assets [1], supply
chains [2], government services [3], and Web 3.0 [4] are becoming increasingly diverse,
but the performance of existing blockchains fails to meet the demands of these high-
throughput applications [5–8]. For example, Hyperledger Fabric, a widely adopted permis-
sioned blockchain, can only achieve a throughput of around 3.5 kTPS [9]. In contrast, finan-
cial applications like Visa [10] require tens of kTPS to handle peak transaction volumes [11].
Permissioned blockchains typically employ consensus protocols to ensure consistent execu-
tion results across nodes. However, most consensus protocols (e.g., PBFT [12], Raft [13])
rely on a single leader node to order all client transactions, making it inherently sequential
and impossible to parallelize, limiting the overall throughput.

Existing works [14–19] address the single-node bottleneck by improving the scalability
of consensus protocols. GeoBFT [20], RCC [21], and ISS [22] run multiple consensus
instances concurrently to distribute the workload of the single leader node. Bidl [23] and
the research of Nathan et al. [24] parallelize ordering and transaction execution to hide the
ordering latency. NeuChain [25] uses deterministic transaction execution to escape strict
total ordering, thereby eliminating the need for explicit transaction ordering consensus.
By allowing multiple nodes to independently receive requests, the single-node ordering
bottleneck is eliminated. Moreover, NeuChain benefits from deterministic concurrency
control, enabling asynchronous block generation. However, all transactions must still
achieve consensus and be globally replicated before execution can be completed, each node
having to execute all transactions.
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As we can see, the above approaches, including NeuChain, do not fundamentally
address the scalability issue, as transactions must be globally replicated to all nodes. Firstly,
since the consensus protocols ensure that each correct node receives a transaction copy to
maintain its local ledger, the total network traffic consumption increases as the number
of nodes increases. Secondly, full transaction execution and ledger update are performed
on each node exclusively, meaning that the throughput does not scale with increase in
the total number of nodes. As shown in Figure 1a, we experimented with NeuChain to
show the scalability issue (detailed setup in Section 7). When scaling the number of nodes
from 4 to 16, the throughput and latency remain unchanged. Thirdly, having each node
maintain the complete blockchain ledger creates significant storage overhead. As shown in
Figure 1b, the storage consumption of a node in NeuChain reaches 1561 MB after running
for only 60 s.
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Figure 1. NeuChain’s scalability and storage pressure experimental results. (a) NeuChain LAN
scalability experimental results. (b) Single-node storage size during NeuChain running for 60 s.

Blockchain sharding [26] is proposed to solve the above scalability issues, where
the ledger is divided into multiple disjoint shards, each maintained by a set of nodes.
By distributing workloads across multiple shards, system performance scales linearly with
the number of shards. However, to execute cross-shard transactions (i.e., transactions
operating on multiple shards), sharding blockchains must employ a cross-shard commit
protocol to ensure transaction atomicity, significantly impacting system performance.

A widely adopted [27–31] commit protocol is the two-phase commit [32] (2PC), which
requires three rounds of cross-shard communication under the critical path, causing high
latency. Moreover, when committing a cross-shard transaction with 2PC, the data record
accessed by the transaction cannot be modified by others (e.g., via two-phase locking [33]),
further reducing the throughput. Although Monoxide [34] eliminates this cross-shard
coordination by using eventual atomicity, it restricts the types of transactions that can
be processed, and the latency of cross-shard transactions is also higher than the 2PC ap-
proach (detailed in Section 2.1). We propose a deterministic sharding protocol, cross-reserve
, to address the above scalability issues by exploiting the characteristics of the ordering-free
execute–validate (EV) blockchain architecture. We also implement a blockchain prototype
called NeuChain+, which leverages deterministic transaction execution to process cross-
shard transactions. Since the execution result is deterministic after batching transactions
into a block, there is no need to use a commit protocol such as 2PC to determine whether
to commit or abort, eliminating the need for multiple rounds of cross-shard coordina-
tion. Moreover, remote reads accessing other shards cannot be processed locally when
executing cross-shard transactions because each shard only has a partial of the ledger.
Although NeuChain+ eliminates the costly cross-shard coordination, the execution of cross-
shard transactions cannot start until the cross-shard read sets transmission is complete,
causing synchronization waits. To this end, NeuChain+ pipelines the read sets transmis-
sion. Transaction execution and read sets transmission can proceed concurrently, further
reducing latency.

The main contributions of this paper are as follows:
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• We propose a cross-shard transaction processing protocol, cross-reserve, which utilizes
deterministic concurrency control to avoid costly commit protocols.

• We pipeline and parallelize the read sets transmission during transaction execution to
further reduce cross-shard commit latency.

• We propose the sharding—EV architecture, which enhances horizontal scalability
while achieving high throughput by eliminating explicit ordering.

• We implement a sharding blockchain prototype, NeuChain+, based on our team’s
previous work, NeuChain. Experimental results show that the throughput of NeuChain+
is approximately 2.9× that of NeuChain and outperforms other state-of-the-art blockchain
systems with 1.7–75.3× throughput under the SmallBank workload.

2. Background and Motivation

In the workflow of blockchain transaction processing, three indispensable phases exist:
the ordering phase, the execution phase, and the validation phase. The ordering phase
achieves consensus on both intrablock and interblock transaction orders. The interblock
order determines which transactions from the transaction pool are included in a specific
block, while the intrablock order dictates the sequence in which transactions are executed
in this block. The execution phase is responsible for executing transactions and gener-
ating read–write sets. The validation phase verifies the validity of blocks to update the
local ledger.

Based on the arrangement of these phases, existing blockchain systems can be cat-
egorized into four architectures: order–execute–validate (OEV), execute–order–validate
(EOV), order–execute–parallel–validate (OEPV), and execute–validate (EV). The following
paragraphs provide an introduction and discussion of these architectures.

2.1. OEV Architecture

As shown in Figure 2a, most blockchain systems [26–30,34–39] adopt the OEV archi-
tecture, which operates in three steps:

1. After receiving transactions from clients, the consensus leader batches these transac-
tions into a block and determines the execution order of these transactions so that
each node can obtain the same results. The consensus leader also pre-executes these
transactions to ensure their validity.

2. The block is then replicated to other follower nodes. Since block execution is per-
formed locally, a node must execute the block based on the given order to update its
local ledger. Otherwise, if two nodes execute these transactions in a different order,
their local ledger copies will be inconsistent.

3. Meanwhile, the node validates the block and its contained transactions to prevent
faulty behaviors by the leader node.
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Figure 2. (a) Order–execute–validate architecture; (b) execute–order–validate architecture; (c) order–
execute–parallel–validate architecture; (d) execute–validate architecture; (e) sharding–execute–
validate architecture.
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Transaction execution in the OEV architecture is performed serially to ensure deter-
ministic results, which could be a performance bottleneck. Blockchains represented by
Elastico [26] adopt the sharding technique to solve this bottleneck, allowing parallel transac-
tion execution among shards. However, Elastico does not support cross-shard transactions
and state sharding, meaning every node maintains a full copy of the ledger. Other OEV
sharding blockchains [27–30,34,37–39] adopt state sharding to solve the above issues. They
divide the ledger into shards and use commit protocols represented by 2PC to ensure the
atomicity of cross-shard transactions, as shown in Table 1.

Table 1. Comprehensive comparison of blockchain systems.

System Architecture Consensus Shard
Fault

Total
Fault Ledger Model State

Sharding
Cross-Shard
Transaction Throughput Latency

Elastico OEV PBFT 33% 25% UTXO False - 48 kTPS 800 s
OmniLedger OEV ByzCoinX 33% 25% UTXO True 2PC >100 kTPS 1.38 s
Rapidchain OEV 50%BFT 50% 33% UTXO True 2PC 7.3 kTPS 8 s

Chainspace OEV MOD-
SmaRt 33% 25% Object True 2PC 350 TPS 0.1 s

Monoxide OEV Chu-ko-nu 33% 50% Account/balance True Eventual
atomicity 11.7 kTPS 15 s

ByShard OEV PBFT 33% 33% UTXO True 2PC 20 kTPS 1 s

Meepo OEV PoA [40] 33% 25% Account/balance True cross-epoc and
cross-call 124.6 kTPS 0.52 s

BrokerChain OEV PBFT 33% 33% Account/balance True Broker 3 kTPS 14.9 s

PROPHET OEV PBFT 33% 33% Account/balance True Reconnaissance
coalition 1.2 kTPS 2.5 s

AHL [31] EOV AHL 33% 33% General
workload True 2PC 3 kTPS 18 s

NeuChain EV PBFT Raft - 33% Account/balance - - 85.7 kTPS 0.14 s
NeuChain+ EV PBFT Raft 33% 33% Account/balance True Cross-reserve 247 kTPS 0.19 s

2PC is widely used as the cross-shard commit protocol, and several variants of 2PC
exist [30]. For example, in shard-driven 2PC, cross-shard transaction T involves shard S1
and S2. Since T can only be committed if all shards commit T, when S1 can commit T, it
sends the 2PC request to S2. When receiving the request, S2 decides whether T can be
committed and replies its vote back to S1. S1 commits T locally only when all shards can
commit T. Otherwise, it aborts T. The decision is also notified to the other shards S2.

However, this process requires three rounds of communication between shards, and be-
fore starting a round, the initializing shard must reach a consensus on its decision, resulting
in significant communication overhead. Meanwhile, as the commit decision cannot be
changed after achieving consensus, the corresponding data records cannot be modified
by another transaction during 2PC [33], significantly limiting the performance of transac-
tion execution.

For other protocols, Monoxide [34] proposes the eventual atomicity to handle cross-
shard transactions. When transferring money between accounts, the transaction is guar-
anteed to be committed after the source account is debited, as adding money to the target
account must not violate consistency. Therefore, 2PC is not needed for such types of trans-
actions. However, since faulty shard leaders may refuse to accept these “relay” transactions,
cross-shard transactions may require several blocks to be committed, resulting in increased
latency. To reduce this unlimited latency, BrokerChain [38] proposes a duration-limited
eventual atomicity to ensure that the execution of cross-shard transactions is completed in
a known upper bound. However, it is still only applicable to specific types of transactions.

To handle complex smart contract transactions, Meepo [37] proposes cross-epoch and
cross-call to execute cross-shard transactions. Regardless of how many shards the cross-
shard transaction involves, it can be committed in a single round of consensus. However, its
coordination rounds depend on how many shards are involved in the transaction. When
executing transactions accessing multiple shards, the execution time of each round increases.
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Moreover, if transactions abort during contract execution, the entire block must be rolled
back and re-executed, incurring significant overhead.

PROPHET [39] proposes a deterministic ordering algorithm for Byzantine fault-
tolerant consensus to handle cross-shard transactions, which is close to our work. It
deterministically assigns a global order to transactions based on pre-execution results,
thereby eliminating transaction conflicts. However, it requires a costly pre-execution phase
that still requires multiple rounds of coordination between shards to generate transaction
read–write sets. Furthermore, it still maintains an explicit ordering phase.

2.2. EOV Architecture

The EOV architecture [9] is shown in Figure 2b. By using the optimistic concurrency
control [41] (OCC), transaction execution is performed concurrently, significantly improving
the throughput. The workflow of EOV is described as follows:

1. A transaction is executed based on a snapshot of the ledger and obtains a read–write
set. Since the ledger is not modified during the execution phase, transactions can be
executed concurrently and distributed evenly to all nodes (i.e., different nodes execute
disjoint transaction sets).

2. The executed transactions are batched into blocks to obtain a global consistent order.
3. Similar to the OEV architecture, transactions are validated in serial order to ensure

consistent results. If records read by a transaction have been modified (stale read),
the transaction must abort. Otherwise, its write set is applied to the ledger.

Although the EOV architecture addresses the serial execution issue of the OEV archi-
tecture through OCC and improves the parallelism, most blockchains based on the EOV
architecture use PBFT consensus, which has been proven [42] to be insufficient in scalability
due to communication overhead. Thus, sharding technology has also been introduced into
EOV architecture, such as AHL. However, the transaction execution results are still nonde-
terministic, and transactions have to be validated in serial order. Therefore, it also uses 2PC
to process cross-shard transactions through costly multiple rounds of coordination.

2.3. OEPV Architecture

As illustrated in Figure 2c, the OEPV architecture [24] utilizes serializable snapshot
isolation [43] (SSI) to parallelize the ordering and execution phases of the EOV architecture
without affecting the execution results. Transactions are ordered while executing on the
ledger snapshot. After that, they are verified and committed based on the ordering results.

Although OEPV improves the parallelism of the blockchain system, it does not change
the fact that the ordering phase still exists. Nodes must wait for the ordering server to
provide the transaction intrablock order before committing or aborting transactions.

2.4. EV Architecture

In Figure 2d, the ordering-free EV architecture differs from the architectures above.
It eliminates the explicit ordering phase through implicit deterministic ordering, thus
overcoming the bottleneck of centralized ordering. Its workflow is summarized as follows:

1. All nodes independently receive user transaction requests and then exchange trans-
actions through multiple parallel consensus instances. When a node collects the
complete transaction set from all other nodes, it executes these transactions according
to the deterministic rule and generates blocks.

2. After completion of execution, the execution results are returned to the user, and sig-
natures verifying the execution results are exchanged among nodes.

Instead of ordering transactions with a single consensus leader, all nodes in the EV
architecture can propose blocks concurrently, eliminating the single-node performance
bottleneck. Although transactions from different nodes arrive out of order, by using
the deterministic concurrency control, executing these transactions out of order can still
obtain the same result without internode coordination, eliminating the centralized ordering
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bottleneck. However, as discussed in Section 1, the EV architecture faces scalability issues
in network, storage, and transaction execution: (1) Transactions must be replicated to all
nodes via consensus. (2) Each node must execute a complete transaction set. (3) The storage
overhead of maintaining a complete ledger is also significant.

Insight. The EV architecture employs deterministic concurrency control, which can deter-
mine the order of transactions without additional coordination. Therefore, when employing
blockchain sharding to the EV architecture, the order of cross-shard transactions can be
determined in advance, and no additional coordination is required during transaction
execution, eliminating the costly commit protocols. Therefore, we propose the sharding–EV
architecture based on the EV architecture, as shown in Figure 2e.

3. NeuChain+ Design
3.1. System Model

NeuChain+ adopts the account/balance model. Accounts are evenly divided into
multiple shards. Nodes within each shard maintain a partial of the ledger. They also store
all intrashard and cross-shard transactions that access records belonging to their shard.
Like other sharding permissioned blockchains [30,31,37,38], the sharding strategy and
organizational structure are known to all nodes.

Network model. NeuChain+ assumes the partial synchrony model [44]. The network is
mostly synchronized, but unstable and asynchronous scenarios can also happen. When
the network is unstable, an unknown global stabilization time (GST) exists, during which
the system operates asynchronously. Once the GST is reached, the system transitions to a
synchronous state. At this time, messages are guaranteed to arrive within ∆.

Threat model. NeuChain+ adopts the Byzantine fault-tolerance (BFT) model, where faulty
nodes can behave arbitrarily. We denote the number of faulty nodes in a shard as f
and the minimum number of nodes in this shard as 3 f + 1. NeuChain+ adopts a public-
key infrastructure (PKI), where each node has a public–private key pair for signing and
verifying messages.

3.2. System Overview

As shown in Figure 3, NeuChain+ is design based on the sharding–EV architecture.
There are three types of components in NeuChain+: client proxy, epoch server, and block
server. Client proxy is responsible for batching transactions into blocks and block replica-
tion. Epoch server provides a global consistent batch timeout to prevent clock skewing
among client proxies. Block server executes blocks deterministically and updates its local
ledger. These components are discussed in detail below.
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Client proxy. The client proxy receives transactions involving its shard from clients.
To determine which block the transactions belong to, it batches them and requests an
epoch number from the epoch server. Each transaction is then assigned a globally unique
transaction ID tid for deterministic intrablock ordering. The client proxy then uses atomic
broadcast (e.g., PBFT or Raft) to exchange its transactions with other intrashard client
proxies, ensuring the integrity and consistency of transactions. Notably, the client proxy
acts as both the leader of the broadcast instance initiated by itself and as the follower of
other broadcast instances initiated by other client proxies within the same shard.

Epoch server. The epoch server generates monotonically increasing epoch numbers and
assigns them to transaction batches generated by client proxies. The epoch server can
be a trusted single node or a fault-tolerant cluster containing multiple epoch servers.
Notably, only the increment of the epoch number requires consensus, and the epoch
number assignment can be performed concurrently with this consensus to reduce latency.

Block server. The block server only stores transactions that access records on its local
shard, forming a subchain. A block server corresponds with a client proxy that accepts
transactions. It uses deterministic concurrency control to execute transactions concurrently
to generate read–write sets for validation. Each block server maintains a shared read–write
reserve table, which only reserves transactions that can be committed in the current epoch,
ensuring a serializable isolation level. After execution, the cross-shard transactions use
cross-reserve (detail in Section 5) to guarantee atomicity.

3.3. System Workflow

The workflow of NeuChain+ consists of three phases, the preparation phase, the exe-
cution phase, and the validation phase, as shown in Figure 4.
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Figure 4. Transaction processing workflow of NeuChain+.

3.3.1. Preparation Phase

Since transactions may involve multiple shards, clients send transactions to the speci-
fied client proxies based on records of the transactions accessed. For example, if transaction
T modified records in both shard S1 and shard S2, T is sent to the two shards for execution.
Notably, although NeuChain+, like NeuChain, benefits from deterministic execution with-
out the need to predict the read–write set, to accurately send cross-shard transactions to the
involved shards, we assume that the shards involved in a transaction are known. Clients
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send transactions to client proxies within a shard in a round-robin manner to achieve
load balancing.

When enough transactions are received or timeout is triggered, a client proxy batches
its received transactions and requests an epoch number from the epoch server. To ensure the
validity of the epoch number assignment, the epoch server signs the epoch number and the
hash of the transaction batch before returning to the client proxy. Multiple batches with the
same epoch number can exist. Therefore, when receiving an epoch number greater than the
previous one, a client proxy can determine that the current epoch is finished. Subsequently,
it starts exchanging its generated batches with other intrashard client proxies. When
receiving all batches within the same epoch from all intrashard client proxies, the client
proxy deterministically calculates the IDs of transactions in these batches and forwards the
batches to the specified block server for execution. Notably, client proxies only replicate
transactions within their respective shards, without any further coordination.

3.3.2. Execution Phase

As shown in the red-marked part in Figure 4, this phase is the key part of sharding
based on EV architecture. When receiving the complete transaction set of the current epoch
from the specified client proxy, the block server executes these transactions deterministically
according to their transaction IDs. To execute cross-shard transactions accessing records
from other shards, the block server generates their read–write sets through read sets
transmission (detailed in Section 4). We also adopt deterministic rules to handle cross-
shard transaction conflicts. In detail, after executing and resolving conflicts of intrashard
transactions, cross-shard transactions are committed by using cross-reserve (detailed in
Section 5) to ensure atomicity. After executing and validating all transactions, the execution
results are immediately returned to clients, and the local ledger is also updated with the
written sets of the committed transactions.

3.3.3. Validation Phase

To ensure the authenticity of the execution results, block servers within a shard sign
their blocks (containing the transaction requests and the execution results) and exchange
their signatures to prevent Byzantine nodes from generating faulty blocks. Since the
transaction input has already achieved consensus, the output of execution results is valid
when it has f + 1 signatures.

4. Deterministic Transaction Execution
4.1. Read Sets Transmission

For cross-shard transactions, some of them cannot be executed directly locally but re-
quire the read set from remote shards. We denote such transactions as transactions with
remote read–write dependencies. This requires the read sets transmission between shards.
For state sharding, this communication overhead is inevitable. A straightforward idea is
to send a request to the required shard when such a transaction is executed, requesting
the required read set. For example, there is transaction T that updates a record in shard
S1, and the update depends on a read in shard S2. When the block server in S1 executes
T, it will send a read request to S2. After receiving the request, S2 will return directly if
T has been executed. Otherwise, it will wait for T to be executed and generate a read set
to return.

In NeuChain+, when the block server executes a transaction with remote read–write
dependencies, it caches its tid and the corresponding remote shard, waits for a batch of
transactions to process, and then sends a request to each block server in the remote shard.
After receiving the request, if all transactions in the batch complete execution, it will directly
package all read sets into a batch and return it. If executions have not been completed, it
needs to block and wait until the executions are completed. After receiving the read set, it
wakes up the pending transaction to complete execution.
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4.2. Pipeline Optimization

Firstly, requesting the read set from the remote shard may incur a complete RTT
(round-trip time). Secondly, synchronous blocking is required to wait for the receipt of
f + 1 read sets from the corresponding shard to ensure the validity of the read sets. At this
synchronization point, it is necessary to wait for communication between nodes, thereby
introducing delays in the overall progress. Therefore, NeuChain+ uses pipeline technology
to overlap communication with execution, reducing the communication latency of 0.5 RTT
while avoiding blocking waiting.

Algorithm 1 describes the optimized read sets transmission process. During the read
sets transmission process, we define the shard that generates a read set as the reading shard
and the shard that requires a read set to generate a write set as the writing shard. When
executing cross-shard transactions with remote read–write dependencies, the reading shard
directly sends the read set to the writing shard (Lines 1–3). Note that epoch n must be
attached to the read set when sending to ensure that both the reading and writing shards
are synchronized. In the writing shard, a hash table RR (Line 5) is initialized to cache
the read sets sent by other shards in the structure of <account, balance>. After receiving
f + 1 of the same read set, the writing shard stores it into RR and wakes up the pending
transaction (Lines 6–8). When the writing shard executes the corresponding transaction, it
can directly read from the hash table according to the required account (Lines 9–11). When
the corresponding account in RR is empty, it proves that no verifiable read set has been
received yet, and the transaction will be pending and other transactions will continue to be
processed (Lines 12–13).

Algorithm 1 Pipelining read sets transmission.

Input: The reading shard state database snapshot DB[n − 1], the cross-shard transaction T
with remote read-write dependencies of epoch n

Output: The read-write set {T.RS, T.WS}
1: function EXECUTE(T) ▷ In reading shard
2: {T.RS, T.WS} ← execute operation of T base on DB[n − 1];
3: Send T.RS with epoch n to all Block Servers in writing shard;
4: function READSETRECEIVER(T) ▷ In writing shard
5: Initialize reading result RR;
6: if receive the same T.RS over f + 1 then
7: RR[T.RS.key] = T.RS.value;
8: T.notify();
9: function EXECUTE(T) ▷ In writing shard

10: if RR[accountreq] != NULL then ▷ if T.RS received
11: T.WS←execute operation of T base on DB[n − 1] and RR[accountreq];
12: else
13: T.wait();

5. Cross-Shard Transaction Processing Protocol

This section introduces the cross-shard transaction processing cross-reserve of NeuChain+.
It ensures the atomicity of cross-shard transactions. Unlike 2PC, which requires three
rounds of coordination, it only takes one round of broadcast to achieve consensus. Fur-
thermore, it also ensures that cross-shard transactions can be committed within a single
epoch, distinct from the eventual atomicity. Section 5.1 uses the merging reserve table
to enable each block server to obtain a complete reserve table containing accounts in-
volved in cross-shard transactions. Section 5.2 performs deterministic concurrency control
on transactions.

5.1. Merging Reserve Table

The reserve table is a crucial data structure for deterministic concurrency control,
implemented using a hash table. After executing a transaction, the reserve table is updated
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in the form of <account, tid>. When multiple transactions access the same account, the re-
serve table will be updated according to the deterministic rule. This deterministic rule is
expressed in detail below.

As illustrated in Algorithm 2, whenever the new epoch n enters the execution phase,
the read–write reserve table is first initialized (Lines 1–2) and the cross-shard read–write
lists RL and WL implemented using dynamic arrays are initialized (Lines 3–4), used to
cache the account involved in the cross-shard transactions. Subsequently, multiple parallel
worker threads reserve the transactions executed in Section 4. The worker analyzes the
transaction read–write sets to reserve, and the transaction with the minimum tid in the
reserve table is reserved according to deterministic rules (Lines 6–7, 10–11). Note that
the accounts involved in cross-shard transactions need to be stored in the cross-shard
read–write lists for cross-reserve (Lines 8–9, 12–13).

Algorithm 2 Merging reserve table based on deterministic execution.

Input: The read-write set {T.RS, T.WS}
Output: A complete reserve table containing accounts involved in cross-shard transactions

1: Initialize read reserve table RT;
2: Initialize write reserve table WT;
3: Initialize cross read list RL;
4: Initialize cross write list WL;
5: function RESERVE(T) ▷ After T completes execution
6: for w ∈ T.WS do
7: WT[w.key] = min(WT[w.key], T.tid);
8: if T is cross-shard transaction then
9: WL.insert(w.key);

10: for r ∈ T.RS do
11: RT[r.key] = min(RT[r.key], T.tid);
12: if T is cross-shard transaction then
13: RL.insert(r.key);
14: function MERGINGSENDER( ) ▷ After completing all intra-shard reservations
15: for key ∈ RL do
16: batch.RT.insert(<key, RT[key]>);
17: for key ∈WL do
18: batch.WT.insert(<key, WT[key]>);
19: Broadcast batch to all other shard;
20: function MERGINGRECEIVER( )
21: if receive the same batch of a shard over f + 1 then
22: for r ∈ batch.RT do
23: RT[r.key] = r.value;
24: for w ∈ batch.WT do
25: WT[w.key] = w.value;

Although the execution results of cross-shard transactions are deterministic from
a global perspective, from the perspective of a block server, it cannot be determined
whether the cross-shard transactions can be reserved in other shards. We enable the
block server to hold a complete reserve table containing accounts involved in cross-shard
transactions by merging reserve tables. This allows block servers among different shards to
deterministically commit or abort cross-shard transactions through concurrency control
(detailed in Section 5.2). We describe the merging reserve table in detail below.

After completion of the execution of transactions in the current epoch, package the
rows in the reserve table corresponding to the accounts in a batch and broadcast it to all
other shards (Lines 14–19). After receiving f + 1 of the same batches from other shards,
the accounts involved in cross-shard transactions from remote shards are cached in the
local reserve table (Lines 20–25). Since the accounts among shards do not overlap, the keys
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corresponding to the accounts involved in transactions from other shards in the reserve
table of this shard must be empty, so there is no need to judge whether to reserve them
based on deterministic rules.

It is not difficult to find that there is cross-shard communication during merging
reserve tables, but this is different from the coordination of 2PC. 2PC needs to make
decisions through coordination between shards, and decision making means the need for
expensive intrashard consensus. Whether cross-shard transactions in NeuChain+ can be
committed is deterministic without decision making. Therefore, it only needs a simple
exchange of results. Even from the communication overhead perspective, 2PC’s three
coordinations require 1.5 RTT, while ours with only one broadcast requires 0.5 RTT.

5.2. Transaction Conflict Detection

NeuChain+ transactions are executed based on serializable snapshot isolation [43]
(SSI), allowing multithreaded concurrent execution within each block server. To ensure
the serializable isolation level, it is necessary to perform concurrency control for potential
transaction conflicts. After the above processing, each block server holds a complete reserve
table containing accounts involved in cross-shard transactions. NeuChain+ performs
conflict detection based on the reserve table and commits or aborts transactions based on
deterministic concurrency control rules.

As shown in Table 2, according to the different serializable orders of transaction
execution in the same epoch, the potential conflicts are categorized into three types: write-
after-write (WAW) dependency, read-after-write (RAW) dependency, and write-after-read
(WAR) dependency. There are two transactions T1 and T2, which are ordered by tid such
that T1 precedes T2 in a serializable order. As described in Table 2, WAW and RAW may
cause errors, since it is necessary to abort a transaction to remove the dependency.

Table 2. Transaction conflict type analysis.

Type Description Error Case

WAW Transactions T1 and T2 simultaneously write to account. Concurrent writes by T1 and T2 lead to an
indeterminate final result.

RAW T1 writes to account, followed by T2 reading from
account.

Due to snapshot-based reading, T2 reads
outdated data.

WAR T1 reads from account, followed by T2 writing to account. None.

As illustrated in Algorithm 3, based on the reserve table, NeuChain+ detects conflicts
between transactions and deterministically commits or aborts transactions through con-
currency control. If the write operation of transaction T involves an account that has been
overwritten by a transaction with a smaller tid (WAW dependency), then transaction T
is aborted (Lines 3–4). If the read operation of transaction T involves an account that has
been modified by a transaction with a smaller tid (RAW dependency), then T also needs to
be aborted (Lines 6–7). All other transactions (WAR dependency and no dependency) are
committed (Line 8).

However, for the transactions with RAW dependency but no simultaneous WAR
dependency, it can be ensured that there are no cyclic dependencies among transactions.
Therefore, such transactions can be committed by reordering [45] transactions. For example,
there are three transactions T1−3 (the sequence number is the serializable execution order)
and accounts A, B, and C. T1 reads A first and then writes B, T2 reads B first and then
writes C, and T3 reads B first and then reads C. After detecting conflict (Algorithm 3),
T2 and T3 have a RAW dependency on T1, and T3 also has a RAW dependency on T2.
These three transactions are converted into WAR dependencies by reordering, and all are
committed. Another situation is that T1 reads A first and then writes B, T2 writes A first
and then reads C, and T3 reads B first and then writes C. After detecting conflict, T3 has
RAW dependence on T1 and WAR dependence on T2, and T2 has WAR dependence on T1.
In this case, if we reorder the transactions to convert T3’s RAW dependence on T1 into WAR
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dependence, there are also WAR dependencies between T3 on T2 and T2 on T1, forming
a circular dependency. If executed in the order of T3, T2, and T1 according to reordering,
there will be RAW dependencies of T2 on T3 and T1 on T2. Therefore, this situation cannot
be addressed by reordering, and T3 needs to be deterministically aborted to commit T1
and T2.

Algorithm 3 Detect conflict.

Input: A complete reserve table containing accounts involved in cross-shard transactions,
A set of transactions TS of epoch n

Output: The commit set and abort set of transactions TS of epoch n
1: for T ∈ TS do
2: for w ∈ T.WS do
3: if WT [w.key] < T.tid then
4: Abort T and continue;
5: for r ∈ T.RS do
6: if WT [r.key] < T.tid then
7: Abort T and continue;
8: Commit T;

An example of the transaction of account amalgamating. It is convenient for readers
to better understand the entire processing of cross-shard transactions. This is a detailed
description of the transaction of account amalgamating as an example. In this example,
there are two shards: Shard S0 containing accounts A, B, and C, and Shard S1 containing ac-
counts D and E. As depicted in Figure 5, the transaction set to be sent by the client includes
the transaction amalgamate(C, D) and other intrashard transactions. Amalgamate(C, D) is
aimed at merging accounts C and D. It comprises four operations, referred to subsequently
as Op1−4, which are to obtain the balance of C, obtain the balance of D, update the balance
of C to 0, and update the balance of D to the sum of the original balances of C and D. The
client divides the complete transaction set into two subtransaction sets and sends them to
S0 and Shard S1, respectively. After the preparation phase, amalgamate(C, D) is assigned to
the Epoch N and is also assigned a unique tid. During the execution phase, the intrashard
block server executes this transaction deterministically. It is noteworthy that for cross-shard
transactions like amalgamate(C, D), operations are executed based solely on the accounts
contained within the local shard. Specifically, S0 executes only Op1 and Op3, while S1
executes only Op2 and Op4. However, since Op4 depends on the read set of Op1, it cannot
be executed directly, but if Op1 has completed execution and sent the read set to S1, then
it can directly read the prereceived read set from the local cache for executing (accord-
ing to Algorithm 1). Otherwise, it is temporarily pended and continues to execute other
transactions. After the deterministic execution is completed, cross-reserve first generates the
intrashard reserve table (according to Algorithm 2, Lines 5–13, the bold words in Figure 5).
In this example, S0 reserves the update of C from amalgamate(C, D), while S1 reserves
the update of D from the other transaction. After merging reserve tables of cross-reserve
(according to Algorithm 2, Lines 14–25), the reserve tables in both shards have the same
row of C and D (the gray words in Figure 5). S0 and S1 conduct conflict detection based on
the complete reserve table (according to Algorithm 3). According to the deterministic rule,
this transaction exists with a WAW dependency. As a result, amalgamate(C, D) ultimately
is aborted.
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Figure 5. A cross-shard transaction processing with remote read–write dependencies.

6. Analysis

In this section, in order to prove the efficiency of cross-shard transaction processing
in NeuChain+ at the theoretical level, we analyze the time complexity of Algorithms 1–3,
proposed above, in Section 6.1. In Section 6.2, we analyze the newly proposed cross-shard
processing protocol cross-reserve and prove its security and liveness.

6.1. Time Complexity Analysis of Algorithms

We define the total number of transactions in the system as n, the number of cross-
shard transactions as nc, the number of cross-shard transactions with remote read–write
dependencies as nd, and the total number of shards as s. On average, each transaction
involves m read–write operations, and on average, each transaction involves mr read
operations. In Algorithm 1, the block server needs to perform read sets transfer for all
cross-shard transactions with remote read–write dependencies in the system. Therefore, its
time complexity is O(mrnd/s). In Algorithm 2, the block server first needs to reserve the
read–write sets in the local shard after the transaction is executed. The time complexity of
this part is O(mn/s). The block server then performs the merging of reserve tables among
all shards and exchanges reserve tables corresponding to the read–write sets of cross-shard
transactions. The time complexity of this part is O(mnc/s). Therefore, the time complexity
of Algorithm 2 is O(mn/s). In Algorithm 3, the block server performs conflict detection on
the read–write set of the intrashard transactions and the cross-shard transactions involving
the local shard to determine whether the transaction can be committed. Therefore, the time
complexity of Algorithm 3 is O(mn/s).

6.2. Cross-Reserve Security and Liveness Analysis

We propose a new cross-shard processing protocol called cross-reserve, which could
bring potential security and liveness risks. If the block server is a malicious node, cross-
reserve may be subject to malicious influences. The malicious block server could potentially
carry out the following types of attacks through cross-reserve:

• Send the tampered read sets or reserve table to other shards to affect security;
• Perform no read sets transmission or merging of reserve tables to some or all block

servers to affect liveness;
• Do not follow deterministic rule reserve or malicious conflict detection to tamper with

the local blocks to affect security.

Whether in the process of reading sets transmission or merging reserve tables, we
require the receipt of at least f + 1 of the same read sets or reserve tables to consider
them valid. Since each shard contains a total of f malicious nodes, the use of signature
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verification ensures that malicious nodes cannot launch replay attacks by sending multiple
malicious messages. Therefore, the malicious nodes can send at most f malicious messages.
If f + 1 consistent messages are received, it can be inferred that at least one honest node
has sent the correct message, and if the other f messages are consistent with the correct
message, then it can be verified that all f + 1 messages are correct. Therefore, the first type
of malicious attack on security is prevented.

Additionally, there are a total number of 3 f + 1 nodes in each shard. After excluding f
malicious nodes and f crash nodes, a node can always receive the correct message from
f + 1 honest nodes. Therefore, the second type of attack on liveness can also be prevented.

Intrashard block servers exchange block signatures during the validation phase to
ensure the verifiability of the execution results. This means that only blocks with f + 1
signatures are considered valid after verification. Therefore, the blocks tampered with by
the last type of attack cannot be validated.

7. Evaluation

Implementation. We implemented a NeuChain+ prototype based on NeuChain [46] with
C++14. We leveraged the braft [47] library for intrashard consensus. We employed the
RSA digital signature and SHA256 to ensure data integrity and authenticity of messages.
We employed key-value database LevelDB [48] as the state database and the file system
to store blocks. The state database maintains the ledger view of the current epoch of the
shard subchain, and transaction execution is based on this view snapshot. We employed
ZeroMQ [49] and protocol buffers [50] to implement message transport between physical
nodes. We used Blockbench [42] as the test tool. We also leveraged pipelining and batching
optimizations [25] to enhance performance.

Competitors. We compared NeuChain+ to state-of-the-art systems, including NeuChain [25],
Fabric [9], Fabric# [51], FastFabric [52], ResilientDB [20], and a BFT-distributed database,
Basil [53]. Moreover, to show the efficiency of our sharding strategy, we also compared
NeuChain+ with a sharding permissioned blockchain, Meepo [37].

Setup. We deployed 12 nodes on Aliyun [54] in the same data center. Each node is an
ecs.hfc6.4xlarge instance with an Intel Xeon Platinum 8269CY 3.1GHz 16-core processor,
32GB RAM, and 10 Gbps bandwidth. In Fabric, Fabric#, and FastFabric, four nodes are
orderers, and eight nodes are peers. Basil requires running on 5 f + 1 nodes; hence, we
deployed Basil on 12 nodes. For ResilientDB, we deployed it on eight nodes. For Meepo,
we deployed it on eight nodes. Due to the trustworthiness within the consortium member,
each shard can deploy on a single node. In NeuChain+ and NeuChain, each client proxy
corresponds to one block server and runs on the same node. We deployed four nodes for
epoch servers and eight for client proxies and block servers. By default, NeuChain+ runs on
two shards, and each shard is deployed on four nodes of client proxies and block servers.

Workload. We employed two of the most popular workloads: SmallBank [43] and YCSB [55].
The SmallBank workload is a benchmark for online transaction processing (OLTP) work-
loads. It consists of three tables (account, checking, and saving). It simulates various
fundamental transactions in banking applications, including six types of transactions: trans-
fer, query, account amalgamating, check writing, saving update, and checking update. It
is configured with 100,000 accounts, and the transactions follow a uniform distribution.
The YCSB workload uses a table containing 1,000,000 records, with each record consist-
ing of 10 attributes, each 100 bytes in size. Read operations access entire records, while
write operations access only one attribute of a single record at a time. The experiments
used YCSB-A (50% read operations, 50% write operations), YCSB-B (95% read operations,
5% write operations), and YCSB-C (100% read operations). All YCSB transactions fol-
lowed a Zipf distribution with a skew factor of 0.99. The cross-shard transaction rate
depends on the number of shards, which was 16.6%, 22.2%, and 25% under two, three, and
four shards, respectively.
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7.1. Overall Performance

In order to evaluate the overall improvement of system performance by sharding,
NeuChain+ compares the peak throughput, corresponding abort rate, and latency with its
competitors under the workloads of SmallBank, YCSB-A, YCSB-B, and YCSB-C. The exper-
imental results are the average of three experiments.

As shown in Figure 6, benefiting from the scalability of sharding and the efficient cross-
shard transaction processing protocol cross-reserve, the throughput of NeuChain+ reached
146.65 kTPS under SmallBank workload, which is approximately 1.7× that of NeuChain,
far exceeding other comparison systems. In state-sharding blockchains [27–31,34,37–39],
there are two unavoidable sources of communication overhead resulting in higher latency
compared to non-sharding blockchain systems. One is that cross-shard transactions need
to obtain the required read sets from remote shards, and the other is that cross-shard
transactions require intershard coordination to make decisions on whether to commit.
However, NeuChain+ eliminates intershard coordination (Section 5) and optimizes read set
transmission (Section 4.2), achieving a latency of approximately 0.18 s under the SmallBank
workload, slightly higher than NeuChain but still at the same level as the most state-of-the-
art nonsharding blockchains and much lower than the sharding blockchain Meepo. The
abort rate of NeuChain+ is higher than that of other blockchains, with approximately 8% of
transactions being aborted under the SmallBank workload, due to two reasons. First, in the
SmallBank workload, over 80% of operations are write operations. Under deterministic
concurrency control, some transactions are deterministically aborted, which will inevitably
increase the abort rate while providing excellent throughput. Second, after sharding, the to-
tal amount of accounts is divided evenly among shards, which increases the probability
of transaction conflicts. Notably, Basil is essentially a BFT-distributed database. Since it
does not need to generate blocks, transactions can be returned immediately after execution,
unlike blockchain systems that must wait for the entire block’s transactions to be executed
before returning. As a result, its latency is only 0.007 s under the SmallBank workload.
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Figure 6. Throughput and latency performance comparison. (a) SmallBank workload; (b) YCSB-A
workload; (c) YCSB-B workload; (d) YCSB-C workload.
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Under the YCSB-A workload, although the number of records is 10× that of SmallBank
and the proportion of write operations is lower than SmallBank, the use of Zipf distribution
creates hot records. As a result, the system’s abort rate increases. Under the YCSB-B
workload, the abort rate significantly decreases due to the mere 5% write proportion of
operations. Additionally, because read operations are considerably lighter than write
operations, the throughput of each system increases while the latency decreases. Under the
YCSB-C workload, since all transactions are read-only, no transaction will be aborted due to
conflicts. In NeuChain+, the absence of transactions with remote read–write dependencies
eliminates the need for the read set transmission, resulting in significantly reduced latency
compared to other workloads.

7.2. Varying Transaction Arrival Rates

To evaluate the peak performance improvement brought by sharding to NeuChain
under the same number of nodes, we observe changes in the throughput and latency by
varying the transaction arrival rate under the SmallBank workload.

The experimental results are shown in Figure 7. With the increase in the transaction
arrival rate, the throughput of the two systems increases linearly. Due to the deterministic
parallel execution, the latency only increases slowly with the increase in the transaction
arrival rate before reaching the peak performance. NeuChain first reached its peak per-
formance at 87.35 kTPS, corresponding to a throughput of 85.7 kTPS. It can be observed
that as the transaction arrival rate continues to increase, transaction accumulation occurs
due to slow execution, resulting in a significant increase in latency, with throughput almost
plateauing. This is because after reaching the peak performance, a higher transaction arrival
rate will cause transactions that exceed the system’s processing capacity to accumulate in
the pending queue, significantly increasing the latency.
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Figure 7. Performance of NeuChain+ and NeuChain under a changing transaction arrival rate
(SmallBank). (a) Throughput performance when changing the transaction arrival rate. (b) Latency
performance when changing the transaction arrival rate.

NeuChain+ processes different transaction sets, respectively, through two shards,
theoretically improving transaction processing efficiency by 2× compared to NeuChain.
The actual peak performance appears at the transaction arrival rate of 160.1 kTPS, and the
corresponding throughput is 146.7 kTPS. Due to the overhead of cross-shard transaction pro-
cessing, the actual peak performance corresponds to approximately 1.8× that of NeuChain
at a transaction arrival rate. Before transaction accumulation, NeuChain+ exhibits a latency
improvement of approximately 0.04 s compared to NeuChain. We speculate that this is
caused by cross-shard transaction processing, which is evaluated and analyzed in detail
in Section 7.5.
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7.3. Varying Network Latency

In order to evaluate the performance of NeuChain+ in different network environments,
we manually changed the latency between nodes from 0.2 to 100 ms using traffic control
and recorded the peak performance under the SmallBank workload.

Figure 8 indicates that as the latency between nodes increases, the transaction latency
increases significantly. This is due to the growing time overhead of communication for
exchanging intrashard transaction batches, transmitting read sets, and merging reserve
tables between nodes. Concurrently, the throughput gradually decreases as the latency
between nodes increases. NeuChain+ employs pipeline technology to optimize these
communications, thereby reducing the impact on throughput.
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Figure 8. Performance of NeuChain+ under varying network latencies (SmallBank).

7.4. Scalability Comparison

To evaluate the scalability improvement of NeuChain+ using sharding compared
to NeuChain, the changes in throughput, abort rate, and latency were tested under the
SmallBank workload and configurations of 4, 8, 12, and 16 nodes, respectively. Additionally,
the sharding permissioned blockchain Meepo was included as another comparison. Note
that NeuChain+ was tested under environments with 1 to 4 shards, respectively, while
Meepo operated under environments with 4, 8, 12, and 16 shards.

The experimental results are shown in Figure 9. NeuChain+ achieved excellent scal-
ability, with a peak throughput of 247 kTPS. The throughput under two, three, and four
shards was approximately 1.7×, 2.35×, and 2.9× that of NeuChain, respectively. Bene-
fiting from cross-shard transaction processing based on deterministic execution, latency
remained at a relatively low level, with the highest latency of just 0.188s for the four-shard
setup. However, with the increase in the number of shards, the proportion of cross-shard
transactions also increased, coupled with fewer accounts per shard (50,000, 33,000, and
25,000 accounts under two, three, and four shards, respectively), exacerbating transaction
conflicts. Compared to NeuChain, the abort rate increased by 11, 25, and 56 kTPS under
environments with two, three, and four shards, respectively. Meepo benefits from the
trustworthiness within the consortium member and the complete ledger held by each
consortium member. Therefore, Meepo maintained remarkable efficiency in processing
cross-shard transactions, with a throughput of 65 kTPS under 16 shards. Additionally,
Meepo employs a mechanism to redo all failed transactions, resulting in the 0 abort rate,
but it also brings higher transaction latency.

In order to evaluate the improvement of storage pressure, we fixed the transaction
arrival rate at the peak performance of NeuChain, 87.35 kTPS, and recorded the storage
space consumption of a single node during a 5 min runtime of the system under the
SmallBank workload. NeuChain+ runs on two, three, and four shards, respectively, and
each shard deploys on four nodes of client proxies and block servers.
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Figure 9. Performance comparison of scaling the number of nodes (SmallBank).

The experimental results, as illustrated in Figure 10, indicate that the baseline NeuChain
consumes 7.6 GB of storage space after running for 5 min. NeuChain+ performs excellently
in optimizing storage pressure. When running under two, three, and four shards for the
5 min, it only consumed 4.4 GB, 3.1 GB, and 2.4 GB of storage, respectively, which is
approximately 58%, 41.2%, and 31.4% of NeuChain. Since cross-shard transactions need to
be included in all involved shards, storage optimization is not entirely linear.
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Figure 10. Single-node storage space under different shards (SmallBank).

7.5. Cross-Shard Transaction Processing Overhead

In order to evaluate the overhead of cross-shard transaction processing based on the
deterministic execution designed in this paper, the time consumption of the transaction
execution phase was tested using the peak performance under different numbers of shards
(setup is the same as in Section 7.4).

The experimental results are shown in Figure 11. In the no-sharding situation, benefit-
ing from deterministic execution, honest nodes could achieve consensus without communi-
cation coordination, resulting in an execution phase overhead of only 39.6 ms. After the
introduction of sharding, the execution phase overhead increased by 43.9 ms, reaching
83.5 ms. This increase is attributed to the synchronization point that is difficult to optimize
at cross-reserve. It is necessary to ensure the receipt of f + 1 copies of cross-shard reserve
tables from all other shards before detecting conflicts for cross-shard transactions.
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Furthermore, we also evaluated the impact of pipelined read sets transmission opti-
mization on overhead. Under two, three, and four shards, the overhead was reduced by
4.8 ms, 5.8 ms, and 7.3 ms, respectively. Due to its optimization on generating read–write
sets during the execution of cross-shard transactions, the effectiveness of this optimization
was more obvious as the proportion of cross-shard transactions increased. Note that there
are no cross-shard transactions under no sharding, so the optimization had no effect.

Although cross-shard transaction processing brings unavoidable time overhead, the re-
sults of continuing to increase the number of shards indicate that the overhead of cross-shard
transaction processing based on deterministic execution is relatively fixed and almost does
not increase with the increase in the number of shards and the proportion of cross-shard
transactions. We believe that such an increase in time overhead is acceptable given the
advantages of high scalability brought by sharding.

Summary of results. Experimental results show that NeuChain+ addresses the scala-
bility issues of nonsharding and previous sharding blockchains. Under 16 nodes, the
throughput was 2.9× that of NeuChain, and the storage overhead was only 30.9% of
NeuChain. Compared to Meepo, NeuChain+ in the situation of storage sharding in each
node and nontrustworthiness among all nodes, achieved 2.8× higher throughput and 61%
lower latency. Compared with nonsharding blockchains under eight shards, NeuChain+
outperformed state-of-the-art blockchain systems with 1.7–75.3× throughput.

8. Conclusions

This paper proposes NeuChain+, a permissioned blockchain with the sharding–EV
architecture, leveraging sharding technology. The sharding–EV architecture addresses
the scalability deficiencies of the EV architecture, bringing significant performance im-
provements and horizontal scalability. An efficient cross-shard transaction processing
protocol called cross-reserve is proposed based on deterministic concurrency control; it elim-
inates multiple rounds of coordination used for decision making in traditional cross-shard
commit protocols, greatly reducing the overhead of cross-shard transactions processing.
Additionally, the overhead is further reduced through pipelined read sets transmission.

Experimental results demonstrate that the sharding–EV architecture is more promising
than other systems in comparison in addressing the performance issues of permissioned
blockchains in high-throughput application scenarios. The sharding–EV architecture fur-
ther improves the throughput through horizontal scalability based on the high throughput
of the EV architecture, which is more suitable for large-scale deployment to meet the de-
mands of high-throughput applications. Unlike previous sharding blockchain systems,
the cross-reserve proposed in this paper eliminates the costly multiround coordination over-
head, thereby avoiding the limitation that cross-shard commit protocols like 2PC impose
on system performance.
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