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Abstract: Visual SLAM technology is one of the important technologies for mobile robots. Existing
feature-based visual SLAM techniques suffer from tracking and loop closure performance degradation
in complex environments. We propose the DFD-SLAM system to ensure outstanding accuracy and
robustness across diverse environments. Initially, building on the ORB-SLAM3 system, we replace
the original feature extraction component with the HFNet network and introduce a frame rotation
estimation method. This method determines the rotation angles between consecutive frames to select
superior local descriptors. Furthermore, we utilize CNN-extracted global descriptors to replace the
bag-of-words approach. Subsequently, we develop a precise removal strategy, combining semantic
information from YOLOv8 to accurately eliminate dynamic feature points. In the TUM-VI dataset,
DFD-SLAM shows an improvement over ORB-SLAM3 of 29.24% in the corridor sequences, 40.07% in
the magistrale sequences, 28.75% in the room sequences, and 35.26% in the slides sequences. In the
TUM-RGBD dataset, DFD-SLAM demonstrates a 91.57% improvement over ORB-SLAM3 in highly
dynamic scenarios. This demonstrates the effectiveness of our approach.

Keywords: visual SLAM; deep features; dynamic SLAM; YOLOv8; HFNet

1. Introduction

Simultaneous Localization and Mapping (SLAM) is an important research direction
in the field of robotics. Visual SLAM has become a key focus in SLAM research due to
its low cost advantages. Visual SLAM systems utilize cameras as sensor inputs to extract
image information for localization and mapping. Besides using monocular cameras as
sensor inputs, numerous studies also integrate IMU data to enhance accuracy or employ
various cameras for more accurate depth information [1]. Visual SLAM has seen numerous
significant feature-based contributions, including the VINS-MONO and ORB-SLAM [2,3].
These classic studies provide excellent system robustness and accuracy.

However, this feature-based visual SLAM system is heavily influenced by the quality
of feature extraction. First, manually extracted features are less robust to the environment
with changing light conditions, and global features extracted with bag-of-words (BOW) can
disrupt spatial information in scenes [4], reducing loop closure performance [5]. Second,
dynamic feature points in dynamic environments significantly interfere with the system’s
accuracy and robustness [6]. Today, some excellent work has begun to address these
potential issues using deep learning. For the first issue, some studies use deep learning
to extract feature points, achieving better tracking accuracy [7]. For the second issue,
some use deep-learning-derived semantic information to remove dynamic feature points,
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enhancing system robustness. However, these solutions still have problems. In HFNet-
SLAM [7], issues with poor rotation robustness in CNN-based feature extraction networks
are mentioned. Moreover, in Crowd-SLAM, the authors found that removing too many
feature points can reduce accuracy [8]. This problem was also confirmed by the authors of
CDS-SLAM [9].

To tackle these problems, this paper proposes a precise and robust indoor SLAM
system, supporting monocular, monocular–inertial, and RGB-D inputs. By leveraging
TensorRT for accelerated model inference [10], the system integrates HFNet for feature
extraction and utilizes YOLOv8 for semantic information, harnessing the advantages
of deep features to adapt to dynamic environments [11,12]. The design of the system
circumvents issues of deep feature loss under rotation, effectively combining manual and
deep learning descriptors. The specific contributions of this paper are as follows:

1. A real-time dynamic SLAM system based on the ORB-SLAM3 framework is proposed,
supporting multiple sensor input modalities. Utilizing HFNet for both local and global
feature extraction significantly enhances the tracking and loop closure performance of
ORB-SLAM3. Simultaneously, YOLOv8 contributes to the precise removal of feature
points, leveraging semantic information. The system maximizes the benefits of deep
features extraction in dynamic SLAM settings.

2. A frame rotation estimation method is introduced, where geometric consistency detec-
tion calculates possible rotation centers based on optic flow vectors to determine the
appropriate usage of descriptors generated by HFNet or re-extraction of ORB descrip-
tors under different circumstances. The system effectively combines the advantages
of deep features and traditional manual methods.

3. A better feature point removal strategy is proposed, integrating geometric consistency
detection to accurately filter semantic information from YOLOv8 and ensure precise
removal of dynamic feature points, avoiding over-removal scenarios.

The paper is structured as follows: Section 2 introduces related work and discusses
the differences in our approach. Section 3 provides a detailed overview of the system’s
construction and the specific algorithmic processes. Section 4.1 introduces the experimental
design and evaluation metrics. Section 4.2 details the performance of DFD-SLAM on the
TUM-VI dataset, analyzing its tracking and loop closure capabilities. Section 4.3 thoroughly
tests the performance of DFD-SLAM on the TUM-RGBD dataset and examines its removal
strategy in detail. In Section 4.4, we compare the real-time performance of DFD-SLAM with
other outstanding dynamic SLAM systems. Section 5 delves into discussions and future
prospects for the system.

2. Related Works
2.1. Visual SLAM

The research field of visual SLAM systems has made significant progress. In its early
stages, the MonoSLAM system, employing an Extended Kalman Filter (EKF) and Shi–
Tomasi feature points [13], pioneered image tracking for monocular SLAM [14]. Despite
its simplicity, this method had low efficiency and posed challenges in accuracy improve-
ment. The PTAM system, utilizing a different strategy, optimized only keyframes with
Bundle Adjustment (BA) and separated tracking and mapping tasks into different threads,
achieving higher precision and laying the foundation for BA-based SLAM research [15].
Given the high dependency of pure visual SLAM on image quality and feature points,
researchers have explored combining visual SLAM with other sensors, like the IMU. VIN-
Mono, by tightly coupling visual and IMU information, achieved a significant improvement
in accuracy and robustness [2]. ORB-SLAM3 integrated various research ideas, introduced
multiple data association patterns, and implemented the first complete multi-map sys-
tem [16]. This enhancement improved the performance of loop detection and relocation.
The ORB-based approach demonstrated efficiency and robustness [17]. However, chal-
lenges remain, including the reduced matching performance of manually extracted feature
points in sparsely textured or dynamically changing scenes, and the limitations of bag-of-
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words methods in handling complex environments [4]. Additionally, the impact of feature
points from dynamic objects on tracking performance remains a concern. In response to
these challenges, research into visual SLAM and dynamic SLAM systems leveraging deep
features has attracted significant attention.

2.2. SLAM with Deep Features

With the widespread application of deep learning in computer vision, researchers
have found that deep-learning-based local feature extraction methods exhibit significant
advantages over traditional handcrafted approaches. For example, the Superpoint model,
introduced by DeTone in 2019, utilizes a fully convolutional network for extracting feature
points and descriptors, showcasing superior performance and robustness over traditional
methods [18]. GCN-SLAM improves ORB-SLAM2’s local feature extraction using the
GCNv2 network, enhancing the system’s tracking performance [19]. In 2021, LIFT-
SLAM, integrating the LIFT network with ORB-SLAM and fine-tuned on the KITTI
dataset, achieved a substantial improvement in system accuracy via automatic threshold
adjustments [20].

In terms of global feature extraction, the limitations of traditional bag-of-words meth-
ods become increasingly apparent in complex environments. DXSLAM emphasizes the
inefficacy of traditional bag-of-words descriptors in accurately depicting spatial relation-
ships between objects, leading to loop detection errors and ultimately resulting in decreased
performance of the SLAM system [5]. NetVLAD generated high-dimensional vector de-
scriptors for images through end-to-end trained CNN architecture, showcasing superior
performance compared to traditional methods [21]. It finds wide application in the SLAM
domain, as evidenced in DOOR-SLAM and Yang’s research, demonstrating enhanced
robustness to lighting variations [22,23].

Despite the excellent performance of deep-learning-based feature extraction, incor-
porating both local and global feature extraction in SLAM requires higher computational
costs. Some studies attempt to fuse local and global feature extraction to enhance efficiency.
In 2020, HFNet achieved a balanced performance and real-time capability by combining
MobileNet with Superpoint and NetVLAD [24], optimized through model distillation.
DX-SLAM combines HFNet with ORB-SLAM2, effectively improving the system’s tracking
accuracy and loop detection performance. The authors also found that DX-SLAM has
a certain adaptability to dynamic environments [5]. The state-of-the-art HFNet-SLAM
completely replaces the feature extraction part of ORB-SLAM3. While its performance
surpasses that of ORB-SLAM3, it exposes issues in descriptor loss leading to tracking failure
in frame rotation scenarios [7]. Despite the advancements in accuracy and robustness with
deep feature-based SLAM methods, challenges remain to be addressed.

Our work builds on the use of HFNet for local and global feature extraction by adding
a new extraction and matching mechanism. By applying dynamic modules to calculate
optical flow vectors, we roughly identify the frame’s rotation center and potential rotation
angles. This allows the system to select different descriptors for matching. This approach
overcomes the issue of rotation loss that is encountered when solely using deep-learning-
based descriptors.

2.3. Dynamic SLAM

Feature-based SLAM systems encounter challenges in dynamic environments due
to the interference of dynamic object feature points. The mainstream strategy involves
identifying and removing these dynamic feature points. Early methods used geometric
approaches, leveraging dense optical flow and motion models to identify dynamic objects.
For example, SUN proposed online motion removal [25], and Dai introduced a method
using Delaunay triangulation and frame comparison to identify dynamic points [26]. Al-
though these methods operate in real-time, they do not offer the robustness and accuracy
characteristic of semantic approaches.
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Advancements in deep learning have propelled the development of dynamic SLAM.
DynaSLAM utilizes Mask R-CNN for instance segmentation to remove feature points associ-
ated with dynamic objects, along with background restoration [27]. However, DynaSLAM’s
reliance on PyTorch for model inference results in suboptimal real-time performance due
to frame-by-frame instance segmentation. Moreover, DynaSLAM indiscriminately removes
all predefined dynamic objects, lacking a precise mechanism for judgment. To improve
real-time performance, RDS-SLAM segments keyframes and employs Bayesian probabil-
ity propagation, enhancing real-time capability but potentially compromising removal
accuracy [28]. For more precise removal of dynamic points, DS-SLAM combines semantic
and geometric information, achieving accurate removal through optical flow tracking and
epipolar line computation [29].

In recent approaches, many systems incorporate acceleration techniques for model
inference to obtain semantic information, meeting real-time requirements. SG-SLAM
employs NCNN to accelerate semantic information model inference, blending geometric
data with distinct threshold decisions for varied semantic areas to facilitate dynamic
feature point removal [30]. However, this geometry-focused approach could result in
diminished robustness, causing tracking losses across multiple RGBD-TUM sequences.
CDS-SLAM employs TensorRT for accelerated inference and designs specific strategies
for indoor human detection to achieve more accurate removal [9]. This approach aids in
addressing the challenges of Crowd-SLAM, characterized by excessive removal through
object detection, leading to the loss of tracking. Despite these advancements, precise
removal of dynamic feature points remains a significant challenge.

In fact, excessive removal can lead to performance decline, and when there are too
many dynamic objects in an image, most feature points may be removed, leading to tracking
loss and affecting robustness. Our method further detects each dynamic object and more
precisely removes the moving parts on dynamic objects. Moreover, our system is a dynamic
SLAM system based on deep features, and we also demonstrate that the application of
deep features can enhance the tracking performance of dynamic SLAM.

3. Materials and Methods
3.1. System Architecture

Our proposed method enhances the ORB-SLAM3 framework by incorporating three
core modules: the feature point and descriptor extraction module, the semantic segmen-
tation module, and the geometric detection module. The feature point and descriptor
extraction module uses HFNet to replace traditional ORB feature extraction, generating
both local and global descriptors. The semantic segmentation module generates initial
masks using YOLOv8-seg. The geometric detection module employs Lucas–Kanade optical
flow tracking combined with motion consistency checks for tracking feature points and
executing frame rotation. The system framework is illustrated in Figure 1.

We utilize TensorRT on the GPU for parallel inference of HFNet and YOLOv8 to
conduct feature extraction and semantic segmentation. This process results in obtaining
feature points along with their HFNet descriptors, as well as the semantic information
and masks provided by YOLOv8-seg. The RGB input image is converted to grayscale,
and an image pyramid is constructed, where HFNet extracts local features at each level.
YOLOv8 infers the semantic information of the input RGB image. Subsequently, feature
points are tracked using Lucas–Kanade optical flow and undergo moving consistency
checks to accurately remove dynamic feature points. Optical flow vectors are also used to
estimate frame rotation angles, determining whether to employ HFNet’s local descriptors
or recalculate ORB descriptors. If the current frame is set as a keyframe, the system utilizes
HFNet to extract global features for it. The global descriptors from HFNet replace the bag-of-
words approach of ORB-SLAM3 for describing keyframes, with each new keyframe being
described by a 4096-dimensional floating-point vector. The system calculates the Euclidean
distance between the new keyframe and the keyframes stored in the keyframe library
to identify the closest keyframes as candidate keyframes. Subsequent processes remain
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consistent with ORB-SLAM3. This method supports both monocular and monocular–
inertial modes, with all other algorithms and processes remaining as per ORB-SLAM3.
Our approach is a visual SLAM system that combines deep features with dynamic SLAM,
which we call DFD-SLAM.

Figure 1. System architecture.

3.2. Dynamic Points Culled Algorithm

Our method combines optical flow and epipolar lines for the initial assessment of
dynamic feature points, refining the removal process with semantic information. This
approach draws inspiration from the LK optical flow and epipolar line motion consistency
check methods, resembling the dynamic detection strategy of DS-SLAM. Initially, we
apply the LK optical flow method to track feature points extracted by HFNet from the
previous frame, obtaining optical flow vectors according to the results of the current frame,
as illustrated in Figure 2b. The points successfully tracked across the previous and current
frames are denoted as P1 and P2, as depicted in Equation (1), where u and v represent
pixel coordinates.

P1 = [u1, v1, 1] P2 = [u2, v2, 1] (1)

After applying the RANSAC algorithm to filter out anomalous optical flow vectors
and obtain the fundamental matrix between the two frames [31], the epipolar line L1 can
be represented as shown in Equation (2):

L1 =

∣∣∣∣∣∣
X
Y
Z

∣∣∣∣∣∣ = FP1 = F

∣∣∣∣∣∣
u1
v1
1

∣∣∣∣∣∣ (2)

The distance D between a pixel in the current frame and its corresponding epipolar
line can be expressed as shown in Equation (3). If the distance is too far, the point is
considered a potential dynamic point.

D =

∣∣PT
2 FP1

∣∣√
∥X2∥+ ∥Y2∥

(3)

This method has been widely applied in various dynamic SLAM systems. Although this
method can approximately identify dynamic feature points, significant errors in optical
flow tracking and epipolar line calculations, coupled with issues when dynamic feature
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points move along epipolar lines, necessitate its combination with semantic information.
Over-removal or under-removal can severely impact the system’s robustness. Despite
heightened attention to this issue in recent research, a satisfactory solution remains elu-
sive. Our proposed Algorithm 1 addresses this issue to a certain extent, facilitating more
precise removal.

Algorithm 1 Dynamic Points Culled Algorithm

Input: Dynamic points PD, Static points PS, Detect boxes DB, Mask; Thresholds σ1, σ2;
Output: Precise mask, Final mask;
1: for each db in DB do
2: Divide db into nine boxes DDBn;
3: for each ddb in DDBn do
4: Initialize Dib = {}, Sib = {};
5: Dib←AppendTheDynamicPoints(PD,ddb);
6: Sib←AppendTheStaticPoints(PS,ddb);
7: dynamicRatio ← Len(Dib)/(Len(Dib) + Len(Sib));
8: if dynamicRatio < σ1 then
9: Append ddb to Staticboxes;

10: else
11: Append ddb to Dynamicboxes;
12: end if
13: end for
14: Check and merge near boxes from Staticboxes to Dynamicboxes;
15: if Len(Dynamicboxes) > σ2 then
16: Dynamicboxes← Dynamicboxes ∪ Staticboxes;
17: end if
18: Remove the corresponding mask from dynamicboxes;
19: end for

After the initial selection of dynamic and static points on the current frame using
the optical flow–epipolar line method, the system divides the target detection boxes into
nine areas, as shown in Figure 2d. Between lines 3 and 6, each box’s dynamic points are
evaluated and categorized into Dynamic In Box (Dib) or Static In Box (Sib). From lines
7 to 12, based on the ratio of dynamic to static points, each small box is determined to be
either a static or dynamic sub-box. At line 14, the system identifies dynamic sub-boxes
within the mother detection box and adjusts adjacent boxes to a dynamic state to ensure no
potential dynamic regions are missed in the mask, with the final result shown on the left
side of Figure 2e. Moreover, considering dynamic objects may move between frames, lines
15 to 18 assess the dynamic level of the target. If the majority of the mother box associated
with the target is occupied by dynamic sub-boxes, the target is considered highly dynamic
and marked for complete removal, as depicted on the right side of Figure 2e. This process
(lines 2 to 18) outlines the assessment procedure for a single target.

The system evaluates all targets on the frame, preserving the masks within all dynamic
sub-boxes and performing dilation. This strategy avoids probability calculations for dy-
namic objects and does not rely on subjective judgments, providing an accurate assessment
of all potentially moving regions on the frame. It maximizes the utilization of the optical
flow–epipolar line judgment method.

3.3. Frame Rotation Estimation and Feature Point Matching

The feature extraction based on HFNet provides high-quality feature points and
descriptors, thereby improving matching efficiency and triangulation accuracy, ultimately
enhancing the accuracy of pose estimation. However, in instances of frame rotation,
as noted in the HFNet-SLAM paper [7], the performance of deep-learning-based feature
extraction significantly deteriorates, resulting in feature matching failures and tracking loss.
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In contrast, ORB descriptors used in ORB-SLAM3 have demonstrated excellent robustness
in rotation, which is the foundation of our work.

To tackle this issue, we assess the frame rotation between the current and previous
frames to decide on the descriptor to be used and to select a suitable distance calculation
method for various descriptors. We utilize the optical flow vectors obtained from the previ-
ous tracking step and estimate the frame rotation angle using these vectors. The detailed
process of frame rotation angle estimation is outlined in Algorithm 2.

(a) (b) (c)

(d) (e) (f)
Figure 2. The complete process of precise elimination. (a) The segmentation results of YOLOv8.
(b) The results of optical flow tracking on the extracted feature points. (c) The results of epipolar
constraints. (d,e) The system dividing the detected potential dynamic objects into sub-frames and
identifying the dynamic regions within them. In (e), the red boxes indicate dynamic regions, while the
green areas indicate static regions. (f) The final retained segmentation results after dilation processing.

When a frame rotation occurs in the frame, the distributed optical flow vectors around
the image’s center point exhibit a characteristic pattern, as shown in the figure. While mo-
tion between frames is complex and may involve rotations along multiple axes, including
frame rotation, the perpendicular bisector of the optical flow vectors may not necessarily
pass exactly through the center of the frame rotation. Additionally, the tracking of optical
flow vectors may not be entirely accurate. Therefore, we employ a least-squares method to
optimize and solve this problem.

In Algorithm 2, the first line calculates the perpendicular bisector for each optical flow
vector. Given a base optical flow vector, the midpoint and slope are used to determine the
equation of its perpendicular bisector, represented by Equation (4):

ax + by + c = 0 (4)

The formula represents the line on which the optical flow vector lies, where a, b, and c
are the coefficients corresponding to this line. x and y represent the points on the line of the
optical flow vector, including the two endpoints of the optical flow vector.

In the second line, the center point of the frame is chosen as the starting point for
optimization. Since most detected and recognized frame rotations typically occur near the
center of the image, this choice significantly reduces optimization time.
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Algorithm 2 Rotation Estimation Algorithm

Input: Optical flow vectors FV; Frame’s dimensions H, W; Distance threshold
DistanceThreshold.

Output: Optimal point OP; Rotation angle RA.
1: LineParamsList← List of perpendicular bisectors for each f v ∈ FV
2: InitialPoint← (H//2, W//2)
3: OP← Solve minimization problem for InitialPoint using LineParamsList
4: GoodLines← Empty list
5: TotalAngle← 0
6: for each line in LineParamsList do
7: Calculate distance of OP to both ends of line
8: if difference in distances < DistanceThreshold then
9: TotalAngle← TotalAngle+ angle between line endpoints

10: Append line to GoodLines
11: end if
12: end for
13: if length of GoodLines is sufficient then
14: RA← TotalAngle/ length of GoodLines
15: else
16: Indicate rotation did not happen
17: end if

The third line constructs and solves the optimization function f(x, y) as outlined in
Equation (5), aiming to minimize the distance between OP and all perpendicular bisec-
tor lines:

f(x, y) =
n

∑
i=1

 |aix + biy + ci|√
a2

i + b2
i

2

(5)

We seek a rough estimate of the frame rotation angle for real-time applications. BFGS
optimization is employed for faster iteration. The gradient of the objective function is
computed as shown in Equation (6), where ∂ f

∂x and ∂ f
∂y are given by Equations (7) and (8):

∇f(x, y) =
(

∂ f
∂x

,
∂ f
∂y

)
(6)

∂ f
∂x

=
n

∑
i=1

2

 aix + biy + ci√
a2

i + b2
i

 ai√
a2

i + b2
i

(7)

∂ f
∂y

=
n

∑
i=1

2

 aix + biy + ci√
a2

i + b2
i

 bi√
a2

i + b2
i

(8)

Each update of OP occurs in a specified direction, allowing f(x, y) to converge quickly.
The updated f(x, y) is represented by Equation (9):

f(xk + αk pk,x, yk + αk pk,y) (9)

Here, pk,x and pk,y are the iteration directions, determined by Equation (10):

pk = −B−1
k ∇f(xk, yk) (10)

The Hessian matrix B−1
k reflects local curvature information of the objective function

near the latest iteration point, providing a more accurate descent direction. The formula for
B−1

k is given by Equation (11):
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B−1
k = (I − ρk−1sk−1yT

k−1)B−1
k−1(I − ρk−1yk−1sT

k−1) + ρk−1sk−1sT
k−1 (11)

Here, sk represents the change vector, yk represents the gradient change vector, and ρk
is used to adjust the update magnitude, ensuring positivity. The specific formulas are
as follows:

sk = (xk+1 − xk, yk+1 − yk) (12)

yk = ∇f(xk+1, yk+1)−∇f(xk, yk) (13)

ρk =
1

yT
k sk

(14)

After iterative optimization, f(xk, yk) obtains the optimal OP point as the frame rotation
center. Lines 6 to 12 consider that if the motion between the two frames is relatively close
to a frame rotation, the distances from OP to the ends of all optical flow vectors should be
similar. As shown in Figure 3, there will be a certain difference dist between the distance
from P3 to OP and the distance from P4 to OP. If dist is too large, this vector will be filtered
out. This process is expressed in Equation (15), where OP is the frame rotation center,
and P1 and P2 are the two endpoints of the optical flow vector.

∥(OP− P1)∥2 − ∥(OP− P2)∥2 ≤ Distance threshold (15)

Therefore, lines 13 to 17 utilize this principle to filter some optical flow vectors. If too
many vectors are discarded, it means that the motion between the two frames does not
clearly involve a frame rotation. The remaining vectors’ angles from both ends to the frame
rotation center are then used to estimate the rotational movement between the current
and previous frames. This is shown in Equation (16), where P1i and P2i represent the
two endpoints of each optical flow vector:

θ =
1
n

n

∑
i=1

arccos
(
(OP− P1i) · (OP− P2i)

∥OP− P1i∥∥OP− P2i∥

)
(16)

Figure 3. Filter out optical flow vectors that do not meet the requirements.

The threshold angle is set at 20 degrees because performance typically starts to degrade
once estimated angles exceed 15◦ in testing. If the angle is bigger than the threshold angle,
the system assumes that HFNet-generated descriptors should not be used due to potential
frame rotation. Instead, it recalculates ORB descriptors for feature points between the
current and previous frames, employing the same method as ORB-SLAM3 for subsequent
matching. Conversely, if the angle is smaller, the descriptors from HFNet are used for
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the current frame, and the descriptors from the previous frame are retrieved from storage.
In this case, BOW is still employed to accelerate matching, but the distance calculation
shifts from Hamming distance to Euclidean norm, as shown in Equation (17), where des1
and des2 represent the descriptors being matched:

dist = ∥des1− des2∥2 (17)

After this step, certain scenarios where frame rotation loss occurred due to the use
of HFNet descriptors will be switched to ORB descriptors. In summary, after this step,
when the system estimates that a scene has undergone rotation, it selects HFNet descriptors
for previously extracted feature points on keyframes based on the estimated angle, or re-
extracts ORB descriptors, and chooses the matching computation method based on whether
rotation is detected. This step effectively combines the rotation robustness of handcrafted
extraction methods with the accuracy advantages of deep features, allowing deep-features-
based systems to navigate through scenarios where significant frame rotations could
otherwise lead to a drop in matching performance and tracking loss, as shown in Figure 4.

Figure 4. In a rotating scene, detect the matching situation before and after frame rotation. The first
row uses HFNet descriptors. The second row is the frame identified as rotating, with red points
indicating the optimized rotation center. The third row uses ORB descriptors instead.

3.4. Loop Closure

The ORB-SLAM3, on which our system is based, utilizes the bag-of-words (BOW)
method for loop closure detection. However, BOW-based approaches have limited de-
scriptive capabilities for scenes and tend to lose spatial information about depicted objects.
Hence, we replace the original BOW method with global descriptors generated by HFNet.
When the local mapping thread receives a new keyframe, it computes its global descriptor
vector, denoted as gobaldes1, and saves the current keyframe’s global descriptor to the
keyframe library. It then calculates the Euclidean norm (ℓ2-norm) between the global
descriptor vectors of the current keyframe and other keyframes in the library:

Gdist = ∥gdes1− gdes2∥2 (18)
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Here, gdes1 and gdes2 represent the global descriptors extracted by HFNet, each con-
sisting of 4096 floating-point numbers. After obtaining global descriptors for keyframes,
the system calculates the distance with all stored global descriptors in the keyframe li-
brary. A smaller Gdist indicates higher similarity between the two frames, increasing the
likelihood of a loop closure. The system selects frames with the highest similarity as loop
closure candidates based on their similarity with all descriptors in the keyframe library.
Following this, in a manner akin to ORB-SLAM3, a geometric verification is conducted on
co-visible keyframes to ascertain the occurrence of a loop closure. Our approach effectively
leverages the global descriptor capabilities of HFNet, providing more accurate descriptions
of keyframes compared to ORB-SLAM3 in experiments. This leads to more accurate loop
closure detection, thereby mitigating substantial trajectory deviations.

4. Results
4.1. Experiment Introduction

We evaluated DFD-SLAM’s performance on TUM-VI and TUM-RGBD datasets against
leading visual SLAM algorithms [32,33]. TUM-VI features complex scenes with frame
rotations and loop closures, while TUM-RGBD focuses on indoor dynamics. On the TUM-
VI dataset, we compared ORB-SLAM3 [16], VINS-Mono [2], and HFNet-SLAM [7]. ORB-
SLAM3 serves as our benchmark framework, and the improvements in DFD-SLAM are
based on ORB-SLAM3. VINS-Mono is a classic visual–inertial SLAM system. HFNet-SLAM,
a recently developed SLAM system based on HFNet, demonstrates exceptional performance
and is a similar type of work to DFD-SLAM when dealing with static environments. In the
TUM-RGBD dataset, we compared our system with ORB-SLAM3 (O3) [16], DynaSLAM
(Dyna) [27], DS-SLAM (DS) [29], Crowd-SLAM (Crowd) [8], Lccrf (Lccrf) [34], CDS-SLAM
(CDS) [9], and PR-SLAM (PR) [35] systems. Among them, DynaSLAM and DS-SLAM are
classic dynamic SLAM systems, and even today, DynaSLAM still demonstrates outstanding
practical accuracy. Crowd-SLAM highlights the degradation of tracking accuracy due to
excessive feature point removal, making it an important comparison object. Lccrf applies
an innovative method to ensure accuracy in dynamic environments and has high real-time
performance. CDS-SLAM and PR-SLAM are the newest dynamic SLAM systems before the
publication of this paper, showing relatively superior accuracy and real-time performance.
We use absolute trajectory error (ATE) and relative pose error (RPE) to evaluate trajectories.
ATE and RPE are critical metrics in SLAM systems as they provide comprehensive insights
into the global consistency and local accuracy of the estimated trajectory, respectively.
Calculating the RMSE (Root Mean Square Error) for these metrics allows for quantifiable
and comparable evaluation of a SLAM system’s precision and robustness in different
scenarios. ATE is the Euclidean distance between transformed trajectories, representing the
absolute error between two trajectory paths. RPE measures the pose differences at regular
time intervals in the transformed trajectory, providing a finer representation of the accuracy
of the SLAM system. All calculations are performed using Root Mean Square Error (RMSE).
When performing a quantitative analysis of the improvement in absolute trajectory error
before and after the enhancement, we use the following formula for calculation. Let the
value before the improvement be ATEpre and the value after the improvement be ATEcur.
The calculation method for the improvement boost is shown by Equation (19):

boost =
ATEpre − ATEcur

ATEpre
(19)

In the tables below, the boost is calculated using this method. When calculating the
overall improvement, the boost for different scenarios is averaged across all sequences
and reported as a percentage. Tests were conducted on Ubuntu 18.04 (British company
Canonical, London, UK) with an Intel-12700H CPU (Intel, Santa Clara, CA, USA), GeForce
GTX 1070Ti GPU (Nvidia, Santa Clara, CA, USA), and 16 GB RAM.
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4.2. Test on TUM-VI Dataset

We conducted detailed tests and comparisons on the TUM-VI dataset by isolating
the semantic thread of YOLOv8 and comparing it with ORB-SLAM3 [16], VINS-Mono [2],
and HFNet-SLAM [7]. ORB-SLAM3 and VINS-Mono are classic works in the field of
visual SLAM, while HFNet-SLAM utilizes deep-learning-based feature extraction for front-
end odometry tracking. Table 1 illustrates that SLAM systems utilizing deep-learning-
based feature extraction achieve superior tracking accuracy overall. It was observed that
DFD-SLAM excels over ORB-SLAM3 in scenarios with significant viewpoint changes
or lighting variations, as depicted in Figure 5. Compared to the original ORB-SLAM3,
our improvements show enhancements across various scenarios in the TUM-VI dataset.
By calculating the improvement rate of DFD-SLAM over ORB-SLAM3 based on the data in
Table 1, we found that the average improvement (boost) for different sequences is 29.24% in
the corridor sequences, 40.07% in the magistrale sequences, 28.75% in the room sequences,
and 35.26% in the slides sequences. Additionally, compared to these advanced visual SLAM
systems, we maintain an advantage in 14 out of the 20 sequences. This demonstrates the
superiority of our system.

Table 1. Absolute trajectory error results tested in TUM-VI.

Sequence
TUM-VI (ATE)

ORB-SLAM3 VINS-Mono HFNet-SLAM DFD-SLAM

corridor1 0.04 0.63 0.023 0.018
corridor2 0.02 0.95 0.048 0.015
corridor3 0.31 1.56 0.036 0.112
corridor4 0.17 0.25 0.227 0.183
corridor5 0.03 0.77 0.051 0.027
average 0.11 0.83 0.077 0.071

Magistrale1 0.56 2.19 0.130 0.144
Magistrale2 0.52 3.11 0.471 0.319
Magistrale3 4.89 0.40 2.903 2.478
Magistrale4 0.13 5.12 0.184 0.113
Magistrale5 1.03 0.85 0.874 0.956
Magistrale6 1.30 2.29 0.604 0.547

average 1.41 2.33 0.861 0.760

Room1 0.01 0.07 0.008 0.008
Room2 0.02 0.07 0.012 0.009
Room3 0.04 0.11 0.013 0.013
Room4 0.01 0.04 0.016 0.011
Room5 0.02 0.20 0.012 0.008
Room6 0.01 0.08 0.006 0.012
average 0.02 0.10 0.011 0.010

Slides1 0.97 0.68 0.414 0.402
Slides2 1.06 0.84 0.803 0.776
Slides3 0.69 0.69 0.611 0.549
average 0.91 0.74 0.609 0.576

Our method can estimate frame rotation angles and select appropriate descriptors
for matching, allowing DFD-SLAM to provide better accuracy in corridor sequences with
frequent frame rotations. In other scenarios, although frame rotations do not result in
tracking loss, they degrade matching performance and impact overall accuracy. DFD-
SLAM’s targeted strategy effectively identifies these frames and compensates appropriately.
In the room scenario, due to the smaller environment and timely loop closures, there are no
significant accuracy differences between ORB-SLAM3, HFNet-SLAM, and DFD-SLAM. It is
only in sequences with fewer frame rotations where systems utilizing deep learning feature
descriptors perform better. Overall, our method demonstrates excellent performance in
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various indoor scenarios and effectively addresses the limitations of state-of-the-art deep
learning feature extraction methods, leading to superior performance in specific scenarios.

Figure 5. Matching performance of DFD-SLAM and ORB-SLAM3 under varying lighting and scene
conditions. The first row shows the matching performance of ORB-SLAM3 using its strategies.
The second row illustrates the matching performance of DFD-SLAM using HFNet for feature point
extraction and descriptor matching. In most cases, the deep-features-based extraction method still
holds advantages.

To further evaluate the impact of the frame rotation strategy on system performance,
we conducted detailed ablation experiments in the corridor scene. The specific data are
shown in the Table 2. The experiments compared DFD-SLAM using only ORB descriptors
(DFD-SLAM(B)), only HFNet descriptors (DFD-SLAM(H)), and the combination of frame
rotation detection (DFD-SLAM(HB)). The findings indicated that in scenes characterized
by frequent frame rotations, HFNet descriptors underperformed compared to manually
designed Rotated BRIEF descriptors. For instance, in the corridor2 scene, using only HFNet
descriptors is prone to tracking loss. While IMU data and relocalization can mitigate track-
ing loss, precision remains compromised. Despite the enhanced robustness of manually
designed descriptors, they do not match the effectiveness of HFNet in terms of matching.
Our DFD-SLAM(HB) strategy effectively combines the strengths of both, resulting in im-
proved system performance. In our tests, we found that DFD-SLAM(H) performed best
in the corridor3 sequence. We think the main reason for this is that, in this sequence, even
using descriptors generated by HFNet alone does not result in frame loss during frame
rotations. However, such rotations typically cause frame loss in most other sequences. This
is primarily because the dramatic plane rotations in this sequence do not involve significant
viewpoint changes, and there are many features in these scenes, allowing the system to
relocalize accurately. As a result, the final absolute trajectory error remains low. Most
tracking processes without dramatic frame rotations use descriptors generated by HFNet,
which perform better in feature matching. Moreover, the sequence involves many scene
changes. As shown in Figure 5, HFNet demonstrates more significant advantages at these
corners. This leads to the method using only descriptors generated by HFNet performing
better overall.

Table 2. Ablation experimental result of absolute trajectory error in TUM-VI.

Sequence
TUM-VI (ATE)

DFD-SLAM(H) DFD-SLAM(B) DFD-SLAM(HB)

corridor1 0.024 0.031 0.018
corridor2 0.052 0.027 0.015
corridor3 0.068 0.247 0.112
corridor4 0.196 0.201 0.183
corridor5 0.039 0.058 0.027
average 0.076 0.113 0.071
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We designed an ablation study to further investigate the improvement in loop closure
performance of DFD-SLAM using HFNet for global descriptor generation. To eliminate
the assistance of the IMU, the ablation experiment was conducted exclusively under cam0
of TUM-VI for a purely monocular test, ensuring that results were solely influenced by
tracking and loop closure. By comparing DFD-SLAM and ORB-SLAM3 under different
modes, we found that in most cases, the use of HFNet for global descriptor generation
yields better loop closure performance, as shown in Table 3. DFD-SLAM (BOW) refers to
the version that still uses bag-of-words descriptions for loop closure. DFD-SLAM (HFNet)
refers to the version that uses global descriptors generated by HFNet for loop closure.
Particularly in the Magistrale5 sequence, all methods relying on bag-of-words descriptions
failed to detect loop closures successfully, whereas methods utilizing global descriptors
achieved timely and effective loop closure detection. Furthermore, the performance of
DFD-SLAM with loop closure detection activated surpasses that of ORB-SLAM3 with
loop closure detection activated in terms of accuracy. Additionally, we found that utilizing
global descriptors for loop closure detection provides a significantly greater improvement in
accuracy compared to using BOW-based methods, both within DFD-SLAM and relative to
ORB-SLAM3. Finally, we found that the DFD-SLAM system, which employs bag-of-words
descriptions, consistently outperforms ORB-SLAM3 with activated loop closure detection
across several sequences. This underscores the effectiveness of our front-end tracking
approach. The experiment demonstrates that our tracking and loop closure strategies
significantly improve the system’s performance.

Table 3. Ablation of loop closure in TUM-VI.

Sequence

TUM-VI (ATE)

DFD-SLAM DFD-SLAM (BOW) DFD-SLAM (HFNet) ORB-SLAM3

Without
Loop

With
Loop Boost With

Loop Boost Without
Loop

With
Loop Boost

Magistrale1 5.724 4.427 0.227 0.417 0.927 12.943 9.897 0.235
Magistrale2 1.153 0.879 0.238 0.716 0.379 1.120 0.757 0.324
Magistrale4 1.013 0.523 0.484 0.761 0.249 3.376 0.893 0.735
Magistrale5 2.119 2.012 0.050 1.472 0.305 2.547 2.539 0.003
Magistrale6 3.587 3.226 0.101 2.124 0.408 4.568 4.035 0.117

average 2.719 2.213 0.220 1.098 0.454 4.911 3.624 0.282

In pure monocular scenarios, we found significant accuracy discrepancies between
DFD-SLAM and ORB-SLAM3 in the Magistrale1 sequence with and without loop closure de-
tection enabled. We have already demonstrated that DFD-SLAM’s deep feature strategy and
frame rotation estimation strategy yield excellent tracking performance without loop closure.
Furthermore, to investigate the substantial improvement brought by loop closure detection,
we designed more precise experiments. Specifically, we statistically compared the number of
loop closures between the two methods, with DFD-SLAM experiencing five loop closures
and ORB-SLAM3 only encountering two loop closures, as shown in Figure 6. Figure 6a–e
represent the scenes where DFD-SLAM detects loop closures during camera traversal, while
Figure 6f,g represent the loop closure scenes encountered by ORB-SLAM3. Our approach
is able to detect more loop closures at intersections and corners in scenes where features
are not distinctly clear. The global descriptors based on deep features offer advantages over
bag-of-words descriptors in such scenarios. The superior descriptive capability of global
descriptors significantly enhances DFD-SLAM’s loop closure detection in environments with
less distinctive features, thereby markedly improving system performance.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i)
Figure 6. Comparison of loop closure detection in monocular mode. The final trajectory maps are
shown in (h,i). The numbers annotated above indicate the positions where loop closure detection
occurred in each system. Scenes (a–g) correspond to the occurrences of loop closure detection, where
the second row indicates the frames where the systems correctly detected loop closures relative to the
first row.

4.3. Test on TUM-RGBD Dataset

To validate the specific performance of DFD-SLAM in indoor dynamic environments,
we compared it with several well-known dynamic SLAM systems on the TUM-RGBD
dataset. This dataset provides comprehensive depth information and complete trajectory
data, allowing us to verify the advantages of our novel removal method in RGBD mode.
The TUM-RGBD dataset contains indoor sequences with dynamic objects, with the Walk
sequence being our main focus due to their high dynamic environment. Additionally,
we used two Sitting sequences to assess the system’s performance in typical dynamic
environments. We compared our system with some outstanding dynamic SLAM systems
and conducted detailed comparisons of ATE and RPE. All the test data are provided in
Tables 4 and 5. In our test data, we achieved the best results in five out of six sequences
presented in Table 4. Additionally, in the relative pose error results shown in Table 5, our
approach has certain advantages over many outstanding works. We also demonstrate
significant advantages in highly dynamic scenarios. Calculations show that compared
to ORB-SLAM3, our improvements result in a significant reduction in absolute trajectory
error in highly dynamic sequences such as W/static, W/xyz, and W/rpy, with an average
improvement (boost) of 91.57%.

Our comparison includes Dyna-SLAM [27], DS-SLAM [29], Lccrf [34], CDS-SLAM [9],
and PR-SLAM [35]. Dyna-SLAM, DS-SLAM, Crowd-SLAM, CDS-SLAM, and PR-SLAM
are all dynamic SLAM systems that perform feature point selection based on semantic
information; this is similar to DFD-SLAM, which primarily uses semantic information for
feature point selection in dynamic environments. Across the high-dynamic scenes of the
TUM-RGBD dataset, DFD-SLAM demonstrated exceptional performance in all sequences,
with the exception of W/half , where its performance was average. Furthermore, detailed
testing was conducted in our environment using open-source code. In Figure 7, we illustrate
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the trajectories of ORB-SLAM3, DYNA-SLAM, CDS-SLAM, and DFD-SLAM, highlighting
that our trajectory was notably smoother compared to those systems. In testing open-source
systems, we found that DFD-SLAM shows a significant performance improvement over
ORB-SLAM3 in dynamic environments. Additionally, it exhibits higher accuracy compared
to other outstanding dynamic SLAM systems. When compared to DynaSLAM, DFD-
SLAM performs better in all four highly dynamic sequences, with improvements of 10.34%
in W/half , 17.14% in W/rpy, 17.67% in W/static, and 56.25% in W/xyz. In comparison
with CDS-SLAM, DFD-SLAM is superior in two out of four highly dynamic sequences,
with improvements of 45.28% in W/rpy and 46.15% in W/xyz, while both systems perform
similarly in W/static. These data are also reflected in the trajectories shown in Figure 7.
Compared to DynaSLAM, which is also based on semantic segmentation, our system
demonstrates significantly better accuracy, as indicated by the more convergent red lines
representing the error. This advantage is particularly evident in the W/rpy sequence,
where the proportion of dynamic objects is the highest. In comparison with the advanced
CDS-SLAM system, although our system shows a slight disadvantage in ATE data only
in the W/half sequence, the actual tested trajectory of DFD-SLAM is more stable. CDS-
SLAM, being based on object detection, still suffers from excessive removal or missed
removal in its exclusion strategy, resulting in sudden errors in some parts of the W/half
sequence trajectory. Moreover, in the W/rpy sequence, the red lines representing the error
are noticeably more convergent in DFD-SLAM compared to CDS-SLAM.

Table 4. Absolute trajectory error results tested in TUM-RGBD.

Sequence
TUM-RGBD (ATE)

O3 Dyna DS Crowd Lccrf CDS PR OURS

W/half 0.424 0.029 0.030 0.026 0.028 0.019 0.025 0.026
W/rpy 0.726 0.035 0.044 0.044 0.035 0.053 0.034 0.029
W/static 0.022 0.006 0.008 0.007 0.011 0.005 0.006 0.005
W/xyz 0.825 0.016 0.024 0.020 0.016 0.013 0.017 0.007
S/half 0.019 0.018 - 0.020 - 0.013 0.015 0.011
S/xyz 0.012 0.012 - 0.018 0.009 0.011 0.007 0.007

Table 5. Relative pose error results tested in TUM-RGBD.

Sequence
TUM-RGBD (RPE)

O3 Dyna DS Crowd Lccrf CDS PR OURS

W/half 0.023 0.028 0.030 0.037 0.035 0.018 0.013 0.024
W/rpy 0.138 0.044 0.150 0.065 0.050 0.035 0.017 0.026
W/static 0.011 0.008 0.010 0.010 0.014 0.006 0.006 0.005
W/xyz 0.042 0.021 0.033 0.025 0.021 0.017 0.012 0.009
S/half 0.014 0.023 - 0.022 - 0.012 0.011 0.010
S/xyz 0.016 0.014 - 0.020 0.012 0.012 0.010 0.011

Our removal strategy played a significant role as well. In the first row of Figure 8,
the man on the left exhibited subtle rotation above the waist and movement of the hands
in the few preceding frames while his lower body remained stationary on the chair. Our
strategy accurately retained the feature points of the man’s lower body. In most cases,
moving objects were accurately selected and examined to determine which parts to remove.
This precise removal strategy significantly improves accuracy in scenes where dynamic
objects undergo local motion. In the last row of Figure 8, some dynamic SLAM methods
based on semantic segmentation would remove all objects labeled as chairs upon detecting
movement of the chair on the left, such as DS-SLAM. However, our method can precisely
identify which specific chair in the scene has moved.
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ORB-SLAM3 DynaSLAM CDS-SLAM DFD-SLAM
Figure 7. Comparison of trajectories between outstanding dynamic SLAM systems and our method
in highly dynamic environments. The first row shows the trajectory map for the W/static sequence,
the second row for the W/xyz sequence, the third row for the W/rpy sequence, and the fourth row for
the W/half sequence. The blue lines represent the system’s result trajectory, the black lines indicate
the ground truth, and the red lines show the difference between the two. More prominent and
numerous red lines indicate a higher absolute trajectory error, signifying lower tracking accuracy of
the system.

To further demonstrate the effectiveness of our proposed method, we conducted more
detailed ablation experiments, and the results are presented in Table 6. Here, DFD-SLAM(H)
indicates no use of any removal strategy; DFD-SLAM(HS) represents complete removal of
feature points related to dynamic objects; DFD-SLAM(HSD) signifies the application of our
precise removal method; and DFD-SLAM(BSD) signifies combining our removal strategy
with the use of ORB descriptors, and not using HFNet descriptors. Notably, in scenarios
featuring significant rotations, such as W/rpy, employing HFNet-generated descriptors still
yielded enhanced accuracy. This demonstrates that DFD-SLAM not only relies on superior
removal strategies but also exhibits enhanced performance in feature point extraction
descriptors, leading to overall accuracy improvements.
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Figure 8. Dynamic point culling flowchart in W/rpy sequence. Each of these lines represents a
complete culling process. Each column represents a cull step.

Table 6. Ablation experimental result of absolute trajectory error in TUM-RGBD.

Sequence

TUM-RGBD (ATE)

DFD (H) DFD (HS) DFD (HSD) DFD (BSD)

ATE ATE Boost ATE Boost ATE Boost

W/half 0.162 0.024 0.852 0.026 0.840 0.028 0.827
W/rpy 0.117 0.032 0.726 0.029 0.752 0.035 0.701

W/static 0.021 0.006 0.714 0.005 0.762 0.008 0.619
W/xyz 0.077 0.009 0.883 0.007 0.909 0.011 0.857
average 0.094 0.018 0.794 0.017 0.816 0.021 0.751

4.4. Computation Cost

We also compared the real-time performance of several semantic-based dynamic
SLAM methods. The specific tracking times and experimental equipment are listed in
Table 7. Despite our lower computational power, our method maintains an average track-
ing speed of 20FPS on the TUM-RGBD datasets. Considering the real-time requirements,
we employed HFNet and YOLOv8, deploying them with TensorRT for performance op-
timization. Tasks were allocated to two CUDA streams for parallel processing, ensuring
no conflicts between semantic information retrieval and feature point extraction. While
subsequent geometric processing might be complex and potentially lengthen processing
times, in most scenarios without complex rotations, directly utilizing HFNet-generated
descriptors ensures that overall processing times remain manageable.

Table 7. Computational cost.

Systems Tracking Cost (ms) Hardware

ORB-SLAM3 18.92 Intel12700h (Intel)

CDS-SLAM 37.96 Ryzen7-5800H RTX3070 (AMD Santa Clara, CA,
USA) (Nvidia)

DynaSLAM 195.00 Nvidia Tesla M40 GPU (Nvidia)
PR-SLAM 50–60 R5-3600 RTX3070 (AMD) (Nvidia)

Ours 47.83 Intel12700h GTX1070TI (Intel) (Nvidia)

5. Conclusions

In this paper, we present a dynamic SLAM system based on deep features, named
DFD-SLAM. The system utilizes HFNet for feature extraction combined with semantic in-
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formation from YOLOv8, addressing the shortcomings of related works. This combination
ensures high precision and robust performance across various environments. We introduce
a frame rotation estimation strategy to allow the system to select different descriptors for ap-
propriate scenes. Additionally, we developed a more accurate strategy for dynamic feature
point elimination. Experimental results demonstrate that our deep features integrated with
frame rotation estimation outperform traditional manual extraction and pure deep feature
extraction in terms of tracking accuracy in static environments. In dynamic environments,
our dynamic feature point elimination strategy is more precise in excluding dynamic fea-
ture points, without over- or under-eliminating them. These advancements enable our
system to achieve the highest accuracy among similar outstanding works. Moreover, we
accelerated inference with TensorRT, ensuring that this dual-model system maintains good
real-time performance with GPU acceleration. We believe that there is still some method
to improve the real-time performance. Future work could consider integrating semantic
information from keyframes, similar to PR-SLAM, combined with dynamic probability for
dynamic point elimination. This approach could significantly reduce computational time
and load, potentially enabling operation on less powerful mobile platforms.
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