A Distributed Real-Time Monitoring Scheme for Air Pressure Stream Data Based on Kafka
Abstract
:1. Introduction
- We integrate the advantages of Apache Kafka and the characteristics of distributed processing, leading to the proposal of a distributed real-time SP scheme for air pressure monitoring that is tailored to handle massive data. This integration allows the system to efficiently handle large-scale stream data and provide reliable real-time monitoring. The reliability and efficiency of this scheme in multi-sensor working environments are validated through performance comparisons with communication via ActiveMQ pipelines and existing systems, further demonstrating its practical feasibility.
- We construct a low-power sensor network using low-cost microcontrollers, pressure sensors, and communication modules to establish a reliable hardware foundation for the practical application of the scheme.
- We provide a visualization interface and interactive data feedback platform through web pages and apps, allowing users to intuitively understand pressure monitoring data and perform real-time data interaction and analysis. The processed data are persistently stored in the MongoDB database, which enables users to conduct decision analyses based on historical data. This provides users with deeper and more comprehensive data analysis capabilities to better support decision making and the application of real-time monitoring systems.
2. Related Works
3. Design of Real-Time Monitoring Method
3.1. Hardware
3.2. Framework Design
4. Experimental Results and Analysis
4.1. System Environment
4.2. Transfer Data
4.3. Throughput Comparison between Kafka and ActiveMQ
4.4. Delay Comparison between Kafka and ActiveMQ
4.5. Kafka Throughput Results and Analysis
4.6. Comparison with Existing Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, C.; Zan, C.; Zhang, Q.; Shi, L.; Hao, Q.; Jiang, H.; Wei, F. Air injection for enhanced oil recovery: In situ monitoring the low-temperature oxidation of oil through thermogravimetry/differential scanning calorimetry and pressure differential scanning calorimetry. Ind. Eng. Chem. Res. 2015, 54, 6634–6640. [Google Scholar] [CrossRef]
- Mohindru, P. A REVIEW ON SMART SENSORS USED IN CHEMICAL INDUSTRY 4.0. J. Data Acquis. Process. 2023, 38, 1172. [Google Scholar]
- Caban, J.; Droździel, P.; Barta, D.; Liščák, Š. Vehicle tire pressure monitoring systems. Diagnostyka 2014, 15, 11–14. [Google Scholar]
- Yang, S.; Zhang, X.; Liang, J.; Xu, N. Research on Optimization of Monitoring Nodes Based on the Entropy Weight Method for Underground Mining Ventilation. Sustainability 2023, 15, 14749. [Google Scholar] [CrossRef]
- Folgado, F.J.; Calderón, D.; González, I.; Calderón, A.J. Review of Industry 4.0 from the Perspective of Automation and Supervision Systems: Definitions, Architectures and Recent Trends. Electronics 2024, 13, 782. [Google Scholar] [CrossRef]
- Domínguez-Bolaño, T.; Campos, O.; Barral, V.; Escudero, C.J.; García-Naya, J.A. An overview of IoT architectures, technologies, and existing open-source projects. Internet Things 2022, 20, 100626. [Google Scholar] [CrossRef]
- Fortoul-Diaz, J.A.; Carrillo-Martinez, L.A.; Centeno-Tellez, A.; Cortes-Santacruz, F.; Olmos-Pineda, I.; Flores-Quintero, R.R. A Smart Factory Architecture Based on Industry 4.0 Technologies: Open-Source Software Implementation. IEEE Access 2023, 11, 101727–101749. [Google Scholar] [CrossRef]
- Kalsoom, T.; Ramzan, N.; Ahmed, S.; Ur-Rehman, M. Advances in sensor technologies in the era of smart factory and industry 4.0. Sensors 2020, 20, 6783. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.; Murashov, V.; Cauda, E.; Snawder, J. Advanced sensor technologies and the future of work. Am. J. Ind. Med. 2022, 65, 3–11. [Google Scholar] [CrossRef]
- Waworundeng, J.M.S.; Tiwow, D.F.; Tulangi, L.M. Air pressure detection system on motorized vehicle tires based on iot platform. In Proceedings of the 2019 1st International Conference on Cybernetics and Intelligent System (ICORIS), Medan, Indonesia, 8–9 October 2022; IEEE: Piscataway, NJ, USA, 2019; Volume 1, pp. 251–256. [Google Scholar]
- Fay, C.D.; Healy, J.P.; Diamond, D. Advanced IoT Pressure Monitoring System for Real-Time Landfill Gas Management. Sensors 2023, 23, 7574. [Google Scholar] [CrossRef]
- Hassan, M.N.; Islam, M.R.; Faisal, F.; Semantha, F.H.; Siddique, A.H.; Hasan, M. An IoT based environment monitoring system. In Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 3–5 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1119–1124. [Google Scholar]
- Akanbi, A. Estemd: A distributed processing framework for environmental monitoring based on apache kafka streaming engine. In Proceedings of the 4th International Conference on Big Data Research, Tokyo, Japan, 27–29 November 2020; pp. 18–25. [Google Scholar]
- Chen, Z.; Kim, M.; Cui, Y. SaaS application mashup based on High Speed Message Processing. KSII Trans. Internet Inf. Syst. (TIIS) 2022, 16, 1446–1465. [Google Scholar]
- Akanbi, A.; Masinde, M. A distributed stream processing middleware framework for real-time analysis of heterogeneous data on big data platform: Case of environmental monitoring. Sensors 2020, 20, 3166. [Google Scholar] [CrossRef]
- Costin, A.T.; Zinca, D.; Dobrota, V. A Real-Time Streaming System for Customized Network Traffic Capture. Sensors 2023, 23, 6467. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Tehranipoor, M.M.; Guin, U. TSensors vision, infrastructure and security challenges in trillion sensor era: Current trends and future directions. J. Hardw. Syst. Secur. 2017, 1, 311–327. [Google Scholar] [CrossRef]
- Lee, R.; Zhang, M.; Yan, J. Research on IIoT Cloud-Edge Collaborative Stream Processing Architecture for Intelligent Factory. In Proceedings of the 2023 IEEE Smart World Congress (SWC), Portsmouth, UK, 28–31 August 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 711–716. [Google Scholar]
- Demers, A.J.; Gehrke, J.; Panda, B.; Riedewald, M.; Sharma, V.; White, W.M. Cayuga: A General Purpose Event Monitoring System. In Proceedings of the Cidr, Asilomar, CA, USA, 7–10 January 2007; Volume 7, pp. 412–422. [Google Scholar]
- Hsieh, C.C.; Hsieh, Y.C. Reliability and cost optimization in distributed computing systems. Comput. Oper. Res. 2003, 30, 1103–1119. [Google Scholar] [CrossRef]
- Kejariwal, A.; Kulkarni, S.; Ramasamy, K. Real time analytics: Algorithms and systems. arXiv 2017, arXiv:1708.02621. [Google Scholar] [CrossRef]
- Lara, R.; Benitez, D.; Caamano, A.; Zennaro, M.; Rojo-Alvarez, J.L. On real-time performance evaluation of volcano-monitoring systems with wireless sensor networks. IEEE Sens. J. 2015, 15, 3514–3523. [Google Scholar] [CrossRef]
- Isah, H.; Abughofa, T.; Mahfuz, S.; Ajerla, D.; Zulkernine, F.; Khan, S. A survey of distributed data stream processing frameworks. IEEE Access 2019, 7, 154300–154316. [Google Scholar] [CrossRef]
- Pajarola, R. Stream-processing points. In Proceedings of the VIS 05. IEEE Visualization, Minneapolis, MN, USA, 23–28 October 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 239–246. [Google Scholar]
- Karimov, J.; Rabl, T.; Katsifodimos, A.; Samarev, R.; Heiskanen, H.; Markl, V. Benchmarking distributed stream data processing systems. In Proceedings of the 2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris, France, 16–19 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1507–1518. [Google Scholar]
- Carvalho, O.; Roloff, E.; Navaux, P.O. A distributed stream processing based architecture for IoT smart grids monitoring. In Proceedings of the Companion Proceedings of the 10th International Conference on Utility and Cloud Computing, Austin, TX, USA, 5–8 December 2017; pp. 9–14.
- Jafarpour, H.; Desai, R.; Guy, D. KSQL: Streaming SQL Engine for Apache Kafka. In Proceedings of the EDBT, 22nd International Conference on Extending Database Technology, Lisbon, Portugal, 26–29 March 2019; pp. 524–533. [Google Scholar]
- Wu, H.; Shang, Z.; Wolter, K. Performance prediction for the apache kafka messaging system. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, 10–12 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 154–161. [Google Scholar]
- Singh, B.; Chaitra, B. Comprehensive Review of Stream Processing Tools. Int. Res. J. Eng. Technol. 2020, 7, 3537–3540. [Google Scholar]
- Sanjana, N.; Raj, S.; Sandhya, S. Real-time Event Streaming for Financial Enterprise System with Kafka. In Proceedings of the 2023 3rd Asian Conference on Innovation in Technology (ASIANCON), Pune, India, 25–27 August 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- D’Ausilio, A. Arduino: A low-cost multipurpose lab equipment. Behav. Res. Methods 2012, 44, 305–313. [Google Scholar] [CrossRef]
- Mahmood, K.; Orsborn, K.; Risch, T. Wrapping a nosql datastore for stream analytics. In Proceedings of the 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA, 11–13 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 301–305. [Google Scholar]
- Győrödi, C.A.; Dumşe-Burescu, D.V.; Zmaranda, D.R.; Győrödi, R.Ş. A comparative study of MongoDB and document-based MySQL for big data application data management. Big Data Cogn. Comput. 2022, 6, 49. [Google Scholar] [CrossRef]
- Győrödi, C.; Győrödi, R.; Pecherle, G.; Olah, A. A comparative study: MongoDB vs. MySQL. In Proceedings of the 2015 13th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 11–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Raptis, T.P.; Cicconetti, C.; Passarella, A. Efficient topic partitioning of Apache Kafka for high-reliability real-time data streaming applications. Future Gener. Comput. Syst. 2024, 154, 173–188. [Google Scholar] [CrossRef]
- Fu, G.; Zhang, Y.; Yu, G. A fair comparison of message queuing systems. IEEE Access 2020, 9, 421–432. [Google Scholar] [CrossRef]
- D’silva, G.M.; Khan, A.; Bari, S. Real-time processing of IoT events with historic data using Apache Kafka and Apache Spark with dashing framework. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1804–1809. [Google Scholar]
- Scott, D.; Gamov, V.; Klein, D. Kafka in Action; Simon and Schuster: New York, NY, USA, 2022. [Google Scholar]
- Apache Kafka. Available online: https://kafka.apache.org (accessed on 11 April 2024).
- Buzzoni, E.; Forlani, F.; Giannelli, C.; Mazzotti, M.; Parisotto, S.; Pomponio, A.; Stefanelli, C. The advent of the internet of things in airfield lightning systems: Paving the way from a legacy environment to an open world. Sensors 2019, 19, 4724. [Google Scholar] [CrossRef] [PubMed]
- Happ, D.; Karowski, N.; Menzel, T.; Handziski, V.; Wolisz, A. Meeting IoT platform requirements with open pub/sub solutions. Ann. Telecommun. 2017, 72, 41–52. [Google Scholar] [CrossRef]
- Berlian, M.H.; Sahputra, T.E.R.; Ardi, B.J.W.; Dzatmika, L.W.; Besari, A.R.A.; Sudibyo, R.W.; Sukaridhoto, S. Design and implementation of smart environment monitoring and analytics in real-time system framework based on internet of underwater things and big data. In Proceedings of the 2016 International Electronics Symposium (IES), Denpasar, Indonesia, 29–30 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 403–408. [Google Scholar]
- Buddhika, T.; Pallickara, S. Neptune: Real time stream processing for internet of things and sensing environments. In Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Chicago, IL, USA, 23–27 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1143–1152. [Google Scholar]
- Han, S.; Gong, T.; Nixon, M.; Rotvold, E.; Lam, K.Y.; Ramamritham, K. Rt-dap: A real-time data analytics platform for large-scale industrial process monitoring and control. In Proceedings of the 2018 IEEE International Conference on Industrial Internet (ICII), Seattle, WA, USA, 21–23 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 59–68. [Google Scholar]
- Corral-Plaza, D.; Medina-Bulo, I.; Ortiz, G.; Boubeta-Puig, J. A stream processing architecture for heterogeneous data sources in the Internet of Things. Comput. Stand. Interfaces 2020, 70, 103426. [Google Scholar] [CrossRef]
- Pallickara, S.; Ekanayake, J.; Fox, G. Granules: A lightweight, streaming runtime for cloud computing with support, for map-reduce. In Proceedings of the 2009 IEEE International Conference on Cluster Computing and Workshops, New Orleans, LA, USA, 31 August–4 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–10. [Google Scholar]
Content | Specification |
---|---|
Microcontroller | ATmega328 |
Working voltage | 5 V |
CPU frequency | 16 MHz |
EEPROM | 1 KB |
Flash | 32 KB |
SRAM | 2 KB |
Dimensions | 75 × 55 × 15 mm |
Content | Specification |
---|---|
Working voltage | 3.3 ≤ 5.5 V DC |
Power dissipation | 0.06 W (5 V) |
Output signal | I2C output (0 ≤ 3 V) |
Measurement range | 15–700 kPa |
Resolution ratio | ≤1 kPa |
Content | Specification |
---|---|
CPU | Intel® Core ™ i9-9900K 3.6 GHz |
Memory | 32 GB |
SSD | 500 GB |
OS | 2.12-2.4.1 |
Apache Kafka | Windows 10 Version 22H2 (OS build 19045) |
Apache ZooKeeper | 3.5.7 |
Java | 1.8.0_321 |
ActiveMQ | 5.16.3 |
“ID”: “001”, “P”: 101.95, “SoC”: 77, “SI”: 30 |
Topic ID | Configuration |
---|---|
1 | 3 partitions, 3 replications |
2 | 1 partition, 3 replications |
3 | 3 partitions, 1 replication |
4 | 1 partition, 1 replication |
Authors | Middleware | Throughput (msg/s) | Delay |
---|---|---|---|
Buzzoni et al. [40] | ActiveMQ | - | 15 ms (1 msg) |
Happ et al. [41] | RabbitMQ | 30k | 1 ms (1 msg) |
Berlian et al. [42] | Hadoop | - | 85 ms (1k msg) |
Buddhika et al. [43] | Granules | 2000k | - |
Han et al. [44] | Kafka | 200k | - |
Corral-Plaza et al. [45] | Kafka | 200k | 2.5 ms (1 msg) |
Proposed work | Kafka | 3000k | 15.6 (1k msg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Zhou, L.; Chen, Z. A Distributed Real-Time Monitoring Scheme for Air Pressure Stream Data Based on Kafka. Appl. Sci. 2024, 14, 4967. https://doi.org/10.3390/app14124967
Zhou Z, Zhou L, Chen Z. A Distributed Real-Time Monitoring Scheme for Air Pressure Stream Data Based on Kafka. Applied Sciences. 2024; 14(12):4967. https://doi.org/10.3390/app14124967
Chicago/Turabian StyleZhou, Zixiang, Lei Zhou, and Zhiguo Chen. 2024. "A Distributed Real-Time Monitoring Scheme for Air Pressure Stream Data Based on Kafka" Applied Sciences 14, no. 12: 4967. https://doi.org/10.3390/app14124967
APA StyleZhou, Z., Zhou, L., & Chen, Z. (2024). A Distributed Real-Time Monitoring Scheme for Air Pressure Stream Data Based on Kafka. Applied Sciences, 14(12), 4967. https://doi.org/10.3390/app14124967