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Abstract: Strict air pressure control is paramount in industries such as petroleum, chemicals, trans-
portation, and mining to ensure production safety and to improve operational efficiency. In these
fields, accurate real-time air pressure monitoring is critical to optimize operations and ensure facility
and personnel safety. Although current Internet of Things air pressure monitoring systems enable
users to make decisions based on objective data, existing approaches are limited by long response
times, low efficiency, and inadequate preprocessing. Additionally, the exponential increase in data
volumes creates the risk of server downtime. To address these challenges, this paper proposes a
novel real-time air pressure monitoring scheme that uses Arduino microcontrollers in conjunction
with GPRS network communication. It also uses Apache Kafka to construct a multi-server cluster for
high-performance message processing. Furthermore, data are backed up by configuring multiple
replications, which safeguards against data loss during server failures. The scheme also includes an
intuitive and user-friendly visualization interface for data analysis and subsequent decision mak-
ing. The experimental results demonstrate that this approach offers high throughput and timely
responsiveness, providing a more reliable option for real-time gathering, analysis, and storage of
massive data.

Keywords: IoT; real-time processing; distributed stream processing; Apache Kafka; monitoring

1. Introduction

With continuous technological advancement and increasing demand, real-time air
pressure monitoring has become indispensable and crucial in various industries. Strict
air pressure control is essential in sectors such as petroleum, chemicals, transportation,
and mining [1–4]; an accurate, timely, and remotely controllable real-time pressure moni-
toring scheme is of paramount importance. This would enable management personnel to
make rapid decisions in response to emergencies, directly impacting production safety and
operational efficiency.

The recent widespread implementation of Industry 4.0 has initiated a new wave
of digital industrial development. This paradigm can deeply impact efficiency, energy,
sustainability, working conditions, human resources, production management, and mainte-
nance planning in various industries [5]. Comparative analyses conducted by Domínguez-
Bolaño et al. [6] on widely used open-source Internet of Things (IoT) platforms, as well
as the intelligent factory architecture based on Industry 4.0 technologies implemented
through open-source software by Fortoul-Diaz et al. [7], demonstrate that the various free
and open-source IoT platforms and projects can provide reliable technical support for
the development of Industry 4.0. These platforms offer advantages to include low cost,
internet-accessible information, and robust configuration capabilities for developers.

Simultaneously, the development of IoT technology has allowed various types of
low-power sensor devices to incorporate innovative technologies such as electronic minia-
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turization, portability, wireless communication, and energy-efficient microprocessors [8,9].
Waworundeng et al. [10] proposed a tire pressure detection system for motorized vehi-
cles. Fay et al. [11] developed a landfill gas pressure monitoring and management system.
Hassan et al. [12] devised an environmental monitoring system. These systems use low-
power sensor networks to wirelessly transmit real-time air pressure data to provide remote,
real-time, and reliable data transmission.

However, traditional air pressure monitoring systems have some limitations. Typically,
they store the real-time air pressure data gathered by sensors in databases. Subsequent
analyses and decision making depend on reading, querying, and processing the stored data
from the database. The system faces some challenges. Firstly, user feedback depends on
database operations, which introduces delay. Data volume increases cause performance
bottlenecks, which further exacerbate this delay. This implies that users cannot promptly
access real-time air pressure data during emergencies, causing difficulties when making cor-
responding decisions quickly, which in turn increases the possibility of data loss. Therefore,
the importance of real-time monitoring systems cannot be overlooked in practical work-
ing environments; the systems must be capable of quickly gathering and analyzing large
amounts of data streams generated by sensors. This process becomes crucial when dealing
with time series data to support critical decisions [13]. However, overcoming the limitations
of existing schemes is a significant challenge in real-time air pressure monitoring. Therefore,
we must continuously explore new methods and technologies to address these challenges,
improve system performance and reliability, and better meet the specific requirements of
real-time monitoring systems for data gathering, processing, and supporting decisions.

The emergence of complex event processing (CEP) and distributed stream processing
(DSP) systems has provided a new approach to processing high-volume stream data using
big data technology in real time [13]. In this field, Kafka plays an important role as
a stream processing (SP) architecture based on the pub/sub mechanism, especially for
handling massive logs in distributed environments with multiple sensor nodes and large
clusters [14]. Therefore, Kafka has become widely used as a stream processing tool for
real-time data analysis [15]. Kafka has several advantages, including real-time processing,
strong scalability, low delay, and high flexibility [16].

This paper proposes a distributed real-time monitoring scheme for air pressure stream
data based on Kafka. This scheme can customize Kafka clusters according to the number of
sensor nodes in the working environment and can transmit real-time air pressure data to
Kafka clusters via producers. These clusters are then read and processed by consumers and
fed back to the client. The data are stored in a database for historical-record-based decision
analyses. Through this scheme, users can obtain high throughput, low delay, and reliable
real-time air pressure monitoring services.

The main contributions of this paper are as follows:

• We integrate the advantages of Apache Kafka and the characteristics of distributed
processing, leading to the proposal of a distributed real-time SP scheme for air pressure
monitoring that is tailored to handle massive data. This integration allows the system
to efficiently handle large-scale stream data and provide reliable real-time monitoring.
The reliability and efficiency of this scheme in multi-sensor working environments
are validated through performance comparisons with communication via ActiveMQ
pipelines and existing systems, further demonstrating its practical feasibility.

• We construct a low-power sensor network using low-cost microcontrollers, pressure
sensors, and communication modules to establish a reliable hardware foundation for
the practical application of the scheme.

• We provide a visualization interface and interactive data feedback platform through
web pages and apps, allowing users to intuitively understand pressure monitoring
data and perform real-time data interaction and analysis. The processed data are
persistently stored in the MongoDB database, which enables users to conduct deci-
sion analyses based on historical data. This provides users with deeper and more
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comprehensive data analysis capabilities to better support decision making and the
application of real-time monitoring systems.

This paper is organized as follows: Section 2 discusses the literature, providing the
background and an overview of the field; Section 3 introduces the overall architecture of
the scheme, including the hardware for the sensor devices and system architecture and the
functionalities of each component; Section 4 tests the throughput and transmission delay of
Kafka under a large-scale data background and makes comparisons to ActiveMQ message
brokers; finally, Section 5 summarizes the paper, provides conclusions, and suggests
potential future research directions.

2. Related Works

With the advancement of IoT technology and cyber–physical systems, human society
is gradually entering the Trillion Sensors (TSensors) era [17]. In fields such as real-time
environmental monitoring that involve digital sensors and IoT, the value will sharply
decline if stream data cannot be effectively processed. Therefore, real-time monitoring
systems must be able to process continuous data streams without extreme delays to ensure
the timeliness of data [18]. The challenge of developing a rapid and efficient large-scale
stream-data processing method is a critical issue in this field.

Traditional centralized computing systems consolidate processors, memory, storage,
and other resources at a central node, which requires expensive hardware to support
large-scale data processing and multi-user usage [19]. In contrast, distributed computing
systems (DCSs) leverage multiple resources distributed across a network: using inexpen-
sive standard hardware to process vast amounts of data and complex operations. DCS
offers advantages in information sharing, concurrent processing, and computational ca-
pabilities over centralized computing systems [20]. The importance of DSP systems has
correspondingly increased as modern applications impose stricter time constraints on the
real-time analysis of massive data gathered by sensors [21,22].

Compared to traditional static data batch processing, SP is a dynamic process that con-
tinuously integrates new data to compute results. SP primarily analyzes data streams from
event producers such as sensors, devices, automation stations, and relational database sys-
tems through data analysis platforms built on relevant engines and infrastructure to detect
and extract meaningful patterns and events [13]. The comparative study by Isah et al. [23]
on distributed data SP and analysis frameworks, the proposal by Pajarola et al. [24] of
a stream-based point processing framework, and the performance measurements of dis-
tributed stream data processing systems conducted by Karimov et al. [25] all indicate that
distributed stream data processing systems possess advantages to include low delay, high
performance, high throughput, and scalability when handling large amounts of real-time
data. Additionally, the smart grid monitoring architecture based on DSP proposed by Car-
valho et al. [26] demonstrates that DSP can be applied in real-time monitoring. Therefore,
DSP can effectively handle real-time data monitoring.

This paper combines DSP with a real-time air pressure monitoring system to im-
prove real-time environmental monitoring. At present, SP tools like Apache Flink, Apache
Kafka, Apache Storm, and ActiveMQ play an important role in ingesting, processing,
storing, indexing, and managing stream data. Apache Kafka and ActiveMQ are based
on pub/sub structures and effectively solve the blocking problem caused by numerous
asynchronous messages. Therefore, this paper designs real-time air pressure stream data
monitoring schemes based on Apache Kafka and ActiveMQ and analyzes and compares
their throughput and transmission delay.

Apache Kafka is a distributed-event SP engine that consists of multiple components,
including records or messages, record streams, consumers, producers, brokers, logs, par-
titions, and clusters [23]. In Kafka, producers send real-time data streams to different
partitions of the corresponding topics in the Kafka cluster, while consumers fetch data from
these topics and associate them with predefined thresholds for predictive analyses. Kafka
uses a persistent querying system (KSQL) to provide pipeline-style real-time data stream
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processing, eliminating the need to directly submit data streams to the database [27] or to
read, query, and process stored data from the database, thereby ensuring the timeliness
of data transmission. Kafka provides a low-delay, high throughput, and fault-tolerant
publish–subscribe pipeline based on pub/sub structures, making it suitable for processing
massive data in a distributed environment. Therefore, it can provide a high-performance
information channel for real-time air pressure monitoring.

Kafka producers send data to the corresponding topics in the Kafka cluster, while con-
sumers read data from their subscribed topics (Figure 1). A Kafka cluster consists of several
brokers; all partitions of the same topic are distributed across different brokers. For each
partition, one replica is elected as the leader, and the others are followers. The leader of
each partition maintains an in-sync replica (ISR) list to ensure data consistency. When
a producer sends a message, the message is first written to the leader partition and is
then replicated to all replicas in the ISR. Kafka uses this replication mechanism to achieve
fault-tolerant message transmission, ensuring the cluster’s ability to recover data in case
of a broker failure [28]. ZooKeeper serves as the manager responsible for managing the
cluster state and metadata and coordinating partition assignment and fault recovery.

Figure 1. Kafka message-passing principle.

The ActiveMQ message broker consists of connections, producers, consumers, mes-
sages, and message queues. The broker enables data transmission between producers and
consumers through message queuing services. In ActiveMQ, producers send real-time data
to message queues, which consumers then retrieve. If there is only one consumer in the
working environment, the destination of data transmission will be a queue; if there are
multiple consumers, messages are routed using the pub/sub model [29]. In this process,
consumers send an acknowledgment (ACK) message to the producer through the ACK
mechanism, which indicates that the transmitted data have been received and verified
without errors, ensuring message reliability. ActiveMQ also supports message transforma-
tion, which converts messages from one format to another during routing or consumption.
This enables seamless integration between systems with different message formats or
protocols [30]. Figure 2 illustrates the message-passing principle of ActiveMQ.

Figure 2. ActiveMQ message-passing principle.
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3. Design of Real-Time Monitoring Method
3.1. Hardware

We constructed a low-power sensor network to efficiently and reliably transmit real-
time air pressure data. The hardware devices used are shown in Figure 3.

Figure 3. Hardware components used in the sensor network.

The Arduino Uno is based on the ATmega328 microcontroller and features 14 digital
input/output pins, 6 analog inputs, and a USB connection interface; the hardware specifi-
cations are outlined in Table 1. We can execute the code by directly uploading sensor code
to the EEPROM of the Arduino Uno without the need for any external software connection
to a computer, which ensures that the device can independently gather real-time data
and maintain high portability [31]. We constructed a low-cost, low-power, and scalable
real-time monitoring platform tailored for air pressure data streams by integrating the
communication functionality of wireless communication modules and the data acquisition
capabilities of pressure sensor modules into the Arduino Uno microcontroller.

Table 1. Specifications of Arduino Uno.

Content Specification

Microcontroller ATmega328
Working voltage 5 V
CPU frequency 16 MHz

EEPROM 1 KB
Flash 32 KB

SRAM 2 KB
Dimensions 75 × 55 × 15 mm

The SIM7000 wireless communication module supports multi-band NB-IoT, dual-band
GPRS/EDGE, and LTE-FDD communication. Sensor devices need to gather and transmit
data frequently to monitor in real time. Therefore, we have opted to use the GPRS network
and transmit real-time data to Kafka via UDP communication to provide an efficient data
transmission channel that facilitates prompt responses to the data sent by sensor devices.

The MPX5700AP sensor is a single-port silicon pressure sensor integrated into a
six-pin SIP package [10]. It supports I2C digital output, allowing calibration based on
known air pressure values, and can quickly and accurately measure pressure values in
various environments, such as pipelines. Its parameters are listed in Table 2. In this scheme,
the microcontroller and pressure sensor are connected via the I2C bus communication
protocol to gather real-time air pressure data.
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Table 2. Specifications of MPX5700AP.

Content Specification

Working voltage 3.3 ≤ 5.5 V DC
Power dissipation 0.06 W (5 V)

Output signal I2C output (0 ≤ 3 V)
Measurement range 15–700 kPa

Resolution ratio ≤1 kPa

3.2. Framework Design

With the advent of the Industrial IoT (IIoT) and industrial analytics, many new appli-
cation scenarios have emerged for which critical decisions rely on the large-scale analysis
of sensor streams [32]. As data volumes grow exponentially, applications must handle
larger amounts of unstructured and complex datasets simultaneously. Relational database
models (such as MySQL v5.7.44 ) have severe limitations when dealing with such massive
data [33]. Non-relational databases, conversely, are well-suited for large-scale data process-
ing due to their flexible structures, high performance, fault tolerance, and adaptability to
dynamic schema. Among these, MongoDB, based on dynamic schema JavaScript Object
Notation (JSON) documents, outperforms MySQL in insertions, queries, updates, and dele-
tions [34], making it more suitable for the real-time monitoring method proposed in this
paper. Therefore, we chose MongoDB v4.4.6 to store the processed data.

In real-time data streaming scenarios, a smaller number of brokers can significantly re-
duce end-to-end delay due to the reduced complexity of cluster management processes [35].
For data packets of the same size, more partitions lead to an incremental increase in trans-
mission intervals. This is because Kafka producers need more time to arrange the metadata
for each partition [28]. Therefore, we configured the Kafka cluster with three brokers and
divided the message transmission topic into three partitions. The overall framework of
the proposed real-time pressure monitoring scheme consists of a sensor network module,
a producer module, a cluster module, consumer modules, and a database module (Figure 4).

Figure 4. Real-time air pressure monitoring method framework.

The sensor network module consists of multiple sensor devices distributed in the
working environment. Each device consists of an Arduino Uno microcontroller combined
with an MPX5700AP pressure sensor that gathers real-time environmental data. Using the
SIM7000 communication module, the sensor sends real-time data, including the sensor ID,
pressure value, battery level, and signal strength, in string format via the UDP protocol to
the producer.

Then, the producer module splits and integrates the data strings from the sensor
network module into JSON format and sends the data to the specified topic in the Kafka
cluster according to the arrival time.

Next, the cluster module is distributed on a Kafka cluster consisting of three servers:
each acting as a Kafka broker. The message topics are distributed among the three Kafka
brokers and are divided into three partitions. For each broker, one partition is designated as
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the leader, while the remaining partitions are followers. The JSON data from the producer
module are written to the leader partition and then replicated to the follower partitions.

Then, the consumer modules receive the JSON data from the cluster module based on
the subscribed topics and perform predictive analyses on them according to predefined
thresholds. We designed a web and app interface (Figures 5 and 6) to provide users with
visualization interfaces for sensor management, abnormal data alerting, historical data
querying, and real-time stream data monitoring.

Figure 5. App data feedback.

Finally, the database module runs on another server and receives data from con-
sumer modules; these data are persistently stored according to predefined storage policies.
The consumer modules can retrieve historical data from the database module to formulate
and modify alert and alarm strategies.

The framework is designed to host data from sensors connected to equipment other
than Arduino. For example, if a pressure sensor is connected to a data acquisition unit,
the sensor ID serves as a unique identifier for different devices connected to the producer.
This enhances the industrial applicability of the framework.

Message blocking may lead to transmission delays in practical work environments
where many sensors are simultaneously connected to one producer. Therefore, users can
customize the number of producers based on the scale of the sensor network. Additionally,
the number of consumers in the framework depends on the concurrent user count; when a
user requests data, the system will initiate a consumer process to retrieve the data.
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Figure 6. Web page data feedback.

4. Experimental Results and Analysis

The scheme requires environmental air pressure values to be transmitted to the con-
sumers using a high-speed message processing framework to meet the real-time processing
requirements of massive data. Kafka and ActiveMQ are two widely used message queuing
systems [36]. Therefore, to compare the suitabilities of different SP tools in the scheme,
we compare the throughput and transmission delays between Kafka and ActiveMQ to
determine the system’s capacity and end-to-end message transmission time. This analysis
allows us to evaluate the real-time processing performance for the data and helps us to un-
derstand the performance of the system under different message transmission frameworks
in order to select a messaging framework suitable for the scheme.

4.1. System Environment

We used the computer hardware and software configurations listed in Table 3 to
gather sensor stream data in practical work environments with the aim of validating the
performance achieved by Kafka and ActiveMQ in the real-time air pressure stream data
monitoring scheme.

Table 3. Hardware and software environment.

Content Specification

CPU Intel® Core ™ i9-9900K 3.6 GHz
Memory 32 GB

SSD 500 GB
OS 2.12-2.4.1

Apache Kafka Windows 10 Version 22H2 (OS build 19045)
Apache ZooKeeper 3.5.7

Java 1.8.0_321
ActiveMQ 5.16.3

4.2. Transfer Data

To monitor air pressure, sensors continuously gather real-time air pressure data and
transmit it to producers via the UDP communication protocol. The producers are responsi-
ble for converting these data into a structured message, which includes key information
including the sensor ID, pressure value, battery level, and transmission signal strength.
Once the producer creates the message, it is sent to the cluster or message queue. Con-
sumers can subscribe to the transmission topics as needed to receive the required pressure
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data. The data structures transmitted by Kafka and ActiveMQ for the performance compari-
son are in an easily parsed and processable JSON format (Table 4). Additionally, to consider
transmission efficiency and data integrity, the size of each message is limited to 40 bytes.

Table 4. Transfer data.

“ID”: “001”, “P”: 101.95, “SoC”: 77, “SI”: 30

4.3. Throughput Comparison between Kafka and ActiveMQ

We conducted an analysis and comparison of the performance of Kafka and ActiveMQ
from the perspective of data throughput. We ran performance testing scripts for producers
and consumers simultaneously on the same computer node to evaluate their relative
throughput performance in the same environment. This approach simulated the scenario
wherein producers and consumers work simultaneously in the practical system, which
provides a better reflection of the overall performance of the scheme.

In throughput testing, the number of messages transmitted per second (msg/s) is a
key metric to measure the transmission rate. To evaluate the effective throughput of the
messaging middleware, we adopted a standard method: measure the number of messages
sent at 5 s intervals while the producer sends messages, which thus calculates the average
message-sending rate per second. The throughput of consumers is also measured in the
same manner. This method provides a more comprehensive and accurate assessment
because it considers the average rate of message transmission rather than relying solely on
instantaneous performance. Comparing the throughput of Kafka and ActiveMQ producers
and consumers in this manner will help us better understand their performance differences
in practice.

Kafka provides developers with two performance testing scripts to evaluate the
performance of producers and consumers in the system. The performance test script
for producers aims to measure the message throughput transmitted per second through
partitions; the performance test script for consumers measures the message throughput
received per second from partitions. The ActiveMQ installation package does not contain
performance test scripts like Kafka; therefore, we created producers and consumers by
building a Maven project to measure the relative throughput of ActiveMQ.

The relative throughput test results of Kafka and ActiveMQ (Figure 7) demonstrate that
Kafka has a significant advantage in throughput. Specifically, Kafka’s producer average
throughput reached 3,096,134 msg/s, which far surpassed ActiveMQ’s 71,902 msg/s.
Similarly, Kafka’s consumer average throughput was 3,090,558 msg/s, which is significantly
higher than ActiveMQ’s 72,500 msg/s. This comparison highlights Kafka’s efficiency and
speed in message processing.

Figure 7. Throughput comparison (Producer and Consumer).

However, we also observed a certain degree of fluctuation in Kafka’s performance data.
The standard deviations for Kafka’s producer and consumer were 359,370 and 385,038,
respectively. Conversely, ActiveMQ exhibited a more stable throughput, with standard
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deviations of 4389 for the producer and 1695 for the consumer. Despite Kafka’s superiority
in throughput over ActiveMQ, ActiveMQ is more reliably stable. This can be explained
by the following factors. Firstly, Kafka employs a batch-based transmission method that
transmits and consumes multiple messages at once, whereas ActiveMQ uses a pipelined
message queue approach to pull and consume individual messages sequentially. Secondly,
considering scenarios where there may be numerous messages but consumers cannot
process them, ActiveMQ provides a quality of service (QoS) limiting mechanism that effec-
tively controls message transmission efficiency and avoids message blocking. For example,
in test A, the average message transmission rate of the producer in the first stage was
81,431 msg/s, but it dropped to 66,010 msg/s in the next stage, which demonstrates that
the QoS limiting mechanism reduced the producer’s message transmission rate. Lastly,
ActiveMQ ensures message delivery stability by acknowledging when a message is sent.

Compared to Kafka, the performance of ActiveMQ’s producer may be limited when
dealing with large-scale, high-speed data streams owing to the QoS mechanism and mes-
sage confirmation method during message transmission. Conversely, Kafka has a scalable
storage layer and higher transmission and storage efficiency, can adapt to different scales
and load requirements, and maintains high performance even when dealing with numerous
data sources [37]. Therefore, considering Kafka’s throughput, performance, and scalability
and its ability to adapt to different application scenarios, Kafka can bring higher perfor-
mance, better scalability, and more reliable message delivery capabilities to the system as
the messaging middleware.

4.4. Delay Comparison between Kafka and ActiveMQ

We conducted tests and comparisons between Kafka and ActiveMQ to compare the
transmission delay by using different messaging middleware in the scheme. We aimed to
understand the time taken for information to be transmitted under different numbers of
devices, thereby determining a reasonable scale for the sensor network and evaluating the
performance of different messaging middleware in the scheme.

We employed a combination of practical and simulated data to simulate the practical
working environment in order to test the delay, with the aim of assessing the time required
for different numbers of devices to send a message from the producer end to the consumer
end via Kafka and ActiveMQ. This experiment consisted of six test groups, covering
scenarios where 1000, 3000, 10,000, 30,000, 100,000, and 300,000 devices each transmitted a
single message, which ensured the comprehensiveness and reliability of the test results.

In a single transmission, the sensor devices send data containing the device ID, pres-
sure value, battery level, and signal strength to the producer. The producer consolidates
these data into a JSON format message of 40 bytes, which is ultimately consumed by the
consumer. We calculated the delay of information transmission by computing the time
difference between the sending and receiving of the data.

The specific testing process is as follows. Firstly, we created producers and consumers
for Kafka and recorded the time differences for each test group from when the producer
sent the data to when the consumer received it. When the producer received real-time data
from the sensors, the scheme integrated the real-time data with the simulated data into a
data queue ready for transmission. Before sending the message, we recorded the start time.
When the consumer pulled messages from the topic, the received data were processed;
these data included information such as the topic, partition, offset, and data, which are
encapsulated in ConsumerRecords [38]. In Kafka versions 0.9 and later, the consumer
record includes a timestamp field [39]. Therefore, we defined the timestamp of the last
message received by the consumer as the end time. We obtained the transmission delay
by calculating the difference between the end and start times. The calculation method for
ActiveMQ transmission delay is comparable to this process.

In the transmission delay test of Kafka and ActiveMQ, we conducted 10 tests for each
test group and took the average of these tests as the final test result.
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Figure 8 displays the delay comparison results between Kafka and ActiveMQ. For the
six different test groups, the average delays for Kafka were 15.6 ms, 23.1 ms, 48.6 ms,
96.3 ms, 206.1 ms, and 336.1 ms, respectively; ActiveMQ’s average delays were 48.9 ms,
92.5 ms, 271.9 ms, 562.8 ms, 1557.6 ms, and 4374.5 ms, respectively. ActiveMQ’s delay was
between 3 to 10 times that of Kafka. When the number of devices is small, the difference in
delay between the two is small. However, as the number of devices increases, the difference
gradually increases.

Figure 8. Delay comparison.

Batch-based Kafka offers lower transmission delays compared to ActiveMQ, which is
based on a message queue. Kafka can handle more simultaneous data, resulting in lower
propagation delays when processing the same amount of data. This makes Kafka more
suitable for real-time processing of air pressure data.

4.5. Kafka Throughput Results and Analysis

Kafka demonstrates high throughput and low transmission delay in the real-time
transmission of air pressure data streams. Therefore, we have selected Kafka as the messag-
ing middleware for the distributed real-time air pressure data stream monitoring scheme.
We conducted tests on the absolute throughput and relative throughput of the data streams
to comprehensively evaluate the performance of the middleware. The aim was to identify
the bottlenecks in system performance and improve the overall performance and reliability
of the system through scheme enhancements.

Producers and consumers input and output messages through specified topics. In the
topic settings, the partition specifies the practical storage method of the message. To ef-
fectively use a topic, multiple partitions must be defined. In Kafka’s pub/sub structure,
the consumer determines the topic of the received message, and the number of consumers
determines the number of messages received. As part of a general distributed system,
Kafka provides system fault tolerance through replication settings. When the leader of a
partition fails, Kafka can automatically select another leader for compensation to ensure
the repeated reception or output of data. Therefore, the number of topic partitions and
replication factors in Kafka’s broker have a significant impact on system performance. We
determined the specific parameter configuration by setting four different topics. The topics
created are listed in Table 5.

Table 5. Topic list in Kafka.

Topic ID Configuration

1 3 partitions, 3 replications
2 1 partition, 3 replications
3 3 partitions, 1 replication
4 1 partition, 1 replication
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In our performance analysis experiments, we divided the throughput tests for produc-
ers and consumers into two modes: independent and synchronous. In the independent
test, we conducted separate performance tests for producers and consumers to ensure that
they did not interfere with each other. This allowed us to accurately verify the perfor-
mance of producers and consumers and provided a reference for the design of the scheme
parameters. In the synchronous test, we simultaneously ran performance testing scripts
for producers and consumers to evaluate their relative throughput performance across
multiple nodes. This approach simulated the scenario wherein producers and consumers
work simultaneously in the practical system, providing a better reflection of the overall
performance of the scheme.

The results of independent and synchronous tests conducted on Topics 1–4 are de-
picted in Figure 9. The x-axis represents 5 s time intervals, while the y-axis represents the
average number of messages over consecutive 5 s periods; for instance, in test A, the value
corresponding to marker point 1 on the x-axis is 2,070,549. This indicates that during the
initial 5 s of the test, the average rate at which the producer transmitted data to the Kafka
broker through Topic 1 was 2,070,549 msg/s. The remaining points in the graph reflect the
performances of the producer and consumer during specific time intervals.

The independent test results of A, C, E, and G demonstrate that the consumer’s
throughput exceeded that of the producer. This phenomenon can be attributed to the Kafka
controller’s intervention when the producer inputs messages into the partition, which
subsequently impacts the production speed. Specifically, the controller must perform
multiple operations. First, it manages partitions and replicas and sends related information
to ZooKeeper. Second, for topics that contain multiple partition groups, the controller
distributes messages to each partition. Additionally, the controller must also manage the
replication mechanism to ensure that the message replicas of each partition are distributed
to the various brokers according to the specified replication quantity. Simultaneously,
the producer must spend a certain amount of time waiting for the confirmation message
from the leader of each partition. Therefore, when receiving producer messages, Kafka
has a higher delay owing to the operations of the controller and the time required for
confirmation, thereby reducing the message transmission volume of the producer.

Figure 9. Cont.
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Figure 9. Throughput of Kafka.

Conversely, the consumers can request messages directly from ZooKeeper and retrieve
messages assigned to specific topics using partition locations and offset information. Unlike
producers, consumers can directly receive messages from the message storage location
using sockets without the need for intermediary routing through the controller. This
direct message retrieval process enables consumers to handle messages more efficiently
and reduces processing delays, consequently exhibiting higher throughput compared to
the producers.

The results of tests B, D, F, and H report that the relative throughput of the producers
and the consumers is comparable. This can be explained by the mechanism of synchronous
testing; in synchronous testing, the producer sends the message to the Kafka cluster,
and then, the consumer can consume the message. Therefore, the consumer must wait
for the producer’s message input, which results in the throughput of the producer and
consumer being close. In other words, in synchronous testing, the throughput of the
producer directly affects the throughput of the consumer. Additionally, compared to the test
results in A, C, E, and G, the performance of the producer decreased because the producer
needed to perform complex controller operations, replication operations, and ZooKeeper
operations in synchronous testing; the performance of the producer decreased compared to
independent testing.

The throughput of Kafka varied significantly depending on the configuration of dif-
ferent topics. This difference was primarily caused by the delay introduced by producers
inputting messages. In the synchronous tests of the four topics listed in Table 5, Topic 4
(Figure H ), with a single partition and single replication, performed the best. Topics 1
(Figure B) and 3 (Figure F) exhibited greater performance fluctuations and lower through-
put compared to Topics 2 (Figure D) and 4 (Figure H), but they maintained overall high
throughput. This phenomenon is attributed to the higher load on the controller when
distributing messages across multiple partitions for Topics 1 and 3, leading to fluctuations
in producer performance. Topic 1 (Figure B) performed worse than Topic 3 (Figure F),
and Topic 2 (Figure D) performed worse than Topic 4 (Figure H): mainly due to the con-
troller’s resource consumption during message replication, thereby reducing the overall
performance of Topics 1 and 2. In the independent tests, the consumer throughput for Top-
ics 1 (Figure A) and 3 (Figure E) was higher than that of Topics 2 (Figure C) and 4 (Figure G)
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because the consumers in Topics 1 and 3 concurrently read messages from multiple parti-
tions (3 partitions), thereby improving the overall message transmission performance.

4.6. Comparison with Existing Work

As shown in Table 6, to explore the performance of Kafka in the field of real-time mon-
itoring, we compared our scheme with other real-time monitoring systems. By evaluating
the technical approaches and performance data, we examined Kafka’s performance and
innovations in the real-time monitoring of air pressure.

Table 6. Performance comparison of different systems.

Authors Middleware Throughput (msg/s) Delay

Buzzoni et al. [40] ActiveMQ - 15 ms (1 msg)
Happ et al. [41] RabbitMQ 30k 1 ms (1 msg)
Berlian et al. [42] Hadoop - 85 ms (1k msg)
Buddhika et al. [43] Granules 2000k -
Han et al. [44] Kafka 200k -
Corral-Plaza et al. [45] Kafka 200k 2.5 ms (1 msg)
Proposed work Kafka 3000k 15.6 (1k msg)

Buxton et al. [40] implemented an IoT-based airfield lightning system using an AMQP
pub/sub broker. This system uses ActiveMQ to receive events from the airport lighting con-
trol and monitoring system to support monitoring functions and subscribes to ActiveMQ
to receive commands from third-party clients. Tests showed that the system’s delay in
transmitting a single message is 15 ms. Similarly, Happ et al. [41] studied the maximum
sustainable throughput and delay of different pub/sub systems under realistic load con-
ditions using traces from real sensors. The results indicated that for weather monitoring
scenarios, RabbitMQ achieves a maximum throughput of 30k msg/s, with approximately
70% of the measured delay values being below 1 ms. These studies utilized AMQP based
on the queue model, which may face performance limitations when handling large volumes
of high-speed data streams. In contrast, Kafka, as a distributed message queue system,
captures data streams from event sources in real time, enabling our scheme to achieve
higher throughput and lower delays.

Berlian et al. [42] designed a real-time intelligent environmental monitoring and anal-
ysis system framework based on underwater IoT and big data. This framework stores and
analyzes data gathered from remotely operated vehicles and water parameter sensors on a
multi-node Hadoop-cluster data-center platform. By utilizing Hive to handle larger data
volumes, the framework can query one thousand records within 85 ms. Buddhika et al. [43]
developed the NEPTUNE system for real-time, high-throughput stream processing in IoT
and sensor environments. This system is built on the Granules computing framework [46]
and uses a pull-based method to ingest streams from IoT gateways. The stream processors
then process the data and emit stream packets through one or more outgoing streams,
achieving a throughput of 2000k msg/s with 93.7% bandwidth utilization. These systems
transmit data through multiple steps, leading to a relatively complex processing flow.
In comparison, our approach simplifies message processing by directly sending real-time
data to Kafka producers, enabling faster data feedback.

Han et al. [44] implemented the RT-DAP platform on Microsoft Azure for real-time
data analysis in large-scale industrial process monitoring and control. This platform
combines Kafka and Storm to process time series data in real time and feeds the results
back to the physical system or into a database. Tests showed that the throughput of the
platform was around 200,000 msg/s when the payload size was smaller than 64 bytes.
In contrast, Corral-Plaza et al. [45] proposed an architecture for handling heterogeneous
data sources in the IoT. By integrating multiple data sources using Kafka and employing a
CEP engine to extract relevant events, they achieved a processing speed of 200k msg/s for
data sizes of 320 bytes per record, with an average transmission delay of 25 ms per message.
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In comparison, our scheme formats the transmitted data into JSON and limits the size to
40 bytes, significantly enhancing system performance.

Therefore, the real-time air pressure monitoring scheme proposed in this paper utilizes
a distributed Kafka stream processing engine to transmit real-time sensor data. The delay
for transmitting one thousand messages is as low as 15.6 ms, and the throughput reaches up
to 3000k msg/s. These results demonstrate that our scheme offers significant advantages
in terms of transmission delay and throughput and exhibits excellent performance and
potential application value in the field of real-time air pressure monitoring with large
data volumes. This can provide a valuable reference and insights for related research
and applications.

5. Conclusions

This paper proposed a real-time air pressure monitoring scheme based on a DSP
system. We performed real-time air pressure stream data processing by leveraging the high
performance, low delay, scalability, and fault tolerance of Kafka. Large-scale real-time data
transmission was reliable, and the dynamic needs of real-time air pressure monitoring were
met. Additionally, we also designed an intuitive and user-friendly visualization interface
for data analysis and decision making. Simultaneously, the scheme processes the data
gathered by sensors according to preset rules and issues alerts for potential anomalies,
providing users with real-time, accurate, and reliable services for monitoring air pressure
stream data in various environments. In future research, we plan to use machine learning
to process and analyze historical data. We will formulate more appropriate data processing
rules for different working environments to more accurately and promptly detect anomalies
in the environment.
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