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Abstract: It has been established that convolutional neural networks are susceptible to elaborate
tiny universal adversarial perturbations (UAPs) in natural image classification tasks. However, UAP
attacks against face recognition systems have not been fully explored. This paper proposes a spatial
perturbation method that generates UAPs with local stealthiness by learning variable flow field to
fine-tune facial key regions (KRT-FUAP). We ensure that the generated adversarial perturbations are
positioned within reasonable regions of the face by designing a mask specifically tailored to facial
key regions. In addition, we pay special attention to improving the effectiveness of the attack while
maintaining the stealthiness of the perturbation and achieve the dual optimization of aggressiveness
and stealthiness by accurately controlling the balance between adversarial loss and stealthiness loss.
Experiments conducted on the frameworks of IResNet50 and MobileFaceNet demonstrate that our
proposed method achieves an attack performance comparable to existing natural image universal
attack methods, but with significantly improved stealthiness.
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1. Introduction

With the rapid advancement of technology and continuous improvement in computa-
tional hardware, the training and optimization of deep neural networks (DNNs) [1] have
received support from data resources and computational capabilities. DNNs have played
a vital role in various fields, particularly in technologies such as speech recognition [2],
natural language processing [3], image classification [4], and face recognition [5], which
have been widely applied in practical scenarios. As an efficient means of individual authen-
tication and biometric identification, face recognition technology leverages DNNs to extract
and compare facial image features, enabling the rapid identification of individuals. Thanks
to the proliferation of DNN technology, the accuracy and convenience of face recognition
have significantly improved, leading to widespread applications in various fields such as
security authentication and identity verification.

Despite the remarkable achievements of DNNs in computer vision tasks, their security
issues cannot be ignored. Attacks targeting DNNSs, such as data poisoning [6], backdoor
attacks [7], and adversarial attacks [8], pose serious threats to their stability and reliability.
Adversarial attacks, first proposed by Szegedy et al. [9], involve introducing carefully
crafted perturbations into input images, resulting in incorrect outputs from DNNs. These
attacks pose a significant challenge to the security and accuracy of face recognition. Cur-
rently, there are several adversarial attack schemes targeting face recognition, revealing
vulnerability in face recognition models and providing important insights for enhancing
model security.
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Adversarial attacks can be classified into two categories based on their target: one
is single adversarial perturbations targeting specific images, which require generating
new perturbations for each image, and the other is universal adversarial perturbations.
Moosavi-Dezfooli et al. [10] discovered that by designing a single perturbation image,
it can be widely applied to a set of data images with similar distributions, significantly
reducing the recognition accuracy. However, current adversarial attacks in face recognition
are specifically designed for an individual target identity, requiring the regeneration of
perturbations for every application. For instance, in generating a tiny patch on the face [11],
the adversarial samples can mislead the face recognition network. Additionally, there are
adversarial samples of facial makeup generated using generative adversarial networks
(GANSs) [12], which exploit facial features to generate adversarial samples with specific
makeup to deceive the target model.

This paper proposes a universal adversarial perturbation generation method for face
recognition, inspired by the domain of natural images. As shown in Figure 1, after applying
universal adversarial perturbation to facial images, the extracted facial features no longer
resemble those of the original images.
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Figure 1. Diagram of universal adversarial perturbations against face recognition. During the
normal recognition process, the feature extractor obtains clean face embedding features, which
can be used to determine if it is the same face. However, during the adversarial attack process, a
universal adversarial perturbation is superimposed on a set of images, causing the feature extractor
to incorrectly recognize the embedding features and achieve the attack effect.

Specifically, the image classification task focuses on distinguishing between different
categories and emphasizes the extraction of global features, while face recognition focuses
more on local features and small differences in the face region. The interpretability analysis
of face recognition [13] reveals that after face alignment, the approximate positions of facial
features remain fixed. Face recognition primarily focuses on the features within these key
regions, and the model achieves identity recognition by comparing distances and similarity
features between facial features. Based on this, this paper proposes a method for adding
universal adversarial perturbation to facial key regions. By obtaining the key point positions
of the face and employing the convex hull algorithm to calculate the approximate regions
of facial features, this study overlayed perturbations with different weights on different
regions and designed a reasonable loss function to iteratively update the perturbations in
the spatial domain. Ultimately, this study achieved universal adversarial perturbations
with improved visual stealthiness.

In summary, the main contributions of this study are as follows:

e We apply the concept of universal adversarial perturbations from natural images to
the face recognition system, proposing a universal adversarial perturbation attack for
face recognition.

*  We explore the impact of facial key regions on recognition accuracy. We use learnable
flow field to fine-tune the key regions and overlay perturbations with different weights
on these regions. This approach not only maintains attack effectiveness but also
enhances attack stealthiness.
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e We directly control the optimization direction of adversarial facial feature vectors
as the adversarial loss, while employing features from a shallow layer of the Visual
Geometry Group (VGG) as the stealthiness loss. Through this approach, we generate
universal adversarial perturbations in two dimensions.

The subsequent components of this paper are as follows. The rest of the paper is
arranged as follows. Section 2 discusses related works, followed by the proposed approach
for generating facial universal adversarial perturbation in Section 3. In Section 4, we
validate the effectiveness of our method through extensive experiments and evaluate the
results of the experiments. Finally, we summarize the entire paper and discuss future
research directions.

2. Related Works
2.1. Background of Face Recognition

Face recognition is a biometric technology that utilizes facial information for identifi-
cation. Currently, the face recognition process typically involves four steps: face detection,
face alignment, feature extraction, and feature recognition. The face recognition task is
generally divided into two subtasks: face verification and identification. Face verification
aims to determine whether a pair of face images belong to the same identity, while identifi-
cation aims to directly identify the specific identity of a single face image. Presently, feature
extraction is predominantly performed using neural network models. With the rapid
development of deep learning technology, numerous excellent image classification models
have emerged, such as VGG [14], GoogleNet [15], ResNet [16], and MobileNet [17]. These
models provide a superior and more flexible network structure for the face recognition
task, enabling the construction of deeper networks to handle larger-scale face datasets
without concerns about gradient disappearance. Besides network structure, the choice of
loss function plays a crucial role in assessing the model’s recognition capability. Selecting
appropriate loss functions facilitates the separation of face images in different feature
spaces, thereby enhancing recognition accuracy. Triplet loss [18] is a common metric learn-
ing method that aims to train the model by separating the distances between positive and
negative pairs by a certain margin. In addition, other loss functions such as center loss [19]
and Arcface [20] are used to train high-precision face recognition models.

2.2. Adversarial Attacks

Szegedy et al. [9] were the first to introduce the concept of adversarial examples.
They demonstrated that adding small and deliberately crafted adversarial perturbations
to natural images can deceive deep neural networks, causing them to make incorrect
predictions. The Fast Gradient Sign Method (FGSM), proposed by Goodfellow et al. [21],
is a fast attack strategy. Many subsequent works are based on improvements to FGSM.
For instance, the Basic Iterative Method (BIM) [22] is an iterative version of FGSM that
generates adversarial examples by iteratively modifying one-step operations. The DeepFool
algorithm [23] obtains the adversarial perturbation by calculating the minimum distance
of the sample across the decision boundary. Universal adversarial attacks attempt to
generate a single perturbation that, when added to any sample, causes the model to make
incorrect decisions. Building upon the DeepFool algorithm, Moosavi-Dezfooli et al. [10]
demonstrated the existence of UAPs in DNNSs. Inspired by GANs, Mopuri et al. [24]
utilized a generator to model the distribution of UAPs and implemented diversity in
perturbations using this approach. Poursaeed et al. [25] proposed a unified framework
called GAP based on a generative model to generate UAPs. Mopuri et al. introduced
Fast Feature Fool (FFF) [26] and GD-UAP [27], both of which do not require the use of
training data and are applicable to data-independent attack scenarios. Zhang et al. [28]
proposed a new perspective on the relationship between the carrier image and UAPs,
suggesting that perturbations possess key features that dominate model decisions. They
designed a feature-guided UAP algorithm based on this insight. Dai et al. [29] enhanced
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the computational efficiency of UAPs by proposing a strategy to select the vector direction
closest to the previous perturbation direction during each iteration update.

2.3. Adversarial Attacks for Face Recognition

Currently, face recognition has widespread applications across various fields, and
there have been numerous adversarial attack methods developed for face images. Existing
face recognition attack methods are mainly categorized into two types: physical domain
attacks and digital domain attacks. Physical attacks primarily target real-world scenarios,
where adversaries convert adversarial perturbations into various wearable items. For ex-
ample, Sharif et al. [30] proposed an adversarial eyeglass attack, where the eyeglass frame
helps adversaries evade face recognition systems. Adv-hat [31] utilized a printed sticker
with a pattern that is applied to a hat to attack face recognition models. Ibsen et al. [32]
printed specially crafted facial images on T-shirts to confuse face recognition systems.
Digital domain attacks involve directly modifying digital images using computer pro-
grams. These modifications can range from small pixel-level changes to complex image
transformations. Rozsa et al. [33] selected a target face as the goal for adversarial face
image samples and minimized the Euclidean distance between the target face and the
adversarial sample to conduct targeted attacks. Dabouei et al. [34] altered the positional
information of clean facial features to generate adversarial face images, thereby attacking
face recognition systems. Dong et al. [35] introduced an evolutionary attack method in a
decision-based black-box scenario, improving the efficiency of black-box attacks. Most of
the aforementioned adversarial attack studies were aimed at single-face images, with the
goal of causing the misidentification of individual faces. In this study, based on the UAP
attack approach for natural images, we attempted to generate a UAP to alter face images
across the entire dataset.

3. Methodology
3.1. Overview

Distinct from the perturbation task in image classification, facial UAPs aim to optimize
perturbations so that the similarity between adversarial samples and clean samples exceeds
a predefined threshold. The corresponding formula is as follows:

Similarity, .y {F(x +Vv),F(x)} <t, (1)

where X denotes the distribution of images, F(-) is defined as the target feature extractor,
which outputs a feature vector F(x) for each input image x, and t denotes the designated
threshold for discriminative similarity, while v represents the generated UAP. Our aim was
to find a v for almost all data samples x sampled from the distribution X to deceive the
neural network, which represents a fixed, image-independent perturbation that significantly
alters the feature vectors extracted by the neural network from the original vectors, thus
accomplishing the purpose of fooling the face recognition network.

As an open-set classification task, the interpretability analysis of face recognition
focuses on explaining the similarity between embedding vectors rather than predicting
categories. Due to the high similarity in appearance among different individuals’ faces,
the key aspect of face recognition lies in distinguishing the subtle differences within these
highly overlapping features. When performing interpretability analysis, researchers focus
on the specific impact of different face regions on the embedding vector extraction process.
Therefore, in the context of UAP research for face recognition, the key lies in identifying
and leveraging common features among faces of different identities in the dataset. The
architecture diagram of KRT-FUAP is shown in Figure 2.

Existing methods for generating universal adversarial perturbations typically rely on
directly training in the spatial domain globally. This approach depends entirely on the
automatic learning process during training, leading to perturbations that may be somewhat
lacking in both attack efficacy and stealth. In our approach, facial key regions are used
as prior regions for training, allowing for a more precise identification of advantageous
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locations for embedding perturbations. This study focused on the key regions of the face,
as the features of these regions play a crucial role in determining the similarity of the final
embedding vectors. We utilized learnable flow field to fine-tune a mask of facial key regions.
By finely adjusting the mask, we can generate perturbations with different weights in the
spatial domain, ensuring that the perturbations are concentrated in the regions that have
the greatest impact on face recognition. To balance the attack efficacy and stealth of the
perturbations, we incorporate corresponding adversarial and stealth loss functions, jointly
optimizing the final perturbations. This approach not only enhances the effectiveness of
the attack but also increases the stealthiness of the perturbations, enabling attacks on face
recognition systems without raising suspicion.
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Figure 2. Architecture diagram of KRT-FUAP. First, keypoint detection is employed to acquire the
positions of keypoints on the facial images. The convex hull algorithm is then utilized to obtain the
key regions of these facial images, and the intersection of these key regions is taken to obtain the
key regions mask tailored to the dataset. Subsequently, spatial transformation flow field and noise
are initialized, and the flow field is utilized to control the spatial transformation of the key regions
mask, thereby obtaining learnable key regions. Afterward, perturbation weights are adjusted based
on the positions of these regions to obtain universal adversarial perturbation. The perturbation is
superimposed onto clean images, and adversarial loss and stealthiness loss are computed separately
using a target facial recognition model and a VGG model. The iteration continues until a certain
criterion is fulfilled.

3.2. Facial Key Regions

Image classification is coarse-grained classification, where the differences between cate-
gories are substantial, and classification is achieved by focusing on and learning the distinct
differences between these categories. In contrast, the face recognition task is fine-grained
classification, characterized by minimal differences between identities, necessitating the
differentiation of subtle variations between different faces. The structure of the face com-
prises multiple feature regions, each containing numerous unique characteristics, such as
the shape of the eyes, the width of the nose, and the contour of the mouth. These features
are crucial for distinguishing between different individuals. Existing deep learning-based
methods rely on extracting various features from images, and semantic key regions provide
highly discriminative features that enhance the discriminative power of feature vectors.

In the interpretability task of face recognition, Mery et al. [13] investigated the impact
of different facial key regions on the extraction of face recognition embedding vectors
by conducting regional occlusion on facial data. Their results show that different facial
key regions exhibit regional characteristics in different dimensions of the embedding
vector, implying that the facial key region features of different faces are the primary factors
affecting face recognition accuracy.
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To align with the characteristics of UAPs, it is necessary to identify common patterns
across the entire dataset of facial images. Therefore, we focused on the facial key regions.
Face recognition typically conducts alignment preprocessing on facial images, resulting
in a consistent distribution of facial features in the dataset. These regions with fixed
distributions of facial features are suitable for the application of UAP. To validate this idea,
we conducted experiments using different masks and tested the model’s accuracy, as shown
in Figure 3. Detailed experimental procedures and results can be found in Section 4. The
results indicate that the impact of key regions on face recognition accuracy is indeed more
significant than that of non-key regions.

Key L

regions

Non-key L

regions

Noise level Clean 0.2 0.4 0.6 0.8 1.0

Figure 3. Visualization of noise superimposed on key and non-key regions.

The aligned face dataset X = {x1,X2,...,Xn} was collected, and 68 facial keypoints
were extracted from small batches of data. The nose, eyes, and mouth regions are obtained
based on the keypoint coordinates from the semantic regions. Mask regions are formed for
each area using the convex hull algorithm, and the final mask M; for each facial image is
calculated as the overlay of these three regions. The equation for the corresponding ith face
extraction mask M,; is as follows:

M; = Hi(x;) + Ha(x;) + Hs(x;), 2)

where Hj(-), Hp(-), and H3(-) denote the eyes, nose and mouth regions obtained by
different convex hull algorithms. Because the mask regions obtained using different faces
may not overlap, we calculate the intersection portion of the key regions of those face
images as the feature region extracted from the entire face dataset, defined as the original
key regions M,. The formula is expressed as follows:

M, =J{M;,My,...,Mpn}, 3)

where J{-} denotes the intersection operation of masks, and the mask size matches the size
of the aligned face. This study applied perturbations with different weights to both key and
non-key facial regions in order to increase the effectiveness and stealthiness of the UAP.

3.3. Spatial Transformation via Learnable Flow Field

Spatial transformation adversarial samples were initially proposed by Xiao et al. [36],
where small displacements were applied to input pixels to deceive the target neural network
model. However, it is important to note that spatial transformations are only applicable to
specific original clean samples. In the case of UAPw, there is no universal spatial transfor-
mation flow field that can be applied to the entire dataset. The key region mask is extracted
from the entire face dataset. It serves as an indirect representation of the distribution of
key regions across the dataset. We utilize a learnable spatial transformation flow field to
induce minor positional variations in this key region mask, thereby indirectly achieving the
purpose of generating UAP throughout the entire face dataset. The corresponding formula
is as follows:

M; = Flow { fion, Mo | @
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where Flow{ -} represents the spatial coordinate transformation function, ffo, is the learned
flow field, and M is the mask regions after spatial transformation.

We define the spatial coordinate transformation flow field as faow € [—1,1]2"%,
where & denotes the height of the image, and w denotes the width of the image; their sizes

are consistent with the dimensions of the image, ensuring that each pixel in the image has

a corresponding transformation rule. Specifically, ff(llo)w represents the displacement rule
for the ith pixel in the image, indicating the direction and magnitude of the change in its
coordinates. Specifically, the coordinates of the ith pixel point in the original mask image

can be represented as (a(i), b(i)) , and its corresponding position displacement in the flow

field is ff(li))w = (Aa(i), Ab(i)>. (é(i) ,B(i)> represents the coordinates of the ith pixel point in
the transformed mask generated, and the relationship between its coordinates and those of
the same position in the original image is as follows:

(2, 60) = (a0 + 82, 5 4 ab("). )

As the computed displacement changes (Aa(i), Ab(i)) may not be integers, and grid
image coordinates only accept integers, this implies that the direct matching of pixel
values at corresponding positions after transformation is not feasible. We employ bi-linear
interpolation to compute pixel values at non-integer coordinates.

Given the ith pixel point M;(®) of the transformed image with coordinates (é(i), B(i)) . The

coordinates of the four pixel points neighboring (a(i) , b(i)) are obtained using a rounding oper-
ation as (La(i)J, Lb(i)D, (La(i)J +1, Lb(i)J), (La(i)J, Lb(i)J + 1), and ([a(i)J +1, Lb(i)J + 1),
and the set of pixel points corresponding to the above coordinates is denoted by N (a(i),b(i)> .
Based on the pixel values of each point in the set of domains, bi-linear interpolation is used

to update all the pixel values in the image to obtain the changed key region mask. The
interpolation formula is as follows:

MO = Y M (1 [a® - a0) (1 o0 —p00]). (6)
jeN(a(i),b(i))

Compared to the initially extracted mask positions, the final mask obtained considers
more factors that fit the dataset and enhance stealthiness. This method exhibits a better
performance for subsequently generated facial UAPs.

3.4. Generation of UAPs

We use the key regions mask M obtained in the previous section and learnable noise
n to generate the final universal adversarial perturbation v. To enhance the stealthiness
of the perturbation, we set the intensity of the superimposed perturbation in the non-key
regions to be half of the intensity in the key regions as a way to ensure that the effective
noise is concentrated in the key regions. The final generated adversarial sample x4y is
formulated as follows:

Xadv = X + v = x + Mask{f, M}, (7)

where v denotes the generated universal adversarial perturbation, and 1 is the learned
noise. Mask{-} denotes the function that generates the perturbation using the mask, we
normalize the mask to be within the interval [1/2,1], thereby ensuring that the noise
intensity in the non-key regions is half of that in the key regions. The whole optimization
process of our scheme is shown in the following equation:

(ﬁ, fﬂow) = arg min [L,qy(Xx+V,X) + ALgte (X + v, X)] s.t. ||V||p <, (8)

N, fflow



Appl. Sci. 2024, 14, 4973

8 of 18

where n and fp,, denote the learnable noise and flow field. £,4, denotes the adversarial
loss, Lste denotes the stealthiness loss, and A controls the balance between them, and ¢ is
a parameter controlling the size of the perturbation. Adversarial examples are generated
using the final learned noise fi and flow field fq,, to deceive the entire face recognition
model. The fooling rate § denotes the probability of a successful attack using universal
adversarial perturbations. The pipeline of KRT-FUAP is provided in Algorithm 1.

Algorithm 1 The Algorithm of KRT-FUAP

Input: Preprocessed training set X, random noise n, face recognition network F(-), fooling
rate J, lo-norm ¢ of perturbation, and decision threshold t
Output: Universal adversarial perturbation v and learnable flow field ffqy,-
1: Initialize (n, faow) < random
2: Obtain the original mask M, from X
3: while fooling rate < § do
4 forx; in X do
5 Spatial transformation: My < Flow{ frow, Mo }
6 Obtain v <— Mask{n, My}
7: if Similarity{F(x; + v), F(x;)} > t then
8
9

(Anr Afﬂow) < arg min(n,fﬂow) H (n/ fﬂow) H2
: s.t. Similarity{F(x; +v), F(x;)} <t
10: Update the noise: n <— n+ An

11: Update the flow field: faow < friow + Affiow
12: end if

13: Clip v to maintain the I norm restriction

14: end for

15: end while
16: return v

3.5. Loss Setting
3.5.1. Adversarial Loss

The purpose of the adversarial loss is to regulate the attack performance of adversarial
perturbations. In image classification tasks, adversarial attacks are typically conducted
using cross-entropy loss with respect to given labels. However, in face recognition tasks,
adversarial loss is often computed based on cosine similarity or Euclidean distance to
control the dissimilarity between clean samples and adversarial samples. Our approach
circumvents intermediate values, directly optimizing perturbations by controlling the
directions of feature vectors in the feature space between original and adversarial samples.
In detail, we displace the direction of the adversarial sample’s feature vector away from the
direction of the original sample’s feature vector in order to move the adversarial sample in
the direction opposite to the clean image. The formula is as follows:

i M 2
Z F(x( >> F(Xadv) ©)

Fade = ciep \FG) : HF<XS‘3V)H2 |

where D refers to the training example set, i denotes the number of the image in the dataset,

and F(x®) and F (Xe(lid)v denote the feature vectors extracted from the target model. In

order to make the loss function become small, the feature direction of the adversarial
samples will be limited to the opposite direction of the clean samples.

We selected the optimization direction for the adversarial sample’s feature vector; this
is equivalent to having a cosine similarity calculation value of —1 between this direction and
the original direction, which represents the lowest score in a cosine similarity measurement.
By constraining this direction, we effectively circumvent the calculation of the cosine
similarity and directly displace the adversarial sample’s feature vector in the opposite
direction, thus achieving the purpose of adversarial attacks.
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3.5.2. Stealthiness Loss

The purpose of stealthiness loss is to control the invisibility of the generated adver-
sarial perturbations. The VGG [14] network is a well-known deep convolutional neural
network architecture that is widely used in computer vision tasks such as image recognition.
The network’s core idea is to extract hierarchical image features by stacking multiple con-
volutional and pooling layers. It utilizes smaller convolutional kernels and deeper layers to
increase the depth of the network, enabling it to better capture details and local features in
images, thereby improving the accuracy of image classification. The network’s shallow con-
volutional and pooling layers are mainly responsible for extracting low-level features, such
as edges and textures. These features are highly sensitive to the local structure and details
of the image, but relatively weak in representing overall semantics and high-level features.
The deeper convolutional and pooling layers gradually increase the network’s depth to
extract higher-level semantic features. By stacking multiple convolutional and pooling
layers, the network can gradually expand its receptive field and learn more abstract feature
representations. These higher-level features can capture more global image information.

This study utilized the shallow outputs of the VGG network to capture low-level
features in both clean images and adversarial samples, thereby computing the VGG loss
to control the invisibility of UAPs. Specifically, the adversarial samples and clean images
are fed separately into the VGG network, extracting only the shallow-level information
to obtain low-level features. By comparing the differences in feature extraction between
the two, we can derive the invisibility loss, which controls the visibility of the generated
perturbations. The definition of stealthiness loss is shown in the following equation:

Loe= Y ([|0i(x7). i (x5
x(eD

where ¢; is the feature map of the jth layer of the VGG network. The imperceptibility of
the adversarial samples is improved by reducing the difference between the VGG shallow
features of both the adversarial samples and the clean images.

) (10)

;

4. Experimental Results

In this study, we conducted comprehensive experiments to validate the effectiveness
of the proposed method. In this section, we provide an overview of the experimental setup.
Then, we examine the impact of key regions on the face recognition accuracy and compare
our proposed method with existing universal adversarial perturbation methods for natural
image classification tasks. The results indicate that among different approaches, our method
exhibits good stealthiness while possessing a certain level of attack effectiveness. Also,
we conducted black-box testing, demonstrating a certain success rate of the method even
in black-box scenarios. Finally, we performed various ablation experiments to assess the
influence of different factors on the proposed method.

4.1. Experimental Setup

The experiments were accelerated using a single GTX TITAN XP GPU (12 GB) in
the PyTorch 1.12.0 framework. We employed the LFW [37] and CASIA-WebFace [38]
datasets for training facial UAPs. LFW and CASIA-WebFace are widely used datasets in
the field of face recognition, encompassing a diverse range of facial poses, expressions,
lighting conditions, and occlusions, thereby authentically reflecting the challenges of face
recognition in various scenarios. LFW serves as a common benchmark dataset for face
verification, extensively employed to evaluate the performances of facial feature extraction
and matching algorithms. CASIA-WebFace contains a larger scale of data and is primarily
used to aid models in learning facial feature representations. The research task of this
study focused on generating universal adversarial perturbations for face recognition. By
conducting experiments using these two datasets, we could obtain more objective and
effective evaluation results. Both datasets contain paired images of the same individuals.
The training set contains 6000 pairs of facial images, while the test set contains 3000 pairs
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of facial images. These facial images were resized to 112 x 112. We used Arcface to pre-
train three backbone feature extraction networks: IResNet50 [39], MobileFaceNet [40], and
MobileNetV1 [17]. In order to make the adversarial perturbation invisible to the human
eye, the perturbation intensity ¢ was set to 0.08. Considering the computational capabilities
of our hardware resources and the training time for the task, we set a batch size of 10 pairs
of images and a learning rate of 0.01 to achieve optimal perturbation generation results. By
empirically fine-tuning the weight parameter of the loss function, we found that setting A
to 0.05 effectively balances the attack ability and stealth. For the evaluation on different
datasets and backbone networks, we employed two objective stealthiness metrics, namely,
the Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR).

4.2. Effect of Different Regions on Recognition Accuracy

We utilized the LFW and CASIA-WebFace datasets to examine the trend in the recogni-
tion accuracy of target models when occluding key and non-key regions on the IResNet50,
MobileFaceNet, and MobileNetV1 backbone extraction networks. By controlling the level
of random noise used for occlusion, we ascertained the extent of influence of different noise
intensities on various regions. The results are depicted in Figure 4.

We randomly selected 2000 pairs of facial images from each dataset. Gaussian noise of
varying levels ranging from 0 to 1 was overlaid on different regions of one of the paired
images. In increasing the noise level, the results of testing on the three backbone networks
using both datasets demonstrate that overlaying noise on facial key regions leads to a more
substantial decrease in the final recognition accuracy. This suggests that features in facial
key regions carry greater weight in face recognition discrimination.

LFW CASIA-WebFace
100% g 100% |
90% —»K‘ 90%

80%

80%

g 0% g 7%
3 3
o 60% —=— |ResNet50 (key region) o 60% —=— |ResNet50 (key region)
< 0 —o— |ResNet50 (non-key region) < ° —&— |ResNet50 (non-key region)
—&— MobileFaceNet (key region) —&— MobileFaceNet (key region)
50% —w— MobileFaceNet (non-key region) 50% —w— MobileFaceNet (non-key region)
MobileNetV1 (key region) MobileNetV1 (key region)
MobileNetV1 (non-key region) MobileNetV1 (non-key region)
40% 40%
30% 30%
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
(a) Noise level (b) Noiselevel

Figure 4. (a,b), respectively, depict the variation trends of the face recognition accuracy tested on
three backbone extraction networks using the LFW dataset and the CASIA-WebFace dataset. It can
be observed from the figure that as the noise level increases, there is a certain decrease in recognition
accuracy. Moreover, under the experimental condition of overlaying noise on key regions, the rate of
decrease is greater.

4.3. Comparison Experiment

We trained our proposed KRT-FUAP using the LFW and CASIA-WebFace datasets on
the two backbone extraction networks: IResNet50 and MobileFaceNet. Our proposed KRT-
FUAP achieved approximately an 80% attack success rate on various test sets. To evaluate
the perceptual quality of the adversarial perturbations, in addition to subjective human
observation, we employed two objective stealthiness quality metrics: the SSIM and PSNR.
Higher scores on both metrics indicate better image quality. Applying these perceptual
metrics to the adversarial samples helps quantify the stealthiness performance of the
generated facial UAPs. The results ultimately demonstrate that when overlaying universal
perturbations onto facial images, they exhibit good imperceptibility. To underscore the
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efficacy of our meticulously generated perturbations, we conducted perturbation overlay
experiments using randomly generated noise and measured the fooling rate as well as
objective perceptual metrics.

Given the lack of UAP schemes specifically tailored for face recognition, in our com-
parative analysis, we compared our proposed method KRT-FUAP with existing solutions
in other fields, including UAP [10], FG-UAP [41], and FTGAP [42], which are used for
natural and texture images. Although these methods are initially designed for other tasks,
we modified them to suit the face recognition task in this study. The relevant experimental
results are shown in Table 1. We used the fooling rate (FR) to measure the attack perfor-
mance of universal adversarial perturbation generated using different methods, while the
SSIM and PSNR were used to assess their stealthiness. It can be observed that randomly
generated noise performs much worse in terms of both attack effectiveness and impercepti-
bility compared to other carefully designed perturbations. Furthermore, UAP and FG-UAP
are both spatial domain-based perturbation generation methods, and both use lp-norm
constraints for imperceptibility. On the other hand, FTGAP considers the frequency domain
and directly limits the strength of the perturbation in the frequency domain, hence yielding
higher imperceptibility metrics in comparison.

Table 1. Comparison results of experimental fooling rate and objective evaluation parameters.

Dataset Backbone Method FR 1 SSIM 1 PSNR 1
Random 20.8% 0.4003 18.9271

UAP [10] 76.6% 0.7607 27.5761

IResNet50 FG-UAP [41] 80.4% 0.8678 30.6159

FTGAP [42] 82.1% 0.8852 31.7033

LFW KRT-FUAP 81.9% 0.9304 34.0157
Random 23.2% 0.3614 18.0833

UAP [10] 79.1% 0.8487 29.7213

MobileFaceNet FG-UAP [41] 78.8% 0.8439 29.1161

FTGAP [42] 79.4% 0.8507 30.5232

KRT-FUAP 80.1% 0.9044 32.9812

Random 37.1% 0.4901 20.8767

UAP [10] 71.2% 0.7759 28.0403

IResNet50 FG-UAP [41] 74.7% 0.8126 29.0967

FTGAP [42] 76.3% 0.8544 30.4638

CASIA-WebFace KRT-FUAP 78.4% 0.9172 32.6624
Random 30.3% 0.5099 21.4036

UAP [10] 76.3% 0.7612 27.5446

MobileFaceNet FG-UAP [41] 77.8% 0.7865 28.3971

FTGAP [42] 78.4% 0.8691 30.6668

KRT-FUAP 80.2% 0.8817 32.1412

Our proposed KRT-FUAP not only meticulously generates the overlaying of perturba-
tions on facial key regions but also employs effective imperceptibility loss to control the
final perturbation. This allows us to achieve a significant improvement in imperceptibil-
ity while maintaining comparable attack effectiveness. Corresponding visualizations are
shown in Figure 5. Compared to several other methods, our adversarial samples exhibit
superior imperceptibility, appearing more normal.
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Figure 5. Some examples for the adversarial image: (a,f k) are clean images; (b,g,1) were generated
using UAP; (c,h,m) were generated using FG-UAP; (d,i,n) were generated using FTGAP; and (e,j,0)
were generated using KRT-FUAP.

We compared the KRT-FUAP method with several existing approaches in terms of
the time required to generate perturbations. Using the LFW dataset, we tested the time
taken by different methods to achieve various fooling rates on the two backbone networks,
IResNet50 and MobileFaceNet, under conditions with which the devices do not perform
any other computational tasks. The fooling rates were set to several fixed values above
50%, and the corresponding comparison results are illustrated in Figure 6.

IResNet50 MobileFaceNet

5000 = UAP —=— UAP
@ FG-UAP 4000 @ FG-UAP v
—A— FTGAP A FTGAP
¥ KRT-FUAP ¥ KRT-FUAP /
4000
T a0 z
£ £
[ =
2000
1000 ~
0 T T T T T T 0 T T T T T T

Designated fooling rate(%) Designated fooling rate(%)

Figure 6. The time required to generate universal adversarial perturbations to achieve the designated
fooling rates on IResNet50 and MobileFaceNet using four different approaches.

The UAP and FG-UAP methods both conduct adversarial perturbation training di-
rectly in the spatial domain, relying solely on norm constraints for stealthiness. Their
algorithmic complexity is relatively low, resulting in shorter training times and lower hard-
ware resource usage. FTGAP introduces a frequency domain perspective by transforming
spatial domain images to the frequency domain for perturbation training and intensity
restriction. Subsequently, it converts them back to the spatial domain to obtain the final
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universal adversarial perturbation. This method involves transformations between the
spatial and frequency domains, resulting in higher algorithmic complexity. Consequently,
it requires more time to achieve different fooling rates and utilizes the most hardware
resources. In comparison, our proposed KRT-FUAP method operates solely in the spatial
domain by generating adversarial perturbations in key semantic regions of the face and
using a learnable flow field to fine-tune these regions. This approach produces universal
adversarial perturbations that are better suited for facial images. Additionally, our loss
function includes both stealthiness and adversarial loss components, providing dual control
over the stealthiness and effectiveness of the generated perturbations. Consequently, our
algorithm has higher computational complexity compared to UAP and FG-UAP, resulting
in longer training times and greater hardware resource usage. This corroborates the results
of our experiments.

Unlike perturbations for specific images, which require retraining for each new image,
universal adversarial perturbations only need to be trained once and can then be applied to
the entire dataset. This is a significant advantage of universal adversarial perturbations. Our
proposed KRT-FUAP method, while incurring a slight increase in training cost, significantly
enhances the aggressiveness and stealthiness of the perturbation, thereby demonstrating
the effectiveness of our approach.

4.4. Black-Box Performance

We also conducted black-box testing on KRT-FUAP, as shown in Table 2. This ex-
periment evaluated the attack performance of three different backbone networks on the
LFW dataset. The data on the diagonal represent the success rate of white-box attacks,
while the other values indicate the success rate of black-box attacks. From the data in the
table, we observe that under black-box conditions, the success rates of universal adver-
sarial perturbations vary to some extent. However, since this method extracts facial key
regions from the dataset, it still demonstrates some effectiveness in black-box scenarios.
Nevertheless, achieving black-box attacks for universal adversarial perturbations in the
field of face recognition remains highly challenging.

Table 2. White-box and black-box performances on the LFW dataset.

FR IResNet50 MobileFaceNet MobileNetV1
IResNet50 81.9% 26.8% 25.4%
MobileFaceNet 54.6% 80.1% 41.3%
MobileNetV1 45.2% 33.5% 79.7%

4.5. Ablation Study
4.5.1. Impact of the Facial Key Regions Mask

The initial facial key regions masks in this experiment were extracted from the training
dataset. Based on our previous experimental results, features contained within the facial
key regions have a greater impact on the accuracy of face recognition models. Therefore, we
randomly selected 1000 facial images from the dataset, extracted the key point coordinates
for each facial image, applied the convex hull algorithm to compute the positions of key
regions, and finally obtained the intersection to derive the key region masks specific to
the dataset. To demonstrate the effectiveness of this approach, we directly optimized the
global universal adversarial perturbations and evaluated the fooling rates and stealthiness
objective metrics obtained using the IResNet50 and MobileFaceNet backbone extraction
networks under the LFW dataset. As shown in Table 3, the corresponding results indicate
that in controlling the perturbation weights using key regions, the intensity of perturbations
can be better distributed, allowing noise to focus more on attacking key regions, thereby
reducing noise intensity in non-key regions and promoting the enhancement of perturbation
concealment.
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Table 3. Fooling rate and objective stealthiness metrics for key regions and global regions.

Dataset

Backbone Method FR 1 SSIM 1 PSNR 1

LFW

KRT-FUAP 81.9% 0.9304 34.0157
Global regions 77.8% 0.8926 31.6674

IResNet50

KRT-FUAP 80.1% 0.9044 32.9812
Global regions 77.7% 0.8639 30.5034

MobileFaceNet

4.5.2. Impact of the Learnable Flow Field

The facial key region mask ultimately utilized in this experiment was a learnable
region mask controlled by a learnable flow field. Through a set loss, we continuously
modified the parameters within the learnable flow field, thus continuously adapting the
fixed key region mask extracted from the dataset. This approach allows our mask to not be
limited to facial key regions extracted from the entire dataset, enhancing the generalization
performance of the generated perturbations through iterative learning. To demonstrate the
role of the learnable flow field, we conducted experiments using fixed key regions, testing
the fooling rates and objective stealthiness metrics under IResNet50 and MobileFaceNet.
As shown in Table 4, the final experimental results indicate that employing a learnable flow
field enables the consideration of more relevant information, because it not only considers
the unified characteristics of the dataset but also incorporates individual features from
different training data, resulting in more effective attack and the concealment of universal
adversarial perturbations.

Table 4. Fooling rate and objective stealthiness metrics with and without learnable flow field.

Dataset

Backbone Method FR 1 SSIM 1 PSNR 1

LFW

KRT-FUAP 81.9% 0.9304 34.0157
Fixed key regions 80.2% 0.9147 33.1845

IResNet50

KRT-FUAP 80.1% 0.9044 32.9812
Fixed key regions 78.9% 0.8916 32.1108

MobileFaceNet

4.5.3. Impact of Adversarial and Stealthiness Loss

The loss function in this experiment consisted of two components: adversarial loss
and stealthiness loss. The adversarial loss is achieved by directly selecting the optimization
direction of the adversarial samples, set to be opposite for better attack effectiveness.
Simultaneously, the VGG network was utilized to control stealthiness metrics, enhancing
the imperceptibility of images. To demonstrate the effectiveness of our loss function settings,
we compared them with commonly used loss functions in face recognition, such as cosine
similarity loss and Euclidean distance loss. The other settings remain unchanged; the cosine
similarity loss reduces the similarity between features, while the Euclidean distance loss
increases the distance between features. We tested the fooling rates and stealthiness metrics
on IResNet50 and MobileFaceNet. As shown in Table 5, the corresponding experimental
results show that in simultaneously controlling adversarial effectiveness and stealthiness
in the loss function, the two metrics of the generated universal adversarial perturbations
exhibit superior performances.
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Table 5. Fooling rate and objective stealthiness metrics for different loss setting.
Dataset Backbone Method FR 1 SSIM 1 PSNR 1
KRT-FUAP 81.9% 0.9304 34.0157
IResNet50 Euclidean distance 80.2% 0.8875 31.7418
LFW Cosine similarity 80.4% 0.8963 31.9427
KRT-FUAP 80.1% 0.9044 32.9812
MobileFaceNet Euclidean distance 78.9% 0.8622 30.8143
Cosine similarity 79.1% 0.8657 30.8807

5. Discussion

Compared to adversarial perturbations targeting specific faces, universal adversarial
perturbations offer the advantage of being generated once and applied multiple times,
yet they pose greater challenges. Adversarial perturbations targeting specific faces only
necessitate identifying features of individual images and modifying these features through
perturbations to deceive the model. In contrast, universal adversarial perturbations require
investigating the underlying patterns across an entire dataset. In leveraging these pat-
terns, perturbations are applied to modify relevant features across the entire facial dataset,
resulting in high rates of model deception in this dataset for face recognition.

Our search for the key regions of the face is in line with the property that the universal
adversarial perturbation targets the entire dataset, considering that the semantic regions
of the face after alignment are at some fixed locations, and these semantic regions have
a decisive impact on the accuracy of face recognition. UAP and FG-UAP generate uni-
versal adversarial perturbations globally. Although FTGAP considers frequency domain
information to enhance stealthiness, the perturbation generated ultimately remains within
the spatial domain globally. We focused on the perturbation within these key regions,
overlaying less perturbation on other regions. The results show that there is a better effect
after considering the local information.

The fixed mask region extracted from the dataset constitutes a unified characteristic of
the dataset, representing the distribution of facial key regions across the entire dataset while
disregarding certain individual features. By incorporating a variable flow field, we fine-
tune this fixed region, continuously updating it during training to accommodate individual
features. This approach aims to integrate individual features from the training data onto
the unified features, thereby broadening the scope of the considered information. As the
perturbations primarily affect key regions of aligned faces, there may be some efficacy in
black-box attacks; however, the true black-box scenario remains unpredictable, limiting its
effectiveness across all scenarios. Our research can serve as both an attack method for face
recognition systems and a means of protecting facial privacy.

6. Conclusions

In this paper, we propose KRT-FUAP, a facial universal adversarial perturbation gen-
eration approach that utilizes a learnable flow field to fine-tune key regions. This study
examined the vulnerability of face recognition system to universal adversarial perturba-
tions and evaluated the influence of key regions on the accuracy of the system. A key
region mask is extracted from the dataset and fine-tuned using a learnable flow field as a
dimension to modify universal adversarial perturbations in the spatial domain, resulting in
the generetion of adversarial samples for faces. Additionally, we propose a scheme that
balances the adversarial effectiveness and stealthiness of perturbation by incorporating
adversarial loss and stealthiness loss. Experimental results indicate that our proposed
method achieves a fooling rate of approximately 80% across different datasets and back-
bone networks. The stealthiness of our method shows a significant advantage both in the
visualization of adversarial examples and in objective stealth evaluation metrics. Specif-
ically, on the IResNet50 backbone network, the perturbations we generated achieved a
SSIM value of 0.9304 and a PSNR value of 34.0157. Although our method has a relatively
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higher complexity and requires a longer training time compared to existing adversarial
perturbation generation algorithms, it is acceptable to obtain better aggressiveness and
stealthiness by occupying slightly more hardware resources.

Our proposed approach also has several limitations. Although it demonstrates cer-
tain black-box attack capabilities, its attack efficacy and stealth metrics may be affected
in more complex black-box scenarios. The KRT-FUAP approach proposed in this paper
involves additive perturbations, generating adversarial examples by superimposing uni-
versal perturbations at selected effective locations in the spatial domain of facial images.
Consequently, the effectiveness of the perturbation depends on this superimposition oper-
ation. This method has certain limitations when applied to side facial images, as the key
regions in side facial images are significantly different from those in front facial images.
Research on perturbations targeting profile images presents substantial challenges.

Adversarial attack is the opposite of adversarial defense. Designing universal ad-
versarial attack strategies targeting face recognition technology holds significant guiding
importance for enhancing model robustness and developing effective defense mechanisms.
Additionally, because adversarial perturbations can disrupt the feature representations
extracted using face recognition models, this provides a potential approach for protecting
facial privacy. Future research can explore other perspectives, and we hope our work will
inspire further innovative studies.
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