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Abstract: Focusing on the problems of uncertainty and carbon emissions in the manufacturing
process, this paper studies the low-carbon-emission scheduling optimization problem. Firstly, the
variations in workpiece processing time and delivery date are selected as the uncertainty factors. A
low-carbon-emission scheduling model for uncertain job shops is constructed with the optimization
objectives of the time index, carbon emission index, and robustness index. Secondly, an improved
third-generation non-dominated sorting genetic algorithm (NSGA-III) is proposed. Based on the
original NSGA-III algorithm, this algorithm introduces the state transition algorithm to perform
state transformation, neighborhood sampling, selection update, and alternate rotation operations
on the parent population, generating new candidate solutions. Finally, the scheduling model and
the improved algorithm are applied to a workshop example. Through case study computation
and result analysis, the feasibility and effectiveness of the model and algorithm in addressing the
low-carbon-emission job shop scheduling problem under uncertainty are further verified.

Keywords: uncertainty; low-carbon emissions scheduling; improved NSGA-III; multi-objective optimization

1. Introduction

Increasing carbon emissions play a crucial role in global warming, especially in in-
dustrial fields. Industries produce 35% of carbon emissions in China, which hurts the
environment [1,2]. Carbon emissions are not eco-friendly, and the associated repercussions
are global warming, severe meteorological deviations, and serious environmental pollu-
tion [3]. With the development of people’s ecological awareness, low carbon emissions and
energy efficiency in the manufacturing industry have been receiving much attention [4].
The workshop scheduling optimization method effectively reduces carbon emissions and
relieves environmental pressure [5]. Various scheduling strategies result in varying levels
of carbon emissions, and reasonable scheduling methods are essential to complex flexible
shop-floors. To increase enterprise profitability and control carbon emissions in the manu-
facturing sector, it is critical to implement a low-carbon-emission scheduling optimization
method for workshops.

Manufacturing enterprises must carry out high-efficiency, low-carbon-emission, and
low-cost manufacturing to enhance their competitiveness. The scheduling optimization
model is constructed to optimize the manufacturing workshop. Chen and Hao [6] applied
the non-dominated sorting genetic algorithm (NSGA) to design a non-compact flow shop
scheduling plan. They successfully solved the multi-objective optimization problem con-
sidering process connection, which carries profound theoretical and practical significance
for enterprises, e.g., improving the scheduling of non-compact flow shops, the production
efficiency, and the response to market situations. Han [7] proposed the improved NSGA-II
to minimize the makespan, total energy consumption, and total costs of the flexible job
shop cell scheduling problem to achieve flexible manufacturing. Sang et al. [8] established
the many-objective job shop intelligent scheduling model with complex constraints. They
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proposed an improved intelligent decision optimization algorithm named NSGA-III-APEV
based on NSGA-III, which can ensure that the decision-maker obtains a more suitable
production scheduling scheme.

Various uncertainties in the production process can disturb the production system
and affect the scheduling plan, so many studies are focused on workshop robustness to
improve resistance to disturbances. Chaari et al. [9] proposed a genetic algorithm for robust
hybrid flow shop scheduling to evaluate the quality of the robustness when faced with
uncertainty. Allaoui et al. [10] introduced a robustness framework for the stochastic hybrid
flow shop problem under uncertainty to find a robust solution that can resist changes
in input data. Shen et al. [11] constructed the multi-objective stochastic flexible job shop
scheduling problem model, considering three objectives: makespan, maximal machine
workload, and robustness to uncertainties. Considering various uncertainties in the actual
manufacturing process, Zhang et al. [12] proposed a flexible job shop scheduling problem
with machine breakdown, with the objectives of maximum completion time and robustness.
Meanwhile, there is more and more research on low-carbon scheduling problems. Ding
et al. [13] designed a multi-objective NEH algorithm and a modified multi-objective iterated
greedy algorithm to solve a permutation flow shop model to minimize the carbon emissions
and makespan. Pan and Lei [14] studied the problem of distributed low-carbon parallel
machines. Dong and Ye [15] constructed a two-stage re-entrant hybrid-flow-shop bi-level
scheduling model and used the NSGA-III algorithm to lower carbon emissions and energy
costs. Tong and Zhu [16] proposed that green manufacturing has become a hot topic
globally, and they designed a customer-oriented method to support multi-task green
scheduling in cloud manufacturing, intending to minimize the total energy consumption
during scheduling.

According to the reviewed literature, most low-carbon optimization scheduling stud-
ies focus on single machines or flow shops. However, the workshop is a complex, flexible
job shop that is full of complexity, uncertainty, multiple constraints, and a multi-objective
nature. Further research needs to be carried out on complex flexible workshops. Gen
et al. [17] used the EDA method (understanding the estimation of distribution algorithm)
to solve the stochastic flexible job shop scheduling problem with a min–max regret ver-
sion and processing time uncertainty. To solve the flexible job shop scheduling problem,
Kacem et al. [18] designed a hybrid Pareto algorithm based on fuzzy logic to minimize
the maximum completion time and the total machine load. Zheng et al. [19] developed a
neighborhood search algorithm based on a multi-objective group to solve the fuzzy flexible
job shop scheduling problem by minimizing the maximum fuzzy completion time and
machine load. Chang et al. [20] proposed an overall DT-enabled real-time scheduling (DTE-
RS) framework for complex product shop-floors to effectively reduce adverse impacts of
the dynamic disturbances and minimize the makespan based on a global twin. Piroozfard
et al. [21] established a job shop scheduling model with total delay time and carbon emis-
sions as objective functions and proposed a new multi-objective imperialist competition
algorithm to solve the problem. Lin et al. [22] extended the flow shop scheduling problem
to optimize low carbon emissions and variable processing parameters. They proposed
two scheduling methods for specific problems to describe the scheduling problem. Lu and
Jiang [23] proposed a bi-population-based discrete bat algorithm to research the low-carbon
job shop scheduling problem.

To minimize the negative impact of uncertain factors on production, ensure the sta-
bility of the production system, and realize low-carbon and efficient operation of the
manufacturing system, based on an in-depth discussion of the uncertain factors in the job
shop, combined with a relevant literature search, this paper selects two typical uncertain
factors (uncertain processing time and uncertain delivery date) as the uncertain factors in
the production process. The corresponding mathematical tools are used to describe the
uncertain factors, and the uncertainty-oriented low-carbon scheduling model of the job
shop is constructed. Considering the lack of convergence in the genetic algorithm [24], this
paper proposes an improved NSGA-III based on the state transition algorithm (NSGA-III-
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ST), which is proposed as an extension of the NSGA-III by introducing the state transition
algorithm and enhancing the initial clustering operator, while maintaining the properties
of the NSGA-III. The optimization of the manufacturing system’s low-carbon, efficient,
and orderly operation is realized by applying the model and algorithm to the actual
production scenario.

The main contributions of the paper are as follows:

1. A multi-objective low-carbon-emission scheduling model for workshops under un-
certainty is established, which optimizes green indexes such as carbon emissions
and economic indexes such as the robustness index and time-based index, using the
processing time and order delivery time as uncertainty. By optimizing the work-
shop model, the manufacturing process can achieve low-carbon, economic, and
efficiency goals.

2. An improved NSGA-III-ST algorithm is proposed. The algorithm is a hybrid of the
NSGA-III and the state transition algorithm. The test also validates the feasibility
and validity.

Our work has critical academic significance and engineering value for multi-objective
optimization problems in the context of low carbon goals. The remainder of the paper is
organized as follows: the second section constructs the low-carbon-emission scheduling
model, the third section proposes the NSGA-III-ST algorithm, the fourth section solves the
optimization model, the fifth section discusses the algorithm’s advantages and disadvan-
tages, and the sixth section presents the conclusions. The method flow chart is shown in
Figure 1.
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Figure 1. The flow of the method.

2. Low-Carbon-Emission Scheduling Optimization Modeling
2.1. Description and Handling of Uncertainty

There are many uncertainties in the manufacturing process, and the emergence of un-
certainties will strongly influence the accuracy of workshop scheduling [25]. A workshop’s
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uncertainties can be divided into four categories based on different sources: the system’s
inherent uncertainty, uncertainty of equipment, uncertainty of operation personnel, and
external factors caused by sale behavior or purchasing behavior. Because the system’s
intrinsic uncertainty is generally not the focus of research, and the uncertainties caused by
personnel or management methods are challenging to measure and calculate, uncertainty
research focuses on the equipment, which consists mainly of machine breakdown, order
insertion, order cancellation, workpiece processing time, unknown workpiece arrival time,
order delivery time and raw material delay, and so on. After the weights of uncertain factors
and the objective function are determined by the expert scoring method, and sensitivity
analysis is performed by an analytic hierarchy process, the importance of the workshop
uncertainty is determined as the workpiece processing time, order delivery time, machine
breakdown, raw material delay, unknown workpiece arrival time, order insertion, and
order cancellation. Meanwhile, the uncertainty of the processing time leads to uncertainty
of the order delivery time, which affects the satisfaction degree (SD), and the uncertainty of
processing time affects the makespan and carbon emissions. Therefore, the processing and
order delivery times are selected as the uncertainties of the low-carbon-emission workshop
scheduling problem.

The processing time cannot be precisely measured in manufacturing workshops; fuzzy
sets are frequently used to describe it [26,27]. The triangular fuzzy number expresses the
fuzzy processing time. Furthermore, because trapezoidal fuzzy numbers are commonly
used when considering advance and delay, a trapezoidal fuzzy number expresses the fuzzy
delivery time.

(a) Fuzzy processing time

The triangular fuzzy number Ã = (a1, a2, a3) is used to denote the fuzzy processing
time of the workpiece, where a1 denotes the shortest processing time of the process, a2 is
the most probable processing time, and a3 denotes the longest processing time. The
probability distribution function of the affiliation function µÃ is illustrated in Equation (1).
When a2 = (a1 + a3)/2, the affiliation degree value of the triangular fuzzy number is 1.

µÃ =


x−a1
a2−a1

, a1 ≤ x ≤ a2
x−a3
a2−a3

, a2 ≤ x ≤ a3

0, others
(1)

Set the triangular fuzzy number B̃ = (b1, b2, b3). The addition of triangular fuzzy
numbers can be expressed as Ã + B̃ = (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3),
where b1 denotes the shortest processing time of the process, b2 is the most probable
processing time, and b3 denotes the longest processing time. The symbol ∨ denotes taking
the more significant number of fuzzy numbers, and the operation of taking the larger one
is Ã ∨ B̃ = (a1, a2, a3) ∨ (b1, b2, b3) ≃ (a1 ∨ b1, a2 ∨ b2, a3 ∨ b3). The chosen large operation
is chosen to approximate the fuzzy number, because the fuzzy number obtained by the
more extensive operation is not always the triangular fuzzy number.

(b) Fuzzy delivery time

The trapezoidal fuzzy number C̃ = (c1, c2, c3, c4) is used to express the fuzzy delivery
period. c1 denotes the shortest delivery period, c2 and c3 are probable delivery periods,
and c4 denotes the most extended delivery period. And µc̃ is displayed in Equation (2).
From the affiliation function, it is known that when c2 = c3, the trapezoidal fuzzy number
is transformed into a triangular fuzzy number; when [c1, c2] = [c3, c4], the trapezoidal fuzzy
number is symmetric about l = (c2 + c3)/2, and the trapezoidal fuzzy number is called the
symmetric trapezoidal fuzzy number.
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µÃ =


x−c1
c2−c1

, c1 ≤ x ≤ c2

1, c2 ≤ x ≤ c3
c4−x
c4−c3

, c3 ≤ x ≤ c4

0, others

(2)

2.2. Problem Description

The problem of low-carbon-emission workshop scheduling under uncertainty is generally
described as follows: there are n mutually independent workpieces J = {Ji|i ∈ 1, 2, . . . , n} to
be manufactured on m machines M = {Mk|k ∈ 1, 2, . . . , m}. Each workpiece Ji is manufac-
tured by one process or more processes. Each process can be constructed from a machine
selected from the machine set M. There is a sequence constraint among each process,
and only after the previous process is completed can the following process be processed.
There are uncertainties in the process, such as the processing time and delivery time, so
the processing time and fuzzy delivery time are given to characterize the range of these
uncertainties.

The model of this study is based on the following assumptions:

1. The production task starts at 0 time, and the processing route of the workpiece has
been determined.

2. The machine can only process one workpiece at a time, and there are no interruptions.
3. The machine is operational at the outset. It begins with the first workpiece and does

not stop until all workpieces have been completed.
4. The time it takes to replace a machine tooling fixture and the time it takes to handle a

workpiece between different machines is neglected.
5. The processing time of each process is not determined.
6. Each workpiece can only be manufactured on one machine at a time.
7. There are no constraint level constraints between different workpieces and processes.

2.3. Parameter Description

The description of each parameter of the model is shown in Table 1.

Table 1. Description of each parameter of the model.

Parameters Parameter Meaning

n Total number of processed workpieces
m Total number of processed machines
l Total number of processing processes
i Workpiece subscript
k Machine subscript
j Operation subscript
Ji Workpiece i, i ∈ {1, 2, · · · , n}

Mk Machine k, k ∈ {1, 2, · · · , m}
Oij jth process of the workpiece i
D̃i Vague delivery time of workpiece Ji
C̃i Fuzzy completion time of workpiece Ji

C̃max Maximum fuzzy completion time
T̃ijk Fuzzy processing time of operation Oij on machine Mk
t̃ijk Fuzzy idle time of operation Oij on machine Mk

C̃ijk Fuzzy completion time of operation Oij on machine Mk , and C̃ijk = T̃ijk + t̃ijk

S̃Tijk Fuzzy start time of operation Oij on machine Mk

ẼTijk Fuzzy end time of operation Oij on machine Mk
Fe Carbon emission factor of electricity
Fc Carbon emission factor of coolant
Pik Machining power of machining on the machine Mk for workpiece Ji
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Table 1. Cont.

Parameters Parameter Meaning

Tf Effective cycle period of coolant on machine Mk
L f k Amount of coolant circulating on the machine Mk

xijk
Boolean value : when the operation Oij processes on machine Mk, the value is 1;

otherwise, the value is 0

xijkt
Boolean value : when the operation Oij processes on machine Mk at the time t, the

value is 1; otherwise, the value is 0

2.4. Objective Function

Based on the problem description and problem assumptions, the scheduling goals
are a time-based index (TBI), sum carbon emissions (SCE), and robustness index (∆δ)
depreciation, which are shown as F1, F2, and F3.

The relationship between the fuzzy completion time and fuzzy delivery time is not
only ahead of the time or delay, so the completion time satisfaction (AIi) is introduced,

which is shown as AIi =
area(C̃i∩D̃i)

areaC̃i
. The index value represents the ratio of the cross

area of Ci, and Di membership functions to the area of the whole membership function
of Ci. The Average Weighted Satisfaction (AWS) and the Production Minimum Satisfac-
tion (PMS) are introduced to comprehensively evaluate AIi, where AWS = 1

n ∑n
i=1 wi AIi,

PMS = min(AI1, AI2, . . . , AIn ), and wi represents the weighting coefficient of SD, which
reflects the importance of a customer’s requirements for delivery time, and ∑n

i=1 wi = 1.
TBI = θ1 AWS + θ2PMS, where θ1 and θ2 represent the weighting coefficients of AWS and
PMS, and θ1 + θ2 = 1. Therefore, the objective function F1 is shown in Equation (3).

F1 = min(TBI)= min(θ1 AWS + θ2PMS) (3)

The model only considers the fuzzy carbon emissions generated by power loss dur-
ing the machining process C̃Ep, machine tool no-load process C̃Er, coolant consumption

production C̃E f , and the public electricity consumption P̃CE generated by the operation
of public auxiliary facilities. The flow of coolant is the same when different parts are
machined on the same machine, and the power of public auxiliary facilities PsumRP includes
the lighting facilities’ power PsumLED, management kanban power PsumBoard, and ventilator
power PsumFan.

C̃Ep = ∑n
i=1 ∑m

k=1 ∑l
j=1 FexijkPikT̃ijk (4)

C̃Er = ∑n
i=1 ∑m

k=1 ∑l
j=1 FexijkPko+t̃ijk (5)

C̃E f = ∑n
i=1 ∑m

k=1 ∑l
j=1

T̃ijk

Tf
FcL f kxijk (6)

PsumRP = PsumLED + PsumBoard + PsumFan (7)

P̃CE = FeC̃maxPsumRP (8)

Therefore, the objective function F2 is shown in Equation (9).

F2 = min(SCE) = min
(

C̃Ep + C̃Er + C̃E f + P̃CE
)

(9)

The uncertainty of the fuzzy completion time can be determined by the difference in the
span between the shortest and longest times, which reflects robustness. So the△δ1 and△δ2 are
introduced, where△δ1 = µ1(a1 + a3 − 2a2) + µ2a2,△δ2 = σ(a3 − a1), µ1, µ2, and σ are the
non-negative weights, and ∑2

i=1 µi = 1. Therefore, F3 is expressed in Equation (10).

F3 = min(△δ) = min(△δ1 +△δ2) (10)
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The objective function of the model is shown in Equation (11).

F = optimal(F1, F2, F3) = (min(TBI), min(SCE), min(∆δ)) (11)

The scheduling aims to select the best machine and sequence for machining the
workpiece to achieve the optimization goals. According to references [28,29], the constraints
of the model are as follows:

m

∑
k=1

xijk = 1, ∀i, j (12)

n

∑
i=1

l

∑
j=1

xijkt ≤ 1, ∀k, t (13)

S̃Tijk ≥ ˜ETi(j−1)k, ∀i, j, k (14)

ẼTijk − S̃Tijk = T̃ijk, ∀i, j, k (15)

where Equation (12) indicates that a process can only be operated on one machine; Equation (13)
represents that a machine can only process one process at most at any time; and Equation (14)
indicates the process sequence constraints of the same workpiece, which is that only af-
ter the completion of the previous process can the following process begin to be pro-
cessed. Equation (15) means that the machine only processes a workpiece at a time
without interruptions.

3. Methods

NSGA-III is designed to improve the multi-objective optimization problem by chang-
ing the selection [30]. Despite its high diversity, NSGA-III has low precision and poor
searchability when solving specific problems. Therefore, the improved NSGA-III-ST algo-
rithm is proposed.

The NSGA-III-ST algorithm introduces the state transition algorithm and improves
the original clustering operator. The state transition algorithm is used in the NSGA-III-ST
to generate candidate solutions for the state transition of random initialization populations.
The candidate solutions are further compared, filtered, and iteratively optimized by the
Pareto sorting, population association, and microhabitat operations of NSGA-III to obtain
the Pareto optimal solution set. The state transition algorithm is set up with various state
operators, each performing a different function to guarantee the characteristics of the
NSGA-III, and it can avoid the issue of traditional optimization algorithms’ prematureness
or stagnation. The algorithm flow is shown in Figure 2.

3.1. Crossover and Mutation

Since the POX (Precedence Operation Crossover) operator can ensure the solution’s
legality and improve the algorithm’s search ability, the POX is selected as the crossover
operator [30]. Taking the coding crossover of 3 workpieces and 3 machines, the crossover
is shown in Figure 3, with Parent1 and Parent2 as parents and Children1 and Children2
as children.

The workpieces are randomly assigned to the non-empty subsets J1 and J2, with
J1 = {2} and J2 = {1, 3}. We then copy the dark codes belonging to Parent1 to Children1
and the dark codes belonging to Parent2 to Children2 in J1 and keep the position. We copy
the light codes belonging to Parent2 to Children1 and light codes belonging to Parent1 to
Children2 in J2 and keep the position.

Insertional mutations are selected among the mutation ways, randomly selecting a
gene to insert into a random position.



Appl. Sci. 2024, 14, 4976 8 of 22
Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 23 
 

Start

Randomly initialize the parent population Pt 
with a population size of N

Select, cross and mutate Pt

Iteration number t=0

Obtain the offspring population Qt with 
the population number  N

Pt∪Ut, and generate the 
population Rt

Non-dominated sorting

Population pruning generates a 
Pt+1 population of N

t > preset 
iteration number ?

End

Setting of the reference point

Whether the number 
of sorted set is N

 Adaptive normalization of sorted 
set populations

Association operation and  
clustering operator improvement

Niche retention strategy to screen 
individuals

Iteration number t=t+1

Yes

Yes

No

No

State transformation operator acts on Pt

Sample the generated neighborhood, 
and output state set State

Select and update the current optimal 
solution Bestk and state set State

Alternate rotation generates the 
offspring solution Best

Merge candidate solutions

Update and generate the 
offspring generation Ut

 
Figure 2. The flowchart of NSGA-III-ST. 

3.1. Crossover and Mutation 
Since the POX (Precedence Operation Crossover) operator can ensure the solution’s 

legality and improve the algorithm’s search ability, the POX is selected as the crossover 
operator [30]. Taking the coding crossover of 3 workpieces and 3 machines, the crossover 
is shown in Figure 3, with Parent1 and Parent2 as parents and Children1 and Children2 
as children. 

Figure 2. The flowchart of NSGA-III-ST.



Appl. Sci. 2024, 14, 4976 9 of 22Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 23 
 

1 23 1 3 3 22 1

3 2 2 21 1 13 3

Parent1

Parent2

2 2 2

2 2 2

3 3 3

3

1 1 1

1 1 13 3 Children2

Children1

J1={2}
J2={1,3}

 
Figure 3. POX crossover process. 

The workpieces are randomly assigned to the non-empty subsets 𝐽ଵ  and 𝐽ଶ , with 𝐽ଵ = ሼ2ሽ and 𝐽ଶ = ሼ1,3ሽ. We then copy the dark codes belonging to Parent1 to Children1 
and the dark codes belonging to Parent2 to Children2 in 𝐽ଵ and keep the position. We 
copy the light codes belonging to Parent2 to Children1 and light codes belonging to Par-
ent1 to Children2 in 𝐽ଶ and keep the position. 

Insertional mutations are selected among the mutation ways, randomly selecting a 
gene to insert into a random position. 

3.2. Encoding and Decoding 
The coding method is composed of n workpieces, 𝐽, and the number of occurrences 

of each workpiece is equal to the process number 𝑂. When processing starts, the work-
pieces are arranged from left to right for processing. Table 2 provides a more explicit de-
scription. 

Table 2. Process and fuzzy processing time in 3 × 3 processing scene. 

Workpiece Process Machine 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝐽ଵ 
1 (2, 4, 6) (4, 5, 8) (8, 9, 10) 
2 (4, 6, 8) (3, 7, 10) (1, 3, 5) 
3 (4, 5, 8) (1, 4, 7) (5, 6, 7) 𝐽ଶ 1 (2, 3, 5) (6, 8, 10) (7, 8, 10) 
2 (3, 6, 10) (4, 5, 7) (2, 5, 8) 𝐽ଷ 
1 (3, 5, 8) (2, 4, 5) (7, 9, 11) 
2 (6, 8, 9) (4, 8, 10) (1, 2, 4) 
3 (2, 3, 4) (5, 7, 8) (8, 10, 13) 

We set the process code as [1,1,3,2,3,1,2,3], as shown in Figure 4. The first “1” repre-
sents the first process of workpiece 𝐽ଵ, and the second “1” represents the second process 
of workpiece 𝐽ଵ. The corresponding processing machine should be selected according to 
the processing time. From Table 3, the machining operation 𝑂ଵଵ of 𝐽ଵ is processed on 
machine 𝑀ଵ , and the machining operation 𝑂ଵଶ  of 𝐽ଵ  is processed on machine 𝑀ଷ . In 
turn, the processing process can be known as 𝑂ଵଵ → 𝑂ଵଶ → 𝑂ଷଵ → 𝑂ଶଵ → 𝑂ଷଶ → 𝑂ଵଷ →𝑂ଶଶ → 𝑂ଷଷ , and the corresponding machine is 𝑀ଵ → 𝑀ଷ → 𝑀ଶ → 𝑀ଵ → 𝑀ଷ → 𝑀ଶ → 𝑀ଷ →𝑀ଵ.  

Table 3. Pseudocode for sampling strategy. 

Input: 𝑆𝐸, 𝐵𝑒𝑠𝑡, 𝛿, 𝑅 
Output: 𝑆𝑡𝑎𝑡𝑒 
1. for 𝑖 ← 1, 𝑆𝐸 do 
2. 𝑆𝑡𝑎𝑡𝑒(: , 𝑖) ← 𝐵𝑒𝑠𝑡 + 𝛿𝑅𝐵𝑒𝑠𝑡 
3. end for 

Figure 3. POX crossover process.

3.2. Encoding and Decoding

The coding method is composed of n workpieces, Ji, and the number of occurrences of
each workpiece is equal to the process number Oi. When processing starts, the workpieces
are arranged from left to right for processing. Table 2 provides a more explicit description.

Table 2. Process and fuzzy processing time in 3 × 3 processing scene.

Workpiece Process
Machine

M1 M2 M3

J1

1 (2, 4, 6) (4, 5, 8) (8, 9, 10)
2 (4, 6, 8) (3, 7, 10) (1, 3, 5)
3 (4, 5, 8) (1, 4, 7) (5, 6, 7)

J2
1 (2, 3, 5) (6, 8, 10) (7, 8, 10)
2 (3, 6, 10) (4, 5, 7) (2, 5, 8)

J3

1 (3, 5, 8) (2, 4, 5) (7, 9, 11)
2 (6, 8, 9) (4, 8, 10) (1, 2, 4)
3 (2, 3, 4) (5, 7, 8) (8, 10, 13)

We set the process code as [1,1,3,2,3,1,2,3], as shown in Figure 4. The first “1” represents
the first process of workpiece J1, and the second “1” represents the second process of work-
piece J1. The corresponding processing machine should be selected according to the pro-
cessing time. From Table 3, the machining operation O11 of J1 is processed on machine M1,
and the machining operation O12 of J1 is processed on machine M3. In turn, the processing
process can be known as O11 → O12 → O31 → O21 → O32 → O13 → O22 → O33 , and the
corresponding machine is M1 → M3 → M2 → M1 → M3 → M2 → M3 → M1 .

Table 3. Pseudocode for sampling strategy.

Input: SE, Bestk, δ, Ra

Output: State

1. for i← 1, SE do
2. State(:, i)← Bestk + δRaBestk
3. end for

After the process-based encoding, the chromosomes containing process sequencing
and machine selection information are decoded. The process should be allocated according
to the earliest possible completion time. We suppose that the workpiece processing time
is less than the idle time of the machine. In that case, the current process is inserted into
the idle time of the machine, so that each process can be allocated to a better machine to
complete the processing.
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3.3. State Transition Operator

The state transition operator includes rotation transformation, translation transfor-
mation, expansion transformation, and axesion transformation [31,32]. Each transfor-
mation process takes place as follows: Rotation transformation (RT) is calculated as
xk+1 = xk + a 1

n||xk ||2
Rrxk, where a is a positive constant, called the rotation factor, and xk+1

denotes a candidate solution, while xk is the current state, Rr ∈ Rn×n is the random matrix
with its elements belonging to the range of [−1, 1], and ||x||2 represents the Euclidean
norm. Translation transformation (TT) realizes a function of linear search for the line
connected from point xk−1 to point xk, with the origin xk and maximum search length β,
where β is a positive constant; Rt ∈ R is a random variable with the elements belonging to
the range of [0, 1], whose formula is xk+1 = xk + βRt

xk−xk−1
||xk−xk−1||2

. Expansion transformation
(ET) is calculated as xk+1 = xk + γRexk, where γ is a positive constant called the expansion
factor. Re ∈ Rn×n is a random diagonal matrix, and the elements in the matrix conform
to Gaussian distribution. Axesion transformation (AT) is calculated as xk+1 = xk + δRaxk,
where δ is a positive constant, called the axesion factor, and Ra ∈ Rn×n is a random diagonal
matrix, which obeys Gaussian distribution, and only one random index has value.

3.4. Neighborhoods and Sampling

The candidate solution xk+1 is generated by the current state xk through the state
transformation operator. At the same time, since each state transformation operator contains
a random matrix transformation, an infinite number of xk+1 can be generated and form a
neighborhood, which can be denoted as Noperator

xk , where operator represents one of the four
operators. Taking AT as an example, the pseudocode of the sampling strategy is illustrated
in Table 3.

Here, Bestk denotes the current optimal solution, SE represents the sample size, and
State means the candidate solution set with SE, generated by the current optimal solu-
tion Bestk through the axial operator under a given sampling method.

3.5. Select and Update

The selection of individuals mainly consists of two aspects: one is to select the optimal
solution from the candidate state’s set state containing SE candidate solutions, and the other
is to compare the chosen optimal solution with the original Bestk to update the population,
as given by Equation (16). The greedy criterion operates on the solution in the process,
where newBest denotes the selected optimal solution.

Bestk =

{
newBest, i f (newBest) < f (Bestk)

Bestk+1, others

}
(16)

3.6. Alternate Rotation

The pseudocode for the step is illustrated in Table 4, where Best0 is the initial so-
lution generated randomly. amin and αmax denote the value ranges of the rotation factor,
respectively, and θ is a constant.
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Table 4. Pseudocode for alternating rotations.

Input: Best0, SE, f unc, amin, amax, α, β, γ, δ, θ

Output: Best

1. Best0 ← Random Initialization
2. repeat
3. if a < a thenmin
4. α→ αmax
5. end if
6. Bestk ← expansion ( f unc, Bestk, SE, β, γ)
7. Bestk ← rotation ( f unc, Bestk, SE, β, α)
8. Bestk ← axesion ( f unc, Bestk, SE, β, δ)
9. α← θ
10. until terminal condition
11. Best← Bestk

3.7. Improvement of Clustering Operator

To decrease computational complexity, the improved clustering operator replaces the
vertical distance between the reference line and the individuals with the angle between the
reference line and the individuals. We set f n(x) = ( f1

n(x), f2
n(x), . . . , fi

n(x)) as the nor-
malized target and let λj be the reference point and θ the acute angle between f n(x) and λj.
The niche operation is performed after taking θ as the minimum individual’s set and the
corresponding reference point’s set.

3.8. Performance Test of the Algorithm

To better reflect the comprehensive performance of the algorithm, the three indexes Hy-
pervolume (HV), Inverted Generational Distance (IGD), and Averaged Hausdorff Distance
(∆p) are used to evaluate the performance of the algorithm [33,34].

(a) HV

The HV calculates the volume covered by the Pareto front in the objective space, a
comprehensive index. The larger the index is, the better the diversity and convergence of
the obtained Pareto front are [35]. The formula is given by Equation (17).

HV = δ
(

U|Q|i=1vi

)
(17)

where δ denotes the Leberger measure. |Q| denotes the numbers of the Pareto front obtained
by solving the algorithm. vi represents the Hypervolume formed by the reference point
and the ith solution in the resulting solution set.

(b) IGD

The IGD is an inverse mapping of the convergence metric generation distance, repre-
senting the Euclidean distance between the solutions on the true Pareto front and the calcu-
lated non-dominated solution set. In addition to reflecting the algorithm’s convergence [36],
it can also reflect the uniformity and extensiveness of the solution set’s distribution. A
smaller value indicates that the solved Pareto front is closer to the true one. The formula is
given by Equation (18).

IGD(p∗, D) =
∑v∈p∗ dis(v, D)

|p∗| (18)

where p∗ denotes the true Pareto optimal solution set; D denotes the non-dominated
solution set that is actually solved by the algorithm; and dis(v, D) means the minimum
Euclidean distance from the individual in p∗ to the corresponding point in D. |p∗| represents
the size of the true Pareto optimal solution.
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(c) ∆p

∆p is used to evaluate the average Hausdorff distance between the solution set ob-
tained by the algorithm solution and the true Pareto front of a given multi-objective
optimization problem. It is a comprehensive performance evaluation indicator combining
improved GD and IGD indexes. The smaller the indicator is, the better the comprehensive
performance of the algorithm is. The improved GD and IGD are denoted as GDp and IGDp,
which are calculated in Equations (19) and (20), and ∆p is calculated in Equation (21).

GDp(S, P, q) = (
1
|S|∑x∈S

min
p∈P

dq(x, p))
1
q (19)

IGDp(S, P, q) = (
1
|P| ∑p∈P

min
x∈S

dq(p, x))
1
q (20)

∆p(S, P, q) = max
(
GDp(S, P, q), IGDp(S, P, q)

)
(21)

where x is the solution; S is the solution set; P is the Pareto approximation front; the size
of q affects the size of ∆p, and the penalty of ∆p on discrete points is greater when q is
larger; and d is the Euclidean distance.

3.9. Analysis of Test Results

To verify the superiority of the improved algorithm, MOEA/D, NSGA-II, NSGA-III,
and the NSGA-III-ST algorithm are selected to perform simulation experiments on ZDT
(ZDT1~ZDT4) and DTLZ (DTLZ1, DTLZ2, and DTLZ7) [37] test functions, which are
common function sets. The four algorithms use simulated binary crossover and polynomial
variation to achieve iterative population evolution, and the variation probability is 1/k,
where k denotes the dimensionality of the corresponding decision variables. According to
multiple tests, the rotation factor α, maximum search length β, and scaling factor γ are all
set as 1, and the sample size is set as SE = 5. Each algorithm runs 30 times independently,
and the average value (Average) and standard deviation (St.dev) of the three indexes IGD,
HV, and ∆p are taken to reflect the comprehensive performance of the algorithm. The
optimal values of all indexes are marked in dark gray, and the suboptimal values are
marked in light gray.

(a) HV

It can be seen from Table 5 that among the 7 test functions based on the HV, NSGA-III-ST
obtains 4 optimal values and 1 suboptimal value, and the st.devs are smaller than other algo-
rithms on some functions that achieve optimal values, such as ZDT1 and ZDT2; MOEA/D
obtains 3 optimal values; NSGA-II obtains 2 suboptimal values; and NSGA-III obtains 5 subop-
timal values. That means that NSGA-III-ST has a better comprehensive performance.

Table 5. The test results based on the HV.

Function Algorithm Average St.dev

ZDT1

MOEA/D 7.1146 × 10−1 6.57 × 10−3

NSGA-II 7.1913 × 10−1 2.34 × 10−4

NSGA-III 7.2000 × 10−1 9.33 × 10−5

NSGA-III-ST 7.2028 × 10−1 2.94 × 10−5

ZDT2

MOEA/D 4.1891 × 10−1 3.06 × 10−2

NSGA-II 4.4379 × 10−1 1.89 × 10−4

NSGA-III 4.4460 × 10−1 1.40 × 10−4

NSGA-III-ST 4.4501 × 10−1 2.77 × 10−5

ZDT3

MOEA/D 5.9748 × 10−1 3.96 × 10−2

NSGA-II 5.8232 × 10−1 2.44 × 10−2

NSGA-III 5.8212 × 10−1 2.02 × 10−4

NSGA-III-ST 5.8924 × 10−1 2.45 × 10−4
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Table 5. Cont.

Function Algorithm Average St.dev

ZDT4

MOEA/D 6.9605 × 10−1 1.21 × 10−2

NSGA-II 7.1726 × 10−1 1.70 × 10−3

NSGA-III 7.1307 × 10−1 8.60 × 10−3

NSGA-III-ST 7.1975 × 10−1 4.28 × 10−4

DTLZ1

MOEA/D 8.3994 × 10−1 1.53 × 10−3

NSGA-II 8.2031 × 10−1 5.55 × 10−3

NSGA-III 8.3962 × 10−1 1.65 × 10−3

NSGA-III-ST 8.3884 × 10−1 9.24 × 10−3

DTLZ2

MOEA/D 5.5947 × 10−1 2.65 × 10−5

NSGA-II 5.3180 × 10−1 4.47 × 10−3

NSGA-III 5.5946 × 10−1 4.55 × 10−5

NSGA-III-ST 5.5824 × 10−1 1.23 × 10−3

DTLZ4

MOEA/D 4.0454 × 10−1 1.35 × 10−1

NSGA-II 5.0529 × 10−1 1.13 × 10−1

NSGA-III 4.6308 × 10−1 1.28 × 10−1

NSGA-III-ST 5.5790 × 10−1 1.48 × 10−3

(b) IGD

Similarly, the IGD is also tested, and the following results are obtained, as shown
in Table 6: NSGA-III-ST obtains 5 optimal values; MOEA/D obtains 2 optimal values;
NSGA-II obtains 2 suboptimal values; and NSGA-III obtains 5 suboptimal values. It can be
seen that NSGA-III-ST has a higher convergence than the other algorithms.

Table 6. The test results based on the IGD.

Function Algorithm Average St.dev

ZDT1

MOEA/D 1.0569 × 10−2 8.96 × 10−3

NSGA-II 4.7751 × 10−3 1.83 × 10−4

NSGA-III 3.9120 × 10−3 1.20 × 10−5

NSGA-III-ST 3.8896 × 10−3 3.89 × 10−6

ZDT2

MOEA/D 1.9229 × 10−2 3.01 × 10−2

NSGA-II 4.9055 × 10−3 1.96 × 10−4

NSGA-III 3.8716 × 10−3 4.50 × 10−5

NSGA-III-ST 3.8098 × 10−3 2.69 × 10−6

ZDT3

MOEA/D 2.6567 × 10−2 1.30 × 10−2

NSGA-II 7.3206 × 10−3 7.39 × 10−3

NSGA-III 6.1249 × 10−3 2.05 × 10−4

NSGA-III-ST 6.0997 × 10−3 1.82 × 10−4

ZDT4

MOEA/D 2.0121 × 10−2 1.08 × 10−2

NSGA-II 5.3536 × 10−3 8.16 × 10−4

NSGA-III 9.5565 × 10−3 1.29 × 10−2

NSGA-III-ST 4.0198 × 10−3 1.67 × 10−4

DTLZ1

MOEA/D 2.0741 × 10−2 2.17 × 10−4

NSGA-II 2.7259 × 10−2 1.51 × 10−3

NSGA-III 2.0780 × 10−2 2.20 × 10−4

NSGA-III-ST 2.1333 × 10−2 3.36 × 10−3

DTLZ2

MOEA/D 5.4467 × 10−2 1.33 × 10−6

NSGA-II 6.9125 × 10−2 2.38 × 10−3

NSGA-III 5.4480 × 10−2 7.48 × 10−6

NSGA-III-ST 5.4668 × 10−2 6.80 × 10−4
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Table 6. Cont.

Function Algorithm Average St.dev

DTLZ4

MOEA/D 3.8997 × 10−1 2.78 × 10−1

NSGA-II 1.2666 × 10−1 2.23 × 10−1

NSGA-III 2.6281 × 10−1 2.69 × 10−1

NSGA-III-ST 5.5056 × 10−2 1.14 × 10−3

(c) ∆p

Meanwhile, ∆p is tested, and the following results are obtained, as shown in Table 7:
NSGA-III-ST achieves 5 optimal values; MOEA/D makes 3 optimal values; NSGA-II
achieves 2 suboptimal values; NSGA-III achieves 5 suboptimal values. That means that
NSGA-III-ST has better comprehensive performances.

Table 7. The test results based on the ∆p.

Function Algorithm Average St.dev

ZDT1

MOEA/D 1.0569 × 10−2 8.96 × 10−3

NSGA-II 4.7751 × 10−3 1.83 × 10−4

NSGA-III 3.9120 × 10−3 1.20 × 10−5

NSGA-III-ST 3.8896 × 10−3 3.89 × 10−6

ZDT2

MOEA/D 1.9229 × 10−2 3.01 × 10−2

NSGA-II 4.9055 × 10−3 1.96 × 10−4

NSGA-III 3.8716 × 10−3 4.50 × 10−5

NSGA-III-ST 3.8098 × 10−3 2.69 × 10−6

ZDT3

MOEA/D 2.6567 × 10−2 1.30 × 10−2

NSGA-II 7.3206 × 10−3 7.39 × 10−3

NSGA-III 6.1249 × 10−3 2.05 × 10−4

NSGA-III-ST 6.0997 × 10−3 1.82 × 10−4

ZDT4

MOEA/D 2.0127 × 10−2 1.08 × 10−2

NSGA-II 5.3536 × 10−3 8.16 × 10−4

NSGA-III 9.5565 × 10−3 1.29 × 10−2

NSGA-III-ST 4.0198 × 10−3 1.67 × 10−4

DTLZ1

MOEA/D 2.0725 × 10−2 1.56 × 10−4

NSGA-II 2.7259 × 10−2 1.51 × 10−3

NSGA-III 2.0780 × 10−2 2.20 × 10−4

NSGA-III-ST 2.1333 × 10−2 3.36 × 10−3

DTLZ2

MOEA/D 5.4467 × 10−2 1.34 × 10−6

NSGA-II 6.9125 × 10−2 2.38 × 10−3

NSGA-III 5.4480 × 10−2 7.48 × 10−6

NSGA-III-ST 5.4668 × 10−2 6.80 × 10−4

DTLZ4

MOEA/D 3.2778 × 10−1 2.70 × 10−1

NSGA-II 1.2666 × 10−1 2.23 × 10−1

NSGA-III 2.6281 × 10−1 2.69 × 10−1

NSGA-III-ST 5.5056 × 10−2 1.14 × 10−3

The convergence of the four algorithms on the HV on the ZDT1 problem is drawn,
as shown in Figure 5. It can be seen that the convergence speed of NSGA-III-ST has been
greatly improved.

Although NSGA-III-ST has no optimal solution among the four algorithms in the
DTLZ2 problem, where the Pareto optimal solution set is evenly distributed, the improved
algorithm retains the evaluation method based on the reference vector in NSGA-III. It
ensures the uniformity of the intersection point with the Pareto front. The HV and IGD
indexes calculated by NSGA-III-ST are only slightly different from the optimal values, as
shown in Figure 6.
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In summary, NSGA-III-ST is superior to the other three algorithms in terms of com-
prehensive performances for HV, IGD, and ∆p. Considering the convergence level and
diversity, the NSGA-III-ST algorithm performs better for the Pareto front.
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4. Results
4.1. Related Data on Workshop Scheduling Model

There are eight machines in a production workshop, and the set {Mi|i ∈ 1, 2, . . . , 8} is
used to denote the available processing machines set. The data on machine power and
consumption are shown in Table 8.

Table 8. Machine power and coolant consumption.

Machine Processing Power
(kW) Idle Power (kW) Coolant Usage (L) Coolant Circulation

Cycle (104 s)

M1 11.5 2.45 600 120
M2 12.5 1.82 600 120
M3 11.5 1.50 400 90
M4 12 1.58 400 90
M5 10 1.41 400 90
M6 6.5 0.45 350 86
M7 7.5 0.71 350 86
M8 10 1.80 350 86

The fuzzy processing time is obtained using previous data and staff experience, as
shown in Table 9, where the value (0,0,0) indicates that the workpiece’s current process is
not processed on that machine. Meanwhile, each workpiece has an internal delivery period,
as shown in Table 10. The delivery period is rounded to account for subsequent calculations.

Table 9. Fuzzy processing time on the machine for each product process (seconds).

Workpiece Process
Machine

M1 M2 M3 M4

J1

1 (85, 90, 92) (88, 95, 98) (0, 0, 0) (79, 82, 85)
2 (0, 0, 0) (35, 40, 45) (32, 35, 38) (0, 0, 0)
3 (0, 0, 0) (12, 15, 20) (0, 0, 0) (14, 16, 17)

J2

1 (0, 0, 0) (0, 0, 0) (83, 85, 86) (80, 81, 83)
2 (50, 51, 53) (45, 49, 51) (0, 0, 0) (0, 0, 0)
3 (29, 31, 33) (0, 0, 0) (0, 0, 0) (32, 35, 36)
4 (0, 0, 0) (0, 0, 0) (19, 20, 22) (0, 0, 0)
5 (18, 19, 21) (17, 19, 22) (0, 0, 0) (18, 22, 24)
6 (0, 0, 0) (10, 11, 12) (0, 0, 0) (8, 9, 11)

J3

1 (81, 83, 85) (0, 0, 0) (79, 81, 83) (0, 0, 0)
2 (49, 51, 53) (47, 49, 52) (51, 53, 55) (46, 48, 50)
3 (0, 0, 0) (32, 34, 36) (0, 0, 0) (33, 35, 36)
4 (0, 0, 0) (0, 0, 0) (10, 11, 12) (0, 0, 0)

J4

1 (75, 76, 78) (72, 73, 74) (0, 0, 0) (0, 0, 0)
2 (0, 0, 0) (38, 40, 42) (38, 39, 42) (36, 38, 39)
3 (10, 12, 13) (0, 0, 0) (9, 10, 12) (9, 10, 11)

J5
1 (0, 0, 0) (52, 55, 56) (0, 0, 0) (51, 53, 55)
2 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

J6

1 (81, 82, 83) (0, 0, 0) (79, 81, 82) (0, 0, 0)
2 (45, 46, 48) (0, 0, 0) (0, 0, 0) (0, 0, 0)
3 (10, 11, 12) (0, 0, 0) (9, 12, 13) (8, 10, 12)

J7

1 (0, 0, 0) (71, 72, 73) (70, 73, 76) (0, 0, 0)
2 (42, 44, 45) (0, 0, 0) (0, 0, 0) (40, 42, 43)
3 (0, 0, 0) (23, 25, 26) (22, 23, 24) (0, 0, 0)
4 (0, 0, 0)- (0, 0, 0) (8, 9, 11) (0, 0, 0)

J8

1 (81, 83, 85) (79, 81, 83) (0, 0, 0) (0, 0, 0)
2 (45, 46, 48) (43, 45, 46) (0, 0, 0) (44, 45, 47)
3 (21, 22, 24) (0, 0, 0) (19, 21, 22) (0, 0, 0)
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Table 9. Cont.

Workpiece Process
Machine

M5 M6 M7 M8

J1

1 (0, 0, 0) (92, 95, 98) (84, 91, 96) (0, 0, 0)
2 (30, 33, 35) (28, 30, 32) (0, 0, 0) (30, 31, 33)
3 (0, 0, 0) (0, 0, 0) (12, 13, 15) (0, 0, 0)

J2

1 (85, 88, 90) (89, 92, 95) (0, 0, 0) (79, 82, 85)
2 (46, 48, 50) (42, 45, 48) (0, 0, 0) (0, 0, 0)
3 (0, 0, 0) (30, 33, 35) (31, 33, 35) (0, 0, 0)
4 (21, 22, 25) (0, 0, 0) (20, 25, 27) (0, 0, 0)
5 (0, 0, 0) (19, 20, 22) (20, 21, 22) (0, 0, 0)
6 (8, 10, 12) (7, 8, 9) (0, 0, 0) (0, 0, 0)

J3

1 (0, 0, 0) (0, 0, 0) (82, 83, 85) (0, 0, 0)
2 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
3 (0, 0, 0) (30, 35, 36) (0, 0, 0) (35, 36, 38)
4 (9, 10, 12) (8, 10, 12) (0, 0, 0) (9, 12, 13)

J4

1 (0, 0, 0) (70, 74, 78) (71, 73, 75) (0, 0, 0)
2 (0, 0, 0) (0, 0, 0) (40, 41, 43) (0, 0, 0)
3 (0, 0, 0) (8, 10, 12) (0, 0, 0) (11, 12, 13)

J5
1 (49, 52, 54) (0, 0, 0) (0, 0, 0) (0, 0, 0)
2 (0, 0, 0) (0, 0, 0) (21, 22, 24) (19, 21, 23)

J6

1 (83, 85, 86) (91, 93, 94) (0, 0, 0) (0, 0, 0)
2 (44, 45, 46) (48, 50, 51) (52, 53, 55) (0, 0, 0)
3 (9, 11, 12) (0, 0, 0) (0, 0, 0) (10, 12, 13)

J7

1 (69, 71, 72) (73, 75, 78) (0, 0, 0) (0, 0, 0)
2 (0, 0, 0) (39, 41, 42) (43, 44, 46) (38, 40, 42)
3 (0, 0, 0) (19, 20, 22) (0, 0, 0) (25, 26, 27)
4 (8, 10, 12) (0, 0, 0) (10, 11, 12) (0, 0, 0)

J8

1 (0, 0, 0) (0, 0, 0) (0, 0, 0) (82, 83, 85)
2 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
3 (20, 21, 23) (0, 0, 0) (18, 19, 21) (0, 0, 0)

Table 10. Fuzzy internal lead time for each product (seconds).

Workpiece Delivery Time

J1 (170, 180, 200, 210)
J2 (210, 215, 231, 245)
J3 (180, 198, 210, 220)
J4 (150, 160, 175, 180)
J5 (100, 125, 130, 145)
J6 (160, 170, 180, 200)
J7 (180, 190, 205, 210)
J8 (150, 164, 182, 206)

Each machine in the workshop is equipped with a Management Kanban; lighting
is provided by energy-saving fluorescent lamps of the T8 type, and axial-flow roof fans
provide exhaust. The number and rated power of each utility involved in carrying out the
batch production tasks are shown in Table 11.

To compare with the optimized scheme, the scheduling scheme is intercepted for
the same quantity at that time. In the original scheduling scheme, the carbon emission is
150.64 kg·CO2, and the makespan is 260 s.
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Table 11. Number and rated power of each public facility.

Name Number Rated Power (kW) Total Power (kW)

Management Kanban 8 0.1 0.8
Energy-saving fluorescent

lamp of T8 type 20 0.03 0.6

Axial flow fans 5 1.1 5.5

4.2. Solving of Model Based on NSGA-III-ST

The model is solved using the NSGA-III and NSGA-III-ST algorithms. We set the
initial population size as 100, the variation probability as 0.8, and the number of iterations
as 100. The simulation software used in this paper is Pycharm 2022.1.2, and the simulation
experiment environment is AMD Ryzen 5 5600H with Radeon Graphics, 3.30 GHz. The
RAM is 16G, with the 64-bit Windows 11-based operating system for x64 processors. The
two algorithms run 10 times independently, and the results are illustrated in Table 12.

Table 12. Example results of solving for the two algorithms.

Type Parameter
NSGA-III NSGA-III-ST

TBI SCE ∆δ TBI SCE ∆δ

Value
Best 0.08 136.13 197.32 0.03 133.51 195.71

Average 0.90 142.71 216.48 1.78 135.81 206.32

Optimal
TBI minimization 0.08 145.43 236.35 0.03 143.39 231.31
SCE minimization 2.52 136.13 219.83 0.30 133.51 228.76
∆δ minimization 2.36 143.08 197.32 1.99 136.69 195.71

Table 12 shows that the best value (Best) obtained by the NSGA-III-ST algorithm is
superior to those obtained by the NSGA-III algorithm, and the average of the SCE index
obtained by NSGA-III-ST is better than those of NSGA-III. Meanwhile, we run the NSGA-
III-ST against the NSGA-III using the test functions DTLZ1-4, finding that the difference in
running time between the two algorithms for the test functions is insignificant.

Figure 7 plots the Pareto solution sets obtained by the two algorithms. The pentagram
represents the solution set obtained by the NSGA-III-ST, and the diamond denotes that
of NSGA-III. Most of the diamond points are dominated by the pentagram points, which
means that the ability of NSGA-III-ST to obtain Pareto solutions is outstanding. Considering
that the NSGA-III-ST algorithm outperforms the NSGA-III in terms of solution performance,
the NSGA-III-ST algorithm has a higher efficiency.
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Three optimization results are taken out owing to the TBI minimization, SCE min-
imization, and ∆δ minimization, as shown in Table 12. The fuzzy Gantt chart of the
scheduling scheme is drawn based on the minimization of the three indexes, as shown in
Figures 8–10.

From Table 12, it can be seen that NSGA-III-ST makes better solutions in the Best
parameter but achieves a larger average in the time index TBI, which means that the opti-
mization scheme still has some room for improvement. In the optimization scheme based
on the minimization of different indexes, the job is mainly concentrated in M4, M5, M6,
and M7. The robust scheduling scheme generated by the NSGA-III-ST algorithm is feasible
under the influence of uncertainties in terms of processing time and delivery period. The
minimum scheduling scheme based on the NSGA-III-ST algorithm calculates the carbon
emissions to be 133.51 kg CO2 and the makespan to be 226 s, which means tha the carbon
emissions are reduced, and the efficiency of the scheduling scheme is improved compared
with the original scheme.
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Therefore, the following improvements can be made: for equipment with relatively
concentrated operations, replacing it with lower-energy-consuming equipment or consider-
ing adjusting processes; while meeting internal delivery requirements, the external delivery
period should also be ensured, that is, meeting the customer’s needs in terms of both time
and quality to improve customer satisfaction.

5. Discussion

Focusing on the problem of insufficient convergence of the NSGA-III algorithm, this
paper introduces the state transition algorithm into the NSGA-III algorithm and proposes
the NSGA-III-ST algorithm. The state transformation operator includes rotation, translation,
expansion, and axesion transformations to improve the algorithm’s searchability. Neigh-
borhood and sampling operations avoid traversing the elements in the neighborhood to
improve the search speed. The selection and update operation selects the optimal solution
from the state set of candidate solutions. The alternate rotation operation is used to realize
the iterative optimization of the global optimal solution. The solution set generated by the
above state changes is combined with the parent population. Then, the non-dominated
sorting, population adaptive normalization, and niche preservation strategies are carried
out. When the algorithm meets the iteration conditions, the optimal solution is output. The
NSGA-III_ST algorithm is compared with the classical algorithm, and ZDT, UF, and DTLZ
series benchmark functions and scheduling cases are selected for testing. The test results
show the effectiveness of the proposed algorithm. However, the paper still has some limita-
tions. Firstly, there are more uncertainties in the actual workshops, and the anti-interference
capability of the model needs to be enhanced. The algorithm mainly focuses on updating
and selecting candidate solutions, with insufficient research being carried out on reference
point associations and microhabitat operations. For future research, equipment failure
and the quantification of personnel operations, etc., should be considered, and in-depth
research on reference point associations and microhabitat operations is suggested.

6. Conclusions

In this paper, to solve workshop scheduling problems under uncertainty, a low-carbon-
emission workshop scheduling model under uncertainty and an improved NSGA-III-ST
algorithm are proposed. The proposed model considers the scheduling objectives of a
minimum time index, minimum total carbon emissions, and optimal robust indexes. The
NSGA-III-ST algorithm is proposed by introducing the state transition algorithm and
improving the original clustering operator based on NSGA-III, increasing the ability of
the local search while maintaining the advantages of the NSGA-III algorithm. The model
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is applied to a real case. In the minimum scheduling scheme of the carbon emission
index generated based on the NSGA-III-ST algorithm, the calculated carbon emission
is 133.51 kg-CO2, and the maximum completion time is 226 s. Compared with other
scheduling schemes, the method has some advantages in reducing carbon emission and
reducing the carbon emissions of automobiles by 11.3%, which improves, to a certain extent,
the efficiency of the original scheduling scheme. The maximum completion time is reduced
by 13.1%, which verifies the effectiveness of the model and algorithm.
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